Rationaalilauseke ja -funktio

Samankaltaiset tiedostot
Matematiikan pohjatietokurssi

Juuri 6 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty Vastaus: Määrittelyehto on x 1 ja nollakohta x = 1.

2 Yhtälöitä ja epäyhtälöitä

1 Rationaalifunktio , a) Sijoitetaan nopeus 50 km/h vaihtoaikaa kuvaavan funktion lausekkeeseen.

Tekijä MAA2 Polynomifunktiot ja -yhtälöt = Vastaus a)

5 Differentiaalilaskentaa

Tekijä Pitkä matematiikka a) Ratkaistaan nimittäjien nollakohdat. ja x = 0. x 1= Funktion f määrittelyehto on x 1 ja x 0.

3.4 Rationaalifunktion kulku ja asymptootit

2 Raja-arvo ja jatkuvuus

1 Peruslaskuvalmiudet

Lue tehtävänannot huolella. Tee pisteytysruudukko 1. konseptin yläreunaan. ILMAN LASKINTA -OSIO! LASKE KAIKKI SEURAAVAT TEHTÄVÄT:

Kertaus. x x x. K1. a) b) x 5 x 6 = x 5 6 = x 1 = 1 x, x 0. K2. a) a a a a, a > 0

Juuri 2 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty

VASTAA YHTEENSÄ KUUTEEN TEHTÄVÄÄN

Funktio 1. a) Mikä on funktion f (x) = x lähtöjoukko eli määrittelyjoukko, kun 0 x 5?

Lisätehtäviä. Rationaalifunktio. x 2. a b ab. 6u x x x. kx x

sin x cos x cos x = sin x arvoilla x ] π

KERTAUSHARJOITUKSIA. 1. Rationaalifunktio a) ( ) 2 ( ) Vastaus: a) = = 267. a) a b) a. Vastaus: a) a a a a 268.

MAA2.3 Koontitehtävät 2/2, ratkaisut

määrittelyjoukko. 8 piirretään tangentti pisteeseen, jossa käyrä leikkaa y-akselin. Määritä tangentin yhtälö.

NELIÖJUURI. Neliöjuuren laskusääntöjä

Ensimmäisen ja toisen asteen yhtälöt

5 Rationaalifunktion kulku

Juuri 12 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty

4 Yleinen potenssifunktio ja polynomifunktio

YHTÄLÖ kahden lausekkeen merkitty yhtäsuuruus

Ratkaisuehdotus 2. kurssikokeeseen

Ratkaisuehdotus 2. kurssikoe

MAA02. A-osa. 1. Ratkaise. a) x 2 + 6x = 0 b) (x + 4)(x 4) = 9 a) 3x 6x

1.1. YHDISTETTY FUNKTIO

MAA7 7.1 Koe Jussi Tyni Valitse kuusi tehtävää! Tee vastauspaperiin pisteytysruudukko! Kaikkiin tehtäviin välivaiheet näkyviin!

Matematiikan tukikurssi

Vastaus: 10. Kertausharjoituksia. 1. Lukujonot lim = lim n + = = n n. Vastaus: suppenee raja-arvona Vastaus:

Kertaus. x x x. K1. a) b) x 5 x 6 = x 5 6 = x 1 = 1 x, x 0. K2. a) a a a a, a > 0

6*. MURTOFUNKTION INTEGROINTI

k-kantaisen eksponenttifunktion ominaisuuksia

KOMPLEKSILUVUT C. Rationaaliluvut Q. Irrationaaliluvut

MATP153 Approbatur 1B Harjoitus 6 Maanantai

3. Laadi f unktioille f (x) = 2x + 6 ja g(x) = x 2 + 7x 10 merkkikaaviot. Millä muuttujan x arvolla f unktioiden arvot ovat positiivisia?

Derivaatan sovellukset (ääriarvotehtävät ym.)

x 7 3 4x x 7 4x 3 ( 7 4)x 3 : ( 7 4), 7 4 1,35 < ln x + 1 = ln ln u 2 3u 4 = 0 (u 4)(u + 1) = 0 ei ratkaisua

Reaalilukuvälit, leikkaus ja unioni (1/2)

1.4 Funktion jatkuvuus

Matematiikan johdantokurssi, syksy 2017 Harjoitus 8, ratkaisuista

MAA7 7.3 Koe Jussi Tyni Valitse kuusi tehtävää! Tee vastauspaperiin pisteytysruudukko! Kaikkiin tehtäviin välivaiheet näkyviin!

Juuri 12 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty

MATP153 Approbatur 1B Ohjaus 2 Keskiviikko torstai

B-OSA. 1. Valitse oikea vaihtoehto. Vaihtoehdoista vain yksi on oikea.

Matematiikan peruskurssi 2

Matematiikan tukikurssi, kurssikerta 3

1. Olkoot f ja g reaalifunktioita. Mitä voidaan sanoa yhdistetystä funktiosta g f, jos a) f tai g on rajoitettu? b) f tai g on jaksollinen?

Lue tehtävänannot huolella. Tee pisteytysruudukko 1. konseptin yläreunaan.

niin järjestys on tämä: ensin kerto- ja jakolaskut vasemmalta oikealle, sen jälkeen plus- ja miinuslaskut vasemmalta oikealle.

Matematiikan peruskurssi 2

Sähköinen koe (esikatselu) MAA A-osio

Epäyhtälöt 1/7 Sisältö ESITIEDOT: yhtälöt

MITEN RATKAISEN POLYNOMIYHTÄLÖITÄ?

Funktion raja-arvo. lukumäärien tutkiminen. tutkiminen

Korkeamman asteen polynomifunktio

Helsingin, Itä-Suomen, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe klo 10-13

Helsingin, Itä-Suomen, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe klo Ratkaisut ja pisteytysohjeet

PIENEMMISTÄ JA SUUREMMISTA EPÄYHTÄLÖISTÄ

Differentiaali- ja integraalilaskenta 2 Ratkaisut: loppuviikko 2

Differentiaali- ja integraalilaskenta 1 Ratkaisut 2. viikolle /

B. 2 E. en tiedä C ovat luonnollisia lukuja?

1. Olkoon f :, Ratkaisu. Funktion f kuvaaja välillä [ 1, 3]. (b) Olkoonε>0. Valitaanδ=ε. Kun x 1 <δ, niin. = x+3 2 = x+1, 1< x<1+δ

3 Yleinen toisen asteen yhtälö ja epäyhtälö

TEHTÄVIEN RATKAISUT. Luku Kaikki luvut on kokonaislukuja. Luonnollisia lukuja ovat 35, 7 ja 0.

Matematiikan tukikurssi

Muista tutkia ihan aluksi määrittelyjoukot, kun törmäät seuraaviin funktioihin:

Matematiikan tukikurssi

6 Funktioita ja yhtälöitä

= 9 = 3 2 = 2( ) = = 2

Matematiikan taito 9, RATKAISUT. , jolloin. . Vast. ]0,2] arvot.

Algebra. 1. Ovatko alla olevat väittämät tosia? Perustele tai anna vastaesimerkki. 2. Laske. a) Luku 2 on luonnollinen luku.

Matemaattisen analyysin tukikurssi

Juuri 7 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty c) sin 50 = sin ( ) = sin 130 = 0,77

n. asteen polynomilla on enintään n nollakohtaa ja enintään n - 1 ääriarvokohtaa.

Matematiikan tukikurssi, kurssikerta 4

11 MATEMAATTINEN ANALYYSI

Hannu Mäkiö. kertolasku * jakolasku / potenssiin korotus ^ Syöte Geogebran vastaus

A-osio. Ilman laskinta. MAOL-taulukkokirja saa olla käytössä. Maksimissaan yksi tunti aikaa. Laske kaikki tehtävät:

Mikäli funktio on koko ajan kasvava/vähenevä jollain välillä, on se tällä välillä monotoninen.

Vastausehdotukset analyysin sivuainekurssin syksyn välikokeeseen

Ratkaise tehtävä 1 ilman teknisiä apuvälineitä! 1. a) Yhdistä oikea funktio oikeaan kuvaajaan. (2p)

Matematiikan tukikurssi

1 Ensimmäisen asteen polynomifunktio

A = (a 2x) 2. f (x) = 12x 2 8ax + a 2 = 0 x = 8a ± 64a 2 48a x = a 6 tai x = a 2.

Laskentaa kirjaimilla

8.1 Murtoluvun määritelmä - murtoluvulla tarkoitetaan aina osaa (osia) jostakin kokonaisuudesta

Matematiikan peruskurssi (MATY020) Harjoitus 7 to

Transkriptio:

4.8.07 Rationaalilauseke ja -funktio Määritelmä, rationaalilauseke ja funktio: Kahden polynomin ja osamäärä, 0 on rationaalilauseke, jonka osoittaja on ja nimittäjä. Huomaa, että pelkkä polynomi on myös rationaalilauseke, jonka nimittäjä on, siis ( 0) sanotaan myös murtolausek- Aitoa rationaalilauseketta keeksi. DERIVAATTA, MAA6. Rationaalilausekkeen määrittelemää funktiota f: f = sanotaan rationaalifunktioksi, muuttujia voi olla useampi kuin yksi (). f: f = 5 + 9 Rationaalifunktio on määritelty aina, kun nimittäjä 0. Rationaalifunktion nollakohdat ovat ne osoittajan nollakohdat, joissa nimittäjä ei ole nolla, siis = 0 = 0 ja 0. Huomautus ) Rationaalilukuja voidaan pitää rationaalilausekkeiden erikoistapauksina, sillä onhan pelkkä luku kelpo lauseke (muista määr.). ) Nyt pitää keskittyä määrittelyjoukkojen etsimiseen ennen tehtävän ratkaisemista ne merkitään lyhyesti johonkin sivuun (lähelle). Rationaalifunktio f: f = on määritelty, kun (lyhyesti R\ ). Nollakohta = 0, eli milloin = 0. = on määritelty R miksi? Nolla- + Rationaalifunktio g: g kohdat = ±.

4.8.07 Sievennä Lavennetaan :lla, saadaan. = + = = + = +,,0. Huomaa erityisesti, että funktiot f: f = = eivät ole samoja! Niillä on eri määrittelyjoukot!, g: g = Huomautus Kuten lausekkeiden kohdalla, jos, niin rationaalifunktiota sanotaan myös murtofunktioksi. Supistaminen: Rationaalilausekkeita supistetaan (normaalisti) jakamalla osoittaja ja nimittäjä tekijöihin sekä poistamalla yhteiset tekijät. Syy: rationaalilausekkeen arvo ei muutu. Muista kuitenkin määrittelyehto (-ehdot), joka (jotka) katsotaan alkuperäisestä lausekkeesta! Nollalla ei saa edelleenkään jakaa! Huomaa, että nyt nolla voi olla esim. muodossa. + 6 + 4 + 4 = + + = +, = + =, ±, miksi myös +? + 5 5 = 5 5 = =, 5 a b b a = a b a b =, a b

4.8.07 Muista: Supistettaessa sekä osoittajan että nimittäjän täytyy olla tulomuodossa. Summan termejä ei saa supistaa. Laventaminen: Kuten rationaaliluvuilla (murtoluvuilla). Laventaminen samannimisiksi Ensin nimittäjät jaetaan tekijöihin, minkä jälkeen lausekkeet lavennetaan puuttuvilla tekijöillä. (Saadaan ns. pienin yhteinen monikerta p.y.m.) + + = + + + + = + + 4 = = + + = + + + +, 0,,,,0 Kerto- ja jakolasku: Kertolaskussa osoittajat keskenään, ja nimittäjät keskenään. Jakolasku muutetaan kertolaskuksi. a 6 a + 6 a a 4a = a : a + = a a a + = 6a a, a ± a 6 a a + 6 a 4a = a + 4 a +, a a + a,0,4 = a + a = a + 4 a 4 a a + a a 4, a ±

4.8.07 Määritelmä, asymptootti: Suoraa tai käyrää, jota (rationaali)funktion kuvaaja eli graafi rajatta lähestyy sanotaan asymptootiksi, merkitään katkoviivalla. Rationaalifunktion määrittelevän lausekkeen nimittäjän nollakohdat = 0 ovat asymptootteja. (Näihin palataan.) y y y = y = 4 = = = Rationaaliyhtälö Määritelmä, rationaalilauseke ja yhtälö: Lauseketta, joka on kahden polynomin osamäärä DERIVAATTA, MAA7, 0 tai joka voidaan muuntaa sellaiseksi, sanotaan rationaalilausekkeeksi. Yhtälö, jossa kaikki muuttujan (yleensä ) lausekkeet ovat rationaalilausekkeita on rationaaliyhtälö. Muista, että myös polynomit ja pelkät luvutkin ovat rationaalilausekkeita, tällöin siis =. Tämän vuoksi rajoitutaan jatkossa tarkastelemaan murtolausekkeita ja murtoyhtälöitä (eli ). Rationaaliyhtälöitä ratkaistaessa on varmistuttava siitä, ettei mikään nimittäjä tule nollaksi eli että yhtälön määrittelyehto (-ehdot) pysyvät voimassa! 4

4.8.07 Ratkaise yhtälö 6 = 4. Nyt määrittelyehto on, jolloin 6 = 4 6 = 4 6 + = 4 4 + 0 = 0 = ± 7 = 5 = Vastaukset toteuttavat määrittelyehdon, eli 5 ja. Rationaaliepäyhtälö Määritelmä, rationaaliepäyhtälö: Rationaaliepäyhtälöksi sanotaan muotoa > 0, 0, olevia epäyhtälöitä (tai, jotka voidaan saattaa ko. muotoon). Merkin > tilalla voi olla <,, tai. Polynomifunktion merkki voi vaihtua vain funktion nollakohdissa (koska polynomit ovat jatkuvia kaikkialla jatkuvuus selviää kyllä). Vastaava ei päde rationaalifunktioilla, nimittäin merkki voi vaihtua myös nimittäjän nollakohdissa. Rationaaliepäyhtälöitä ratkaistaessa ei (yleensä) voida kertoa eikä jakaa tuntemattoman sisältävällä lausekkeella. Syy: ei yleensä tiedetä lausekkeen merkkiä eikä siten sitä säilyykö epäyhtälön suunta. Kuinka sitten rationaaliepäyhtälö ratkaistaan? DERIVAATTA, MAA7 5

4.8.07 Ratkaise epäyhtälö > 0. Lauseke vastaa funktiota f: f = jonka kuvaaja on oikealla., Jos kertoo lausekkeen :lla tulee / > 0 + > 0 Eli > 0, kun < tai < <. Kuvassa oikealla punaisella katkoviivalla y = + +, josta rajat < tai < <. Näin ei kuitenkaan ole suositeltavaa poistaa nimittäjää (edellisessä esimerkissä se kuitenkin toimi). Koska esim. epäyhtälöstä < seuraisi <, mutta toisaalta jos on negatiivinen niin ey. < on aina tosi. Yleisesti rationaalifunktio voi vaihtaa merkkiä vain siirryttäessä joko osoittajan tai nimittäjän nollakohdan yli. Nollakohdiksi saadaan Osoittajan nollakohta: = 0 =. Nimittäjän nollakohdat: = 0 = ± + + / Näiden kohtien välillä merkki säilyy ja lausekkeen (eli funktion f) merkki selvitetään laskemalla kultakin väliltä ns. testiarvo. f = = > 0, positiivinen f 0 = 0 0 = < 0, negatiivinen 6

4.8.07 f /4 = /4 /4 = 4 7 = 4 > 0, positiivinen 7 6 f = = = < 0, negatiivinen / Tämä tieto merkitään f + + TAI Paljon tehokkaampi väline on ns. merkkikaavio (suositeltava tapa!) / + + + / + + f, osam. + + + + Vastaus: > 0 kun < tai < <. Määr.ehto täyttyy! Rationaaliepäyhtälön ratkaisuvaiheet. Muunnetaan epäyhtälö perusmuotoon > 0, 0 ellei se jo ole sitä (<, tai, ). Merkitään määrittelyehdot näkyviin!. Jaetaan osoittaja ja nimittäjä tekijöihin ja määritetään osoittajan ja nimittäjän nollakohdat yhtälöistä = 0, = 0. Merkitään ne lukusuoralle, eli jaetaan -akseli nollakohtien avulla osiin.. Tehdään merkkikaavio. 4. Päätellään vastaus merkkikaavion perusteella; avoin ympyrä = nollakohta ei kuulu mukaan (tapaukset <, > ja ) tummennettu ympyrä = nollakohta kuuluu mukaan (tapaukset, ). 5. Tarkistetaan vastausten sopivuus määrittelyehtoon (-ihin). 7