Matriisipotenssi. Koska matriisikertolasku on liitännäinen (sulkuja ei tarvita; ks. lause 2), voidaan asettaa seuraava määritelmä: ja A 0 = I n.

Samankaltaiset tiedostot
Ortogonaalinen ja ortonormaali kanta

9 Matriisit. 9.1 Matriisien laskutoimituksia

Lineaarialgebra ja matriisilaskenta I

Yhteenlaskun ja skalaarilla kertomisen ominaisuuksia

1.1. Määritelmiä ja nimityksiä

Käänteismatriisi 1 / 14

Lineaarialgebra ja matriisilaskenta I

Matriisilaskenta. Harjoitusten 3 ratkaisut (Kevät 2019) 1. Olkoot AB = ja 2. Osoitetaan, että matriisi B on matriisin A käänteismatriisi.

Talousmatematiikan perusteet: Luento 9. Matriisien peruskäsitteet Yksinkertaiset laskutoimitukset Transponointi Matriisitulo

Ennakkotehtävän ratkaisu

Lineaarialgebra ja matriisilaskenta II. LM2, Kesä /141

Matriisien tulo. Matriisit ja lineaarinen yhtälöryhmä

BM20A0700, Matematiikka KoTiB2

Käänteismatriisin. Aiheet. Käänteismatriisin ominaisuuksia. Rivioperaatiot matriisitulona. Matriisin kääntäminen rivioperaatioiden avulla

1. LINEAARISET YHTÄLÖRYHMÄT JA MATRIISIT. 1.1 Lineaariset yhtälöryhmät

Talousmatematiikan perusteet: Luento 10. Matriisien peruskäsitteet Yksinkertaiset laskutoimitukset Matriisitulo Determinantti

Matematiikka B2 - TUDI

Matematiikka B2 - Avoin yliopisto

Lineaariset yhtälöryhmät ja matriisit

Matriisit. Määritelmä 1 Reaaliluvuista a ij, missä i = 1,..., k ja j = 1,..., n, muodostettua kaaviota a 11 a 12 a 1n a 21 a 22 a 2n A =

3.2 Matriisien laskutoimitukset. 3.2 Matriisien laskutoimitukset. 3.2 Matriisien laskutoimitukset. 3.2 Matriisien laskutoimitukset

Johdatus tekoälyn taustalla olevaan matematiikkaan

Insinöörimatematiikka D

Determinantti. Määritelmä

5 Ominaisarvot ja ominaisvektorit

Determinantti. Määritelmä

Insinöörimatematiikka D

Insinöörimatematiikka D

3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä

Algebra I, harjoitus 5,

3.2 Matriisien laskutoimitukset. 3.2 Matriisien laskutoimitukset. 3.2 Matriisien laskutoimitukset. 3.2 Matriisien laskutoimitukset. Olkoot A 2 := AA =

1 Ominaisarvot ja ominaisvektorit

H = : a, b C M. joten jokainen A H {0} on kääntyvä matriisi. Itse asiassa kaikki nollasta poikkeavat alkiot ovat yksiköitä, koska. a b.

Matikkapaja keskiviikkoisin klo Lineaarialgebra (muut ko) p. 1/81

Determinantit. Kaksirivinen determinantti. Aiheet. Kaksirivinen determinantti. Kaksirivinen determinantti. Kolmirivinen determinantti

Matriisit, kertausta. Laskutoimitukset. Matriisikaavoja. Aiheet. Määritelmiä ja merkintöjä. Laskutoimitukset. Matriisikaavoja. Matriisin transpoosi

1 Matriisit ja lineaariset yhtälöryhmät

3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä

HY / Avoin yliopisto Lineaarialgebra ja matriisilaskenta II, kesä 2015 Harjoitus 1 Ratkaisut palautettava viimeistään maanantaina klo

Kertausta: avaruuden R n vektoreiden pistetulo

Ominaisarvo ja ominaisvektori

2.1.4 har:linyryhmat03. Octavella. Katso ensin esimerkit???? esim:yroctave01 Octaven antamat vastausehdotukset.

Kurssin loppuosassa tutustutaan matriiseihin ja niiden käyttöön yhtälöryhmien ratkaisemisessa.

Lineaariset kongruenssiyhtälöryhmät

Matriisit, L20. Laskutoimitukset. Matriisikaavoja. Aiheet. Määritelmiä ja merkintöjä. Laskutoimitukset. Matriisikaavoja. Matriisin transpoosi

Lineaarialgebra a, kevät 2019 Harjoitus 6 (ratkaisuja Maple-dokumenttina) > restart; with(linalg): # toteuta ihan aluksi!

Lineaarialgebra ja matriisilaskenta I

10 Matriisit ja yhtälöryhmät

Informaatiotieteiden yksikkö. Lineaarialgebra 1A. Pentti Haukkanen. Puhtaaksikirjoitus: Joona Hirvonen

Lineaarikuvauksen R n R m matriisi

A = a b B = c d. d e f. g h i determinantti on det(c) = a(ei fh) b(di fg) + c(dh eg). Matriisin determinanttia voi merkitä myös pystyviivojen avulla:

Insinöörimatematiikka D

Determinantti 1 / 30

Lineaarialgebra ja matriisilaskenta I. LM1, Kesä /218

Similaarisuus. Määritelmä. Huom.

Insinöörimatematiikka D

Kertausta: avaruuden R n vektoreiden pistetulo

Käänteismatriisin ominaisuuksia

Matriisit, L20. Laskutoimitukset. Matriisikaavoja. Aiheet. Määritelmiä ja merkintöjä. Laskutoimitukset. Matriisikaavoja. Matriisin transpoosi

Matikkapaja keskiviikkoisin klo Lineaarialgebra (muut ko) p. 1/210

Insinöörimatematiikka D

Talousmatematiikan perusteet: Luento 11. Lineaarikuvaus Matriisin aste Käänteismatriisi

Talousmatematiikan perusteet: Luento 10. Lineaarikuvaus Matriisin aste Determinantti Käänteismatriisi

Ominaisarvo ja ominaisvektori

802328A LUKUTEORIAN PERUSTEET Merkintöjä ja Algebrallisia rakenteita

Vapaus. Määritelmä. Vektorijono ( v 1, v 2,..., v k ) on vapaa eli lineaarisesti riippumaton, jos seuraava ehto pätee:

Lineaarialgebra (muut ko)

Informaatiotieteiden yksikkö. Lineaarialgebra 1A. Pentti Haukkanen. Puhtaaksikirjoitus: Joona Hirvonen

Matriisi-vektori-kertolasku, lineaariset yhtälöryhmät

Informaatiotieteiden yksikkö. Lineaarialgebra 1A. Pentti Haukkanen. Puhtaaksikirjoitus: Joona Hirvonen

Insinöörimatematiikka D

LU-hajotelma. Esimerkki 1 Matriisi on yläkolmiomatriisi ja matriisi. on alakolmiomatriisi. 3 / 24

Vektorialgebra 1/5 Sisältö ESITIEDOT: vektori

Informaatiotieteiden yksikkö. Lineaarialgebra 1A. Pentti Haukkanen. Puhtaaksikirjoitus: Joona Hirvonen

Algebran perusteet. 44 ϕ(105) = (105). Näin ollen

Algebra 1, harjoitus 9, h = xkx 1 xhx 1. a) Käytetään molemmissa tapauksissa isomorfialausetta. Tarkastellaan kuvauksia

Tiivistelmä matriisilaskennasta

Lineaarialgebra II, MATH.1240 Matti laaksonen, Lassi Lilleberg

Neliömatriisin adjungaatti, L24

Talousmatematiikan perusteet

Ax, y = x, A y. A = A A hermiittinen. Jokainen reaalinen ja symmetrinen matriisi on määritelmän mukaan myös hermiittinen. A =, HARJOITUSTEHTÄVIÄ

Ortogonaalisen kannan etsiminen

811120P Diskreetit rakenteet

802320A LINEAARIALGEBRA OSA I

Vapaus. Määritelmä. jos c 1 v 1 + c 2 v c k v k = 0 joillakin c 1,..., c k R, niin c 1 = 0, c 2 = 0,..., c k = 0.

1 Lineaariavaruus eli Vektoriavaruus

Ominaisvektoreiden lineaarinen riippumattomuus

kaikille a R. 1 (R, +) on kommutatiivinen ryhmä, 2 a(b + c) = ab + ac ja (b + c)a = ba + ca kaikilla a, b, c R, ja

MAT Algebra 1(s)

Vapaus. Määritelmä. jos c 1 v 1 + c 2 v c k v k = 0 joillakin c 1,..., c k R, niin c 1 = 0, c 2 = 0,..., c k = 0.

Lineaarialgebra ja matriisilaskenta II. LM2, Kesä /310

Vastaavasti, jos vektori kerrotaan positiivisella reaaliluvulla λ, niin

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt

jonka laskutoimitus on matriisien kertolasku. Vastaavasti saadaan K-kertoiminen erityinen lineaarinen ryhmä

MS-C1340 Lineaarialgebra ja

2.8. Kannanvaihto R n :ssä

x 2 x 3 x 1 x 2 = 1 2x 1 4 x 2 = 3 x 1 x 5 LINEAARIALGEBRA I Oulun yliopisto Matemaattisten tieteiden laitos 2014 Esa Järvenpää, Hanna Kiili

Johdatus lineaarialgebraan. Juha Honkala 2017

Johdatus lineaarialgebraan

Tehtäväsarja I Kertaa tarvittaessa materiaalin lukuja 1 3 ja 9. Tarvitset myös luvusta 4 määritelmän 4.1.

Transkriptio:

Matriisipotenssi Koska matriisikertolasku on liitännäinen (sulkuja ei tarvita; ks. lause 2), voidaan asettaa seuraava määritelmä: Määritelmä Oletetaan, että A on n n -matriisi (siis neliömatriisi) ja k positiivinen kokonaisluku. Tällöin A k = AA A }{{} k tekijää ja A 0 = I n. LM1, Kesä 2014 14/30

Yhteenlaskun ja skalaarilla kertomisen ominaisuuksia Lause 1 Oletetaan, että A, B ja C ovat m n -matriiseja ja s, t R. Tällöin (a) A + B = B + A (b) (A + B) + C = A + (B + C) (c) A + O = A (d) A + ( A) = O (e) s(a + B) = sa + sb (f) (s + t)a = sa + ta (g) s(ta) = (st)a (h) 1A = A. (vaihdannaisuus) (liitännäisyys) (osittelulaki) (osittelulaki) LM1, Kesä 2014 15/30

Matriisikertolaskun ominaisuuksia Lause 2 Seuraavat säännöt pätevät matriiseille A, B ja C sekä reaaliluvulle t, jos laskutoimitukset on määritelty (ts. matriisit ovat sopivaa tyyppiä): (a) A(BC) = (AB)C (b) A(B + C) = AB + AC (c) (A + B)C = AC + BC (d) t(ab) = (ta)b = A(tB) (liitännäisyys) (osittelulaki) (osittelulaki) (e) Jos A on m n -matriisi, niin I m A = A ja AI n = A. LM1, Kesä 2014 16/30

Perustellaan malliksi lauseen 2 kohta (c): Oletetaan, että A ja B ovat m n -matriiseja ja C on n p -matriisi. Tällöin sekä (A + B)C että AC + BC ovat määriteltyjä ja tyypiltään m p -matriiseja. Oletetaan, että i {1,..., m} ja j {1,..., p}. Tarkastellaan alkiota rivillä i ja sarakkeessa j: ( (A + B)C ) (i, j) (1) = (A + B)(i, 1)C(1, j) + + (A + B)(i, n)c(n, j) (2) = ( A(i, 1) + B(i, 1) ) C(1, j) + + ( A(i, n) + B(i, n) ) C(n, j) (3) = A(i, 1)C(1, j) + B(i, 1)C(1, j) + + A(i, n)c(n, j) + B(i, n)c(n, j) (4) = A(i, 1)C(1, j) + + A(i, n)c(n, j) + B(i, 1)C(1, j) + + B(i, n)c(n, j) (1) = (AC)(i, j) + (BC)(i, j) (2) = (AC + BC)(i, j) LM1, Kesä 2014 17/30

Perusteluja: (1) matriisien kertolaskun määritelmä; (2) matriisien yhteenlaskun määritelmä; (3) reaalilukujen osittelulaki; (4) reaalilukujen yhteenlaskun vaihdannaisuus. Havaitaan, että matriiseissa (A + B)C ja AC + BC on sama alkio rivillä i ja sarakkeessa j. Koska tässä kysymyksessä saattoi olla mikä tahansa rivi ja mikä tahansa sarake, voidaan päätellä, että matriisit ovat samat. LM1, Kesä 2014 18/30

Matriisin transpoosi Määritelmä Oletetaan, että A on m n -matriisi. Sen transpoosi A T on n m-matriisi, joka saadaan vaihtamalla matriisin A rivit ja sarakkeet keskenään. Esimerkki 4 Jos A = [ ] 1 3 2, niin A T = 5 0 1 1 5 3 0. 2 1 LM1, Kesä 2014 19/30

Symmetrinen ja antisymmetrinen matriisi Määritelmä Neliömatriisin A sanotaan olevan symmetrinen, jos A T = A. Neliömatriisin A sanotaan olevan antisymmetrinen, jos A T = A. LM1, Kesä 2014 20/30

Symmetrinen ja antisymmetrinen matriisi Esimerkki 5 Merkitään 1 4 5 0 4 5 B = 4 2 6 ja C = 4 0 6. 5 6 0 5 6 0 Tällöin B T 1 4 5 0 4 5 = 4 2 6 = B ja C T = 4 0 6 = C. 5 6 0 5 6 0 Siis B on symmetrinen ja C on antisymmetrinen. LM1, Kesä 2014 21/30

Transponoinnin ominaisuuksia Lause 3 Seuraavat säännöt pätevät matriiseille A ja B sekä reaaliluvulle t, jos laskutoimitukset on määritelty (ts. matriisit ovat sopivaa tyyppiä): (a) (A T ) T = A (b) (A + B) T = A T + B T (c) (AB) T = B T A T (d) (ta) T = t(a T ). LM1, Kesä 2014 22/30

Perustellaan malliksi lauseen 3 kohta (c): Oletetaan, että A on m n -matriisi ja B on n p -matriisi. Tällöin sekä (AB) T että B T A T ovat määriteltyjä ja tyypiltään p m -matriiseja. Oletetaan, että i {1,..., p} ja j {1,..., m}. Tarkastellaan alkiota rivillä i ja sarakkeessa j: (AB) T (i, j) (1) = (AB)(j, i) (2) = A(j, 1)B(1, i) + + A(j, n)b(n, i) (1) = A T (1, j)b T (i, 1) + + A T (n, j)b T (i, n) (3) = B T (i, 1)A T (1, j) + + B T (i, n)a T (n, j) (2) = (B T A T )(i, 1) LM1, Kesä 2014 23/30

Perusteluja: (1) transponoinnissa rivit ja sarakkeet vaihtuvat toisikseen; (2) matriisien kertolaskun määritelmä; (3) reaalilukujen kertolaskun vaihdannaisuus. Havaitaan, että matriiseissa (AB) T ja B T A T on sama alkio rivillä i ja sarakkeessa j. Koska tässä kysymyksessä saattoi olla mikä tahansa rivi ja mikä tahansa sarake, voidaan päätellä, että matriisit ovat samat. LM1, Kesä 2014 24/30

Kääntyvä matriisi Määritelmä Oletetaan, että A on n n -neliömatriisi. Matriisin A käänteismatriisi tarkoittaa sellaista n n -matriisia B, että AB = I n ja BA = I n. Jos tällainen matriisi on olemassa, niin sanotaan, että A on kääntyvä eli säännöllinen. LM1, Kesä 2014 25/30

Kääntyvä matriisi Esimerkki 6 1 1 0 0 0 1 Matriisin C = 0 2 1 käänteismatriisi on D = 1 0 1, 1 0 0 2 1 2 1 1 0 0 0 1 1 0 0 sillä CD = 0 2 1 1 0 1 = 0 1 0 = I 3 1 0 0 2 1 2 0 0 1 0 0 1 1 1 0 1 0 0 ja DC = 1 0 1 0 2 1 = 0 1 0 = I 3. 2 1 2 1 0 0 0 0 1 LM1, Kesä 2014 26/30

Kääntyvä matriisi Lause 4 Matriisilla on korkeintaan yksi käänteismatriisi. Huom. Jos matriisi A on kääntyvä, niin sillä on lauseen 4 nojalla tasan yksi käänteismatriisi. Sitä merkitään A 1. Jos matriisi A on kääntyvä, niin AA 1 = I ja A 1 A = I. Merkintää A 1 ei voi käyttää ennen kuin on perustellut, että matriisi A todella on kääntyvä. LM1, Kesä 2014 27/30

Lauseen 4 perustelu: Oletetaan, että n n -matriisilla A on käänteismatriisit B ja C. Tällöin pätee, että AB = I n ja BA = I n sekä lisäksi AC = I n ja CA = I n. Tällöin B = BI n = B(AC) = (BA)C = I n C = C. Siten B ja C ovat välttämättä sama matriisi. Näin ollen käänteismatriiseja ei voi olla enempää kuin yksi. LM1, Kesä 2014 28/30

Kääntyvän matriisin ominaisuuksia Lause 5 Oletetaan, että matriisit A ja B ovat kääntyviä. Tällöin on olemassa A 1 ja se on kääntyvä. Lisäksi matriisit AB ja A T ovat kääntyviä. Niiden käänteismatriisit ovat seuraavat: (a) (A 1 ) 1 = A (b) (AB) 1 = B 1 A 1 (c) (A T ) 1 = (A 1 ) T. LM1, Kesä 2014 29/30

Perustellaan malliksi lauseen 5 kohta (b): Oletetaan, että matriisit A ja B ovat kääntyviä. Tällöin ne ovat neliömatriiseja ja on olemassa käänteismatriisit A 1 ja B 1, jotka ovat samantyyppisiä neliömatriiseja. Siten tulo B 1 A 1 on määritelty. Lisäksi (AB)(B 1 A 1 ) = A(BB 1 )A 1 = AIA 1 = AA 1 = I ja (B 1 A 1 )(AB) = B 1 (A 1 A)B = B 1 IB = B 1 B = I. Tämä tarkoittaa, että B 1 A 1 on matriisin AB käänteismatriisi. Siten AB on kääntyvä. LM1, Kesä 2014 30/30