Matematiikan pitkä oppimäärä



Samankaltaiset tiedostot
Matematiikan pitkä oppimäärä

Kurssikuvausten väljyyttä voidaan käyttää resurssien salliessa keskeisten sisältöjen syventämiseen ja eheyttävien kokonaisuuksien muodostamiseen.

MATEMATIIKKA MATEMATIIKAN PITKÄ OPPIMÄÄRÄ. Oppimäärän vaihtaminen

5.6.2 Matematiikan pitkä oppimäärä

MATEMATIIKKA. MAA Matematiikan pitkä oppimäärä

PITKÄ MATEMATIIKKA. Pakolliset kurssit

Kurssit MAA1 MAA14 ja MAB1- MAB9 arvostellaan numeroarvosanalla Soveltava kurssi MAA 15 arvostellaan suoritettu / hylätty.

Matematiikan lyhyen oppimäärän opetuksen tavoitteena on, että opiskelija

5.6.3 Matematiikan lyhyt oppimäärä

EHDOTUS. EHDOTUS Matematiikan opetussuunnitelmien perusteiden oppiainekohtaiset osat

MATEMATIIKKA Matematiikan asema aikamme kulttuurissa edellyttää valmiutta ymmärtää, hyödyntää ja tuottaa matemaattisesti esitettyä tietoa.

3.6 Matematiikka. Esimerkkien ja sovellustehtävien avulla kestävän kehityksen näkökulma tulee esille kursseissa MAA6 ja MAA8 sekä MAB3 ja MAB5.

Lyhyt matematematiikka. Matematiikan yhteinen opintokokonaisuus

3. Lausekkeet ja yhtälöt (ma3) Keskeiset sisällöt polynomin käsite, polynomien yhteen-, vähennys- ja kertolasku

6.4 Matematiikka. Arviointi

6.4 Matematiikka. Arviointi

Matematiikka. Matematiikan pitkä oppimäärä. Pakolliset kurssit

Kurssikuvausten väljyyttä voidaan käyttää resurssien salliessa keskeisten sisältöjen syventämiseen ja eheyttävien kokonaisuuksien muodostamiseen.

Pitkä matematiikka, Lyhyt matematiikka MATEMATIIKKA, PITKÄ, LUKIO-OPETUS

5.6. Matematiikka Pitkä matematiikka

Matematiikka vuosiluokat 7 9

KESKEISET SISÄLLÖT Keskeiset sisällöt voivat vaihdella eri vuositasoilla opetusjärjestelyjen mukaan.

5. Matematiikkalukio. 5.1 Opetus. Matematiikkalukion tarkoitus

ÄIDINKIELI LAHDEN RUDOLF STEINER KOULUN LUKION KURSSISISÄLLÖT

kymmenjärjestelmä-käsitteen varmentaminen, tutustuminen 60-järjestelmään kellonaikojen avulla

MATEMATIIKKA VL LUOKKA. Laaja-alainen osaaminen. liittyvät sisältöalueet

Opiskelijan käsitys kielestä, teksteistä ja niiden tulkinnasta syvenee, ja hänen taitonsa lukea tekstejä

Oppiaineen opetussuunnitelmaan on merkitty oppiaineen opiskelun yhteydessä toteutuva aihekokonaisuuksien ( = AK) käsittely seuraavin lyhentein:

Merkitys, arvot ja asenteet 7 Ei vaikuta arvosanan

MAS- linjan matematiikan kurssit

Päättöarvioinnin kriteerit arvosanalle hyvä (8)

Kommentteja Markku Halmetojan ops-ehdotuksesta

OPS OPPIMISTAVOITTEET JA OPETUKSEN KESKEISET SISÄLLÖT MATEMATIIKKA

KERAMIIKKA JA LIIKUNTAPAINOTTEINEN

ÄIDINKIELI JA KIRJALLISUUS PAKOLLISET KURSSIT

1. ja 2. kurssi (I-osa) Perusasiat kuntoon

Muista tutkia ihan aluksi määrittelyjoukot, kun törmäät seuraaviin funktioihin:

1. ja 2. kurssi (I-osa) Perusasiat kuntoon

PRELIMINÄÄRIKOE PITKÄ MATEMATIIKKA

KURSSISELOSTEET Päivitetty Päivitetty Päivitetty Päivitetty

ClassPad 330 plus ylioppilaskirjoituksissa apuna

PORIN SUOMALAISEN YHTEISLYSEON LUKIO

MATEMATIIKKA. Oppiaineen tehtävä

LAHDEN RUDOLF STEINER KOULUN LUKION KURSSISISÄLLÖT

Luonnos pitkän matematiikan opetussuunnitelmaksi. Pitkän matematiikan pakollinen oppimäärä

HYVÄ KALAJOEN LUKIOON AIKOVA

KOMPLEKSILUVUT C. Rationaaliluvut Q. Irrationaaliluvut

5 Differentiaalilaskentaa

(KU) KUVATAIDE. Arviointi Numeroarviointi Erityistä Materiaalimaksu, pakollisten kurssien jälkeen. KU 4 Taiteen kuvista omiin kuviin

Perusopetuksen opetussuunnitelman perusteet 2014 matematiikassa vuosiluokilla 7 9

MATEMATIIKKA/Vuosiluokat 7-9

MAB 9 kertaus MAB 1. Murtolukujen laskutoimitukset: Yhteen- ja vähennyslaskuissa luvut lavennettava samannimisiksi

MATEMAATTIS- LUONNONTIETEELLINEN OSAAMINEN

Kaikkia alla olevia kohtia ei käsitellä luennoilla kokonaan, koska osa on ennestään lukiosta tuttua.

LAHDEN RUDOLF STEINER KOULUN LUKION KURSSISISÄLLÖT

KURSSIESITTEET LV

Johdatus reaalifunktioihin P, 5op

MATEMATIIKAN KOE PITKÄ OPPIMÄÄRÄ Merkitään f(x) =x 3 x. Laske a) f( 2), b) f (3) ja c) YLIOPPILASTUTKINTO- LAUTAKUNTA

MS-A0104 Differentiaali- ja integraalilaskenta 1 (ELEC2) MS-A0106 Differentiaali- ja integraalilaskenta 1 (ENG2)

Oppilas vahvistaa opittuja taitojaan, kiinnostuu oppimaan uutta ja saa tukea myönteisen minäkuvan kasvuun matematiikan oppijana.

Ehdotus vuonna 2016 voimaan astuvaksi pitkän matematiikan opetussuunnitelmaksi

Vinokulmainen kolmio. Hannu Lehto. Lahden Lyseon lukio

Funktiot. funktioita f : A R. Yleensä funktion määrittelyjoukko M f = A on jokin väli, muttei aina.

A-osa. Ratkaise kaikki tämän osan tehtävät. Tehtävät arvostellaan pistein 0-6. Taulukkokirjaa saa käyttää apuna, laskinta ei.

ClassPad 330 plus ylioppilaskirjoituksissa apuna

Verkkokurssien sisältö

YHTEYSTIETOJA...2 HYVÄ KALAJOEN LUKIOON AIKOVA...3 KALAJOEN LUKION KURSSIT...4 ÄIDINKIELI JA KIRJALLISUUS...4 RUOTSI A1-KIELI...5 RUOTSI B1-KIELI...

Tornion yhteislyseon lukion opetussuunnitelma 2016

KURSSIVALINTAOPAS (OPS

MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 3: Jatkuvuus

Matematiikka 7-9. Matematiikan tehtävä. Matematiikan opetuksen tehtävänä on kehittää oppilaiden loogista, täsmällistä ja luovaa

MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ HYVÄN VASTAUKSEN PIIRTEITÄ

Pyramidi 9 Trigonometriset funktiot ja lukujonot HK1-1. Dsin3 x. 3cos3x. Dsinx. u( x) sinx ja u ( x) cosx. Dsin. Dsin

1 lk Tavoitteet. 2 lk Tavoitteet

MATEMATIIKAN KOE PITKÄ OPPIMÄÄRÄ

Kompleksiluvut., 15. kesäkuuta /57

PRELIMINÄÄRIKOE. Pitkä Matematiikka

ÄIDINKIELI JA KIRJALLISUUS, SUOMI ÄIDINKIELENÄ. KLAUKKALAN AIKUISLUKIO lukuvuosi Kurssien kuvaukset ja oppikirjat. Klikkaa oppiainetta

Vastaus: 10. Kertausharjoituksia. 1. Lukujonot lim = lim n + = = n n. Vastaus: suppenee raja-arvona Vastaus:

Diskreetti derivaatta

S5-S9 L1, L2, L4, L5, L6, L7 havaintojensa pohjalta kannustaa oppilasta esittämään ratkaisujaan ja päätelmiään muille

Testaa taitosi Piirrä yksikköympyrään kaksi erisuurta kulmaa, joiden a) sini on 0,75 b) kosini on

Preliminäärikoe Tehtävät A-osio Pitkä matematiikka kevät 2016 Sivu 1 / 4

KURSSIVALINTAOPAS (UUSI OPS 2016)

Sinin jatkuvuus. Lemma. Seuraus. Seuraus. Kaikilla x, y R, sin x sin y x y. Sini on jatkuva funktio.

Opetusperiodi:I, suunnattu hakukohteille: Teknillinen fysiikka ja matematiikka

KURSSIVALINTAOPAS (UUSI OPS 2016)

KURSSIVALINTAOPAS (UUSI OPS 2016)

Mika Setälä Lehtori Lempäälän lukio

KURSSIVALINTAOPAS (UUSI OPS 2016)

Juuri 12 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty

MS-A0102 Differentiaali- ja integraalilaskenta 1

Kompleksiluvut 1/6 Sisältö ESITIEDOT: reaaliluvut

MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ (1 piste/kohta)

Opetusperiodi:I, suunnattu hakukohteille:

MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ HYVÄN VASTAUKSEN PIIRTEITÄ

1 Kompleksiluvut. Kompleksiluvut 10. syyskuuta 2005 sivu 1 / 7

OPETUSSUUNNITELMALOMAKE

Anna jokaisen kohdan vastaus kolmen merkitsevän numeron tarkkuudella muodossa

1.1 Vektorit. MS-A0004/A0006 Matriisilaskenta. 1.1 Vektorit. 1.1 Vektorit. Reaalinen n-ulotteinen avaruus on joukko. x 1. R n.

Transkriptio:

Matematiikan pitkä oppimäärä Matematiikan pitkän oppimäärän opetuksen tehtävänä on antaa opiskelijalle matemaattiset valmiudet, joita tarvitaan ammatillisissa opinnoissa ja korkeakouluopinnoissa. Pitkän matematiikan opinnoissa opiskelijalla on tilaisuus omaksua matemaattisia käsitteitä ja menetelmiä sekä oppia ymmärtämään matemaattisen tiedon luonnetta. Opetus pyrkii myös antamaan opiskelijalle selkeän käsityksen matematiikan merkityksestä yhteiskunnan kehityksessä sekä sen soveltamismahdollisuuksista arkielämässä, tieteessä ja tekniikassa. 2SHWXNVHQWDYRLWWHHW Matematiikan pitkän oppimäärän opetuksen tavoitteena on, että opiskelija tottuu pitkäjänteiseen työskentelyyn ja oppii sitä kautta luottamaan omiin matemaattisiin kykyihinsä, taitoihinsa ja ajatteluunsa rohkaistuu kokeilevaan ja tutkivaan toimintaan, ratkaisujen keksimiseen sekä niiden kriittiseen arviointiin ymmärtää ja osaa käyttää matematiikan kieltä, kuten seuraamaan matemaattisen tiedon esittämistä, lukemaan matemaattista tekstiä, keskustelemaan matematiikasta, ja oppii arvostamaan esityksen täsmällisyyttä ja perustelujen selkeyttä oppii näkemään matemaattisen tiedon loogisena rakenteena kehittää lausekkeiden käsittely-, päättely- ja ongelmanratkaisutaitojaan harjaantuu käsittelemään tietoa matematiikalle ominaisella tavalla, tottuu tekemään otaksumia, tutkimaan niiden oikeellisuutta ja laatimaan perusteluja sekä arvioimaan perustelujen pätevyyttä ja tulosten yleistettävyyttä. harjaantuu mallintamaan käytännön ongelmatilanteita ja hyödyntämään erilaisia ratkaisustrategioita osaa käyttää tarkoituksenmukaisia matemaattisia menetelmiä, teknisiä apuvälineitä ja tietolähteitä. 3DNROOLVHWNXUVVLWVXOXLVVDVXRVLWHOWDYDVXRULWXVYXRVL Pakolliset kurssit suositellaan suoritettavaksi numerojärjestyksessä. )XQNWLRWMD\KWlO W0$$, vahvistaa yhtälön ratkaisemisen ja prosenttilaskennan taitojaan syventää verrannollisuuden, neliöjuuren ja potenssin käsitteiden ymmärtämistään tottuu käyttämään neliöjuuren ja potenssin laskusääntöjä syventää funktiokäsitteen ymmärtämistään tutkimalla potenssi- ja eksponenttifunktioita oppii ratkaisemaan potenssiyhtälöitä. potenssifunktio potenssiyhtälön ratkaiseminen juuret ja murtopotenssi

eksponenttifunktio 3RO\QRPLIXQNWLRW0$$, harjaantuu käsittelemään polynomifunktioita oppii ratkaisemaan toisen asteen polynomiyhtälöitä ja tutkimaan ratkaisujen lukumäärää oppii ratkaisemaan korkeamman asteen polynomiyhtälöitä, jotka voidaan ratkaista ilman polynomien jakolaskua oppii ratkaisemaan yksinkertaisia polynomiepäyhtälöitä. polynomien tulo ja binomikaavat polynomifunktio toisen ja korkeamman asteen polynomiyhtälöitä toisen asteen yhtälön juurten lukumäärän tutkiminen toisen asteen polynomin jakaminen tekijöihin polynomiepäyhtälön ratkaiseminen *HRPHWULD0$$, harjaantuu hahmottamaan ja kuvaamaan tilaa sekä muotoa koskevaa tietoa sekä kaksi- että kolmiulotteisissa tilanteissa harjaantuu muotoilemaan, perustelemaan ja käyttämään geometrista tietoa käsitteleviä lauseita ratkaisee geometrisia ongelmia käyttäen hyväksi kuvioiden ja kappaleiden ominaisuuksia, yhdenmuotoisuutta, Pythagoraan lausetta sekä suora- ja vinokulmaisen kolmion trigonometriaa. kuvioiden ja kappaleiden yhdenmuotoisuus sini- ja kosinilause ympyrän, sen osien ja siihen liittyvien suorien geometria kuvioihin ja kappaleisiin liittyvien pituuksien, kulmien, pinta-alojen ja tilavuuksien laskeminen $QDO\\WWLQHQJHRPHWULD0$$, ymmärtää kuinka analyyttinen geometria luo yhteyksiä geometristen ja algebrallisten käsitteiden välille

ymmärtää pistejoukon yhtälön käsitteen ja oppii tutkimaan yhtälöiden avulla pisteitä, suoria, ympyröitä ja paraabeleja syventää itseisarvokäsitteen ymmärtämystään ja oppii ratkaisemaan sellaisia itseisarvoyhtälöitä ja vastaavia epäyhtälöitä, jotka ovat tyyppiä I([) = D tai I([) = J([) vahvistaa yhtälöryhmän ratkaisemisen taitojaan. pistejoukon yhtälö suoran, ympyrän ja paraabelin yhtälöt itseisarvoyhtälön ja epäyhtälön ratkaiseminen yhtälöryhmän ratkaiseminen pisteen etäisyys suorasta 9HNWRULW0$$, ymmärtää vektorikäsitteen ja perehtyy vektorilaskennan perusteisiin oppii tutkimaan kuvioiden ominaisuuksia vektoreiden avulla tutkii kaksi- ja kolmiulotteisen koordinaatiston pisteitä, etäisyyksiä ja kulmia vektoreiden avulla. vektoreiden perusominaisuudet vektoreiden yhteen- ja vähennyslasku ja vektorin kertominen luvulla koordinaatiston vektoreiden skalaaritulo suorat ja tasot avaruudessa 7RGHQQlN LV\\VMDWLODVWRW0$$,, oppii havainnollistamaan diskreettejä ja jatkuvia tilastollisia jakaumia sekä määrittämään ja tulkitsemaan jakaumien tunnuslukuja perehtyy kombinatorisiin menetelmiin perehtyy todennäköisyyden käsitteeseen ja todennäköisyyksien laskusääntöihin ymmärtää diskreetin todennäköisyysjakauman käsitteen ja oppii määrittämään jakauman odotusarvon ja soveltamaan sitä perehtyy jatkuvan todennäköisyysjakauman käsitteeseen ja oppii soveltamaan normaalijakaumaa. diskreetti ja jatkuva tilastollinen jakauma jakauman tunnusluvut klassinen ja tilastollinen todennäköisyys kombinatoriikka todennäköisyyksien laskusäännöt

diskreetti ja jatkuva todennäköisyysjakauma diskreetin jakauman odotusarvo normaalijakauma 'HULYDDWWD0$$,, osaa määrittää rationaalifunktion nollakohdat ja ratkaista yksinkertaisia rationaaliepäyhtälöitä omaksuu havainnollisen käsityksen funktion raja-arvosta, jatkuvuudesta ja derivaatasta määrittää yksinkertaisten funktioiden derivaatat osaa tutkia derivaatan avulla polynomifunktion kulkua ja määrittää sen ääriarvot osaa määrittää rationaalifunktion suurimman ja pienimmän arvon sovellusongelmien yhteydessä. rationaaliyhtälö ja -epäyhtälö funktion raja-arvo, jatkuvuus ja derivaatta polynomifunktion, funktioiden tulon ja osamäärän derivoiminen polynomifunktion kulun tutkiminen ja ääriarvojen määrittäminen -XXULMDORJDULWPLIXQNWLRW0$$,, tuntee juuri-, eksponentti- ja logaritmifunktioiden ominaisuudet ja osaa ratkaista niihin liittyviä yhtälöitä tutkii juuri-, eksponentti- ja logaritmifunktioita derivaatan avulla oppii yhdistetyn funktion derivoimisen tutkii aidosti monotonisten funktioiden käänteisfunktioita. juurifunktiot ja -yhtälöt eksponenttifunktiot ja -yhtälöt logaritmifunktiot ja -yhtälöt yhdistetyn funktion derivaatta käänteisfunktio juuri-, eksponentti- ja logaritmifunktioiden derivaatat 7ULJRQRPHWULVHWIXQNWLRWMDOXNXMRQRW0$$,, oppii tutkimaan trigonometrisia funktioita yksikköympyrän symmetrioiden avulla

oppii ratkaisemaan sellaisia trigonometrisia yhtälöitä, jotka ovat tyyppiä sin I([) = D tai sin I([) = sin J([) osaa trigonometristen funktioiden yhteydet sin 2 x + cos 2 x = 1 ja tan x = sin x / cos x tutkii trigonometrisia funktioita derivaatan avulla ymmärtää lukujonon käsitteen oppii määrittelemään lukujonoja palautuskaavojen avulla osaa ratkaista käytännön ongelmia aritmeettisen ja geometrisen jonon ja niistä muodostettujen summien avulla. suunnattu kulma ja radiaani trigonometriset funktiot symmetria- ja jaksollisuusominaisuuksineen trigonometristen yhtälöiden ratkaiseminen trigonometristen funktioiden derivaatat lukujono rekursiivinen lukujono aritmeettinen jono ja summa geometrinen jono ja summa,qwhjuddolodvnhqwd0$$,,, ymmärtää integraalifunktion käsitteen ja oppii määrittämään alkeisfunktioiden integraalifunktioita ymmärtää määrätyn integraalin käsitteen ja sen yhteyden pinta-alaan oppii määrittämään pinta-aloja ja tilavuuksia määrätyn integraalin avulla perehtyy integraalilaskennan sovelluksiin. integraalifunktio alkeisfunktioiden integraalifunktiot määrätty integraali pinta-alan ja tilavuuden laskeminen 9DOWDNXQQDOOLVHWV\YHQWlYlWNXUVVLWVXOXLVVDVXRVLWHOWDYDVXRULWXVYXRVL /XNXWHRULDMDORJLLNND0$$,WDL,, oppii formalisoimaan väitelauseita ja tutkimaan niiden totuusarvoja totuustaulujen avulla, ymmärtää avoimen lauseen käsitteen ja oppii käyttämään kvanttoreita, oppii todistusperiaatteita ja harjoittelee todistamista, oppii lukuteorian peruskäsitteet ja perehtyy alkulukujen ominaisuuksiin,

osaa tutkia kokonaislukujen jaollisuutta jakoyhtälön ja kokonaislukujen kongruenssin avulla, osaa määrittää kokonaislukujen suurimman yhteisen tekijän Eukleideen algoritmilla. lauseen formalisoiminen lauseen totuusarvot avoin lause kvanttorit suora, käänteinen ja ristiriitatodistus kokonaislukujen jaollisuus ja jakoyhtälö Eukleideen algoritmi alkuluvut aritmetiikan peruslause kokonaislukujen kongruenssi Esitietoina vaaditaan kurssien MAA1 ja MAA2 tiedot. 1XPHHULVLDMDDOJHEUDOOLVLDPHQHWHOPLl0$$,, oppii ymmärtämään absoluuttisen ja suhteellisen virheen käsitteet ja niiden avulla likiarvolaskujen tarkkuutta koskevat säännöt peruslaskutoimitusten tapauksessa, ymmärtää iteroinnin käsitteen ja oppii ratkaisemaan yhtälöitä numeerisesti, oppii tutkimaan polynomien jaollisuutta ja määrittämään polynomin tekijät, oppii algoritmista ajattelua harjaantuu käyttämään nykyaikaisia matemaattisia välineitä oppii määrittämään numeerisesti muutosnopeutta ja pinta-alaa. absoluuttinen ja suhteellinen virhe Newtonin menetelmä ja iterointi polynomien jakoalgoritmi polynomien jakoyhtälö muutosnopeus ja pinta-ala Esitietoina vaaditaan kurssien MAA1 - MAA8 tiedot (kurssin voi kuitenkin suorittaa samaan aikaan kurssin MAA8 kanssa). 'LIIHUHQWLDDOLMDLQWHJUDDOLODVNHQQDQMDWNRNXUVVL0$$,,, syventää differentiaali- ja integraalilaskennan teoreettisten perusteiden tuntemustaan,

täydentää integraalilaskennan taitojaan ja soveltaa niitä muun muassa jatkuvien todennäköisyysjakaumien tutkimiseen tutkii lukujonon raja-arvoa, sarjoja ja niiden summia. funktion jatkuvuuden ja derivoituvuuden tutkiminen jatkuvien ja derivoituvien funktioiden yleisiä ominaisuuksia funktioiden ja lukujonojen raja-arvot äärettömyydessä epäoleelliset integraalit Esitietoina vaaditaan kurssien MAA1 - MAA10 tiedot..rxoxnrkwdlvhwv\yhqwlylwnxuvvlwvxoxlvvdvxrvlwhowdydvxrulwxvyxrvl.huwdxv0$$,,, harjaantuu käyttämään opittuja tietoja ja taitoja monipuolisissa ongelmanratkaisutilanteissa kertaa ja syventää tietojaan ja laskutaitojaan lukion matematiikasta saa ehjän kokonaiskuvan pitkän matematiikan sisällöstä valmistautuu ylioppilaskirjoituksiin harjoittelemalla vaativien tehtävien ratkaisemista kerrataan lukion pitkän matematiikan pakolliset kurssit Esitietoina vaaditaan kurssien MAA1 - MAA10 tiedot. 7DORXVPDWHPDWLLNND0$$,,WDL,,, oppii ymmärtämään talouselämässä käytettyjä käsitteitä saa matemaattisia valmiuksia oman taloutensa suunnitteluun saa laskennallisen pohjan yrittäjyyden ja taloustiedon opiskeluun soveltaa tilastollisia menetelmiä aineistojen käsittelyyn. indeksi-, kustannus-, rahaliikenne-, laina-, verotus- ja muita laskelmia taloudellisiin tilanteisiin soveltuvia matemaattisia malleja lukujonojen ja summien avulla Esitietoina vaaditaan kurssien MAA1 MAA6 tiedot. Kurssi toteutetaan joka toinen vuosi (lukuvuosina 2007-2008, 2009-2010 jne.).

7LODVWROOLQHQSllWWHO\0$$,,WDL,,, tutustuu eri otantamenetelmiin perehtyy empiirisen tilastoaineiston mallintamiseen todennäköisyysjakaumilla perehtyy käytettävien mallien hyvyyden ja niiden pohjalta laadittavien ennusteiden luotettavuuden testaukseen perehtyy tilastolliseen päättelyyn tutustuu hypoteesien testaukseen vahvistaa tilasto- ja todennäköisyyslaskennan taitojaan tutkitaan kahden muuttujan tilastollista riippuvuutta tutustutaan tilastoaineiston mallintamiseen todennäköisyysjakaumilla tutustutaan otoksen informaation perusteella luottamusväliin ja luottamustasoon arvion tarkkuuden mittana kurssilla käytetään laskimia Esitietoina vaaditaan kurssien MAA1 MAA6 tiedot. Kurssi toteutetaan joka toinen vuosi (lukuvuosina 2006-2007, 2008-2009 jne.). /LQHDDULDOJHEUD0$$,,WDL,,, oppii laskemaan matriiseilla sekä käsin että koneellisesti tutustuu useampi- kuin kolmiulotteiseen vektoriavaruuteen pystyy hyödyntämään matriiseja lineaaristen yhtälöryhmien ratkaisemisessa perehtyy xy-tason lineaarikuvauksiin oppii ratkaisemaan yksinkertaisia ominaisarvotehtäviä opiskellaan matriisien laskutoimitukset ja matriisien käyttöä yhtälöryhmien ratkaisemiseen tutustutaan vektoriavaruuksiin ja lineaarikuvauksiin käsitellään ominaisarvoja ja ominaisvektoreita. Esitietoina vaaditaan kurssien MAA1 - MAA5 tiedot. Kurssi toteutetaan joka toinen vuosi (lukuvuosina 2006-2007, 2008-2009 jne.). *HRPHWULDQWl\GHQQ\VNRPSOHNVLOXYXWMDGLIIHUHQWLDDOL\KWlO W0$$,,WDL,,, syventää geometrian osaamistaan tutustuu matemaattisiin rakenteisiin ja todistustekniikkaan laajentaa lukualuettaan kompleksilukuihin

tutustuu kompleksilukujen ominaisuuksiin tutustuu differentiaaliyhtälöihin opiskellaan kompleksilukujen määritelmä ja laskutoimitukset tutustutaan kompleksitasoon määritetään toisen asteen yhtälön yleinen ratkaisu. kolmioiden yhtenevyys ja yhdenmuotoisuus suunnikkaan ominaisuudet opiskellaan differentiaaliyhtälöiden muodostamista, ratkaisemista ja soveltamista Esitietoina vaaditaan kurssien MAA1 MAA8 tiedot (voidaan opiskella samanaikaisesti kurssin MAA8 kanssa). Kurssi toteutetaan joka toinen vuosi (lukuvuosina 2007-2008, 2009-2010 jne.). Kurssin tarkka sisältö ilmoitetaan myöhemmin.