Jean-Yves Sgro Virusten rakenne ja lisääntyminen Maria Söderlund-Venermo, FT, dos. Haartman-instituutti, Virologian osasto Helsingin yliopisto Mikä on virus? Virukset poikkeavat kaikista muista organismeista -täysin oma elinmuoto Pakollisia solunsisäisiä loisia, joissa on minimimäärä geenejä joita ympäröi infektiokyvyn antava suojakerros. Virus ei voi lisääntyä ilman eläviä soluja. Isäntäsolunsa ulkopuolella virukset ovat metabolisesti inaktiivisia kappaleita. Viruspartikkelin on sekä selviydyttävä solunulkoisista olosuhteista, että kyettävä purkautumaan sopivassa isäntäsolussa. Tunkeuduttuaan soluun virukset käyttävät tämän metabolista ja synteettistä laitteistoa omiin tarkoitusperiinsä yleensä solun hyvinvoinnin kustannuksella. Viruksia löytyy eläin-, kasvi-, bakteeri-, levä ja sienisoluissa Viruksia on 10 miljoonaa/ml vettä Virus koostuu proteiinista ja nukleiinihaposta, eräillä myös lipidiä 1
VIRUKSEN KOKO Viruspartikkelin koko on vain 15-300 nm [1000nm = 1 µm; 1000µm = 1 mm] - viruksia ei siis voi nähdä, tarvitaan elektronimikroskooppi valomikroskooppi elektronimikroskooppi röntgen NMR Erotuskyky: silmä 0,1 mm = 100 µm valomikroskooppi 0,2 µm EM 0,2-2 nm koko genomi (MW) Albumiini 5nm - Polio 28nm 2,6 x 10 6 Influenssa 100nm 4 x 10 6 Isorokko 250nm 160 x 10 6 Stafylokokki 1000nm 3000 x 10 6 Ihmissolu 15 000nm 10 000 000 x 10 6 LWOFFIN KRITEERIT Ominaisuus Bakteerit Riketsiat Virukset Geenit Viroidit Koko (> 500nm) + ± Lisääntyy: jakautumalla + + replikoimalla + + + Ribosomeja + + Oma energiatuotanto + Oma proteiinisynteesi + + Perimä: DNA + + + RNA + DNA tai RNA + Infektiokyky + + + + (Antibioottiherkkyys) + + Bakteerit lisääntyvät jakautumalla, keinotekoisilla kasvatusalustoilla. Virukset lisääntyvät vain elävän solun sisällä: solu toimii tehtaana ja tuottaa viruksen osia - vasta tämän jälkeen viruksen rakenneosat yhdistyvät viruksiksi. Viruspartikkeli ei kasva eikä liiku. Virus muteeraa, kehittyy (evoluutio), lisääntyy > elävä organismi 2
Iso ja pieni virus Mimivirus: 1,2 Mega bp Anellovirus: TTV: 3,8 kbp Bendinelli et al Clin Microbiol Rev 14; 2001 Raoult et al Science 306; 2004 Mimi: 400nm Circo: 20nm VIROLOGIAN HISTORIA 1000-luku -> Variolaatio isorokkorokotteena 1796 Edward Jenner Isorokkovirusrokote (vaccination) 1881 Louis Pasteur Rabies kaneihin 1892 Dimitri Iwanowsky TMV on pienempi kuin muut taudinaihettajat 1898 Martinus Beijerinck Virus = taudinaiheuttaja, virulentti Virus keksittiin : Tupakan mosaiikkivirus (TMV) on pienempi kuin muut taudinaiheuttajat. Ei voida filtroida pois. Uudentyyppinen taudinaiheuttaja => tarttuva elollinen aine Contagium virum/vivum fluidum eli tarttuva myrkyllinen/elollinen neste 1898 Loeffler ja Frosch Suu ja sorkkatauti siirtyy kuten TMV ja lisääntyy joka siirroksessa 1902 Walter Reed Keltakuume tarttuu hyttysten välityksellä, viremia 1908 Landsteiner, Popper Lapsihalvauksen aiheuttaja on virus 1911 Peyton Rous Ensimmäinen kasvainvirus sarkoomasta, RSV 1916 Twort, d Herelle Bakteerivirukset (faagit) 1923 Theiler ja Smith Hiiri-ja kananmunaeristykset 1930- Wendell Stanley Kiteytti TMV:n mallivirus 1940- Ernst Ruska et al. Elektronimikroskopia 1949 John Enders Soluviljelmät; polion kasvatus 1950- Salk / Sabin Poliorokotteet 1952 Hershey & Chase Bakteriofagin genomi on yksinään infektiivinen 1964 Epstein & Barr Ensimmäinen osoitus ihmisen virussyövästä: EBV, Burkittin lymfooma 1977 Viimeinen isorokkotapaus. WHO:n ohjelma johti taudin häviämiseen 1983 Montagnier, Barré-Sinoussi: AIDS:n aiheuttajavirus (HIV) eristettiin 1983 Karry Mullis PCR eli geenimonistus 1986 Ensimmäinen yhdistelmä-dna-rokote (Hepaatiitti B) otettiin käyttöön 3
VIRUSTEN KOOSTUMUS NUKLEIINIHAPPO 1-30 (50)% - DNA tai RNA - 1- tai 2-säikeinen - lineaarinen tai sirkulaarinen - yhtenäinen tai segmentoitu - koko ~4-400 x 10 6 d (rajoittunut geneettinen kapasiteetti) PROTEIINI 60-80% - genomia suojaava kuori - yleensä vain muutama lajike - immunologinen spesifiteetti - reseptoritunnistus - entsyymitoiminta (polymeraasi) - solunsisäinen kuljetus - virusgenomin koodaamia LIPIDIT 0-20% - vaipassa - isäntäsolusta peräisin - koostumus vastaa maturaatiopaikkaa - voi vaihdella isäntäsolusta riippuen HIILIHYDRAATIT - vaipan glykoproteiineissa ja -lipideissä - isäntäsolun entsyymit vaastaavat synteesistä VIRUSTEN RAKENNE (MORFOLOGIA) EM (1950): Pintarakenne ei ole tasainen vaan koostuu alakomponenteista Röntgendiffraktio (1972): Viruspartikkeli ei ole amorfinen - koostuu toistuvista säännöllisistä alayksiköistä - helppo kiteyttää, symmetrisiä - tutkitaan jo alle 2 Å tarkkuudella Kryo-EM + tietokoneella tehty 3D-kuvarekonstruktio Näyte jäädytetään nopeasti, jotta rakennetta vahingoittavia jääkiteitä ei muodostuisi. Mikroskopointi -160 C. Virusten muodot: sauva, pallo, ikosahedri, luoti, mato... 4
VIRUSTERMINOLOGIA Kapsidi (Kapsid, Capsid) Rakenneyksikkö Kapsomeeri (Kapsomer) Nukleiinihappo (DNA tai RNA) Nukleokapsidi (tai RNP) Lipidi (Lipid) Glykoproteiini, uloke spike Vaippa (Hölje, Envelope) Matrix-proteiini Virioni (Virion) Replikaatio: genomin monistus Transkriptio: lähetti-rna:n tuotanto Translaatio: proteiinisynteesi Paramyxovirus Cytomegalovirus HELIKAALINEN VIRUSSYMMETRIA Proteiiniyksiköt järjestyvät vierekkäin nukleiinihapporihman ympärille muodostaen spiraalimaisen rakenteen, jossa kukin rakenneyksikkö on naapuriinsa nähden samassa asemassa = nukleokapsidi. Malliviruksena toimii Tupakan mosaiikkivirus TMV: Genomi koodaa vain yhtä proteiinia, mutta valtavia määriä tätä Koko kapsidin pituus on riippuvainen RNA-rihman pituudesta Viruksen ulkomuoto voi silti olla joko pyöreä tai pitkulainen TMV Paramyxovirus Rabies 5
Helikaalinen symmetria Filo: Ebola Ortomyxo: Influenssa A Arenavirus Paramyxo Coronavirus Rhabdo: Vesicular Stomatitis (VSV) VIRUSSYMMETRIA IKOSAHEDRAALINEN (POLYHEDRAALINEN) Genomi on vapaana kuoren sisällä, eli ei tiukasti proteiinin ympäröimänä kuten helikaalisella viruksella Rakenteen perustana on tasokide, jossa on 20 kolmionmuotoista tasoa. Tasokide voidaan jakaa tasasivuiseksi kolmioverkoksi, jossa kutakin kolmiota vastaa kolme rakenneyksikköä (20 x 3), rakenneyksiköitä tarvitaan 60. Alkeiskolmioista muodostuneen ikosahedrin 12:a kärjen ympärille muodostuu viiden yksikön rengas. Pienin ikosahedri on T=1 (alkeiskolmioluku x 60 yksikköä) 5-3-2-symmetria: 6
Ikosahedraalinen symmetria Herpesvirus Papillomavirus Enterovirus Parvovirus Adenovirus Rotavirus VIRUSSYMMETRIA 7
VIRUSSYMMETRIA KOMPLEKSINEN Pox-virukset (isorokkovirus) eivät ole helikaalisia eivätkä ikosahedraalisia, vaan hyvin monimutkaisia isoja partikkeleita (250 nm) - tiiliskiven muotoisia - ei noudattele symmetrioita On myös muunmallisia viruksia, kuten sitruunan, pisaran ja viinipullonmuotoisia... Molluscum contagiosum poxvirus Fusellovirus Acidianus bottle-shaped virus (Ampullavirus) VIRUSTEN LUOKITTELU Otetaan huomioon kemialliset, fysikaaliset ja biologiset ominaisuudet: VIRIONI: virionin koko, muoto, vaippa, kapsidin symmetria GENOMI: DNA/RNA, yksi/kaksisäikeisyys, lineaarinen/sirkulaarinen, +/- polariteetti (ambisens), segmentoituneisuus ja niiden lukumäärä, koko, +/- 5 terminaalinen caprakenne, sekvenssi, jne. PROTEIINIT: lajikkeiden lukumäärä, koko, toiminnat, aminohappojärjestys REPLIKAATIO: strategia, transkriptiotapa, translaatiotapa, maturaatiopaikka, vaikutus soluun FYSIKAALISET: ph-sieto, kationiriippuvuus, lämpö-, liuotin-, detergentti- ja säteilyherkkyys BIOLOGISET: serologinen sukulaisuus, isäntä- ja kudosvalikko, taudinaiheuttamiskyky RNA DNA Ikosahedraalinen Helikaalinen Ikosahedraalinen Helikaalinen Tuntematon 8
RNA-VIRUKSET Esimerkkejä: Rota IBDV Noro Sapo polio rino HAV entero dengue rubella kumlinge sindbis keltakuume HCV HIV HTLV SARS Ebola Marburg rabies VSV Hantaan Influenssa RS Lassa Puumala sikotauti Inkoo tuhkarokko Uukuniemi parainfluenssa HMPV hendra DNA-VIRUKSET Esimerkkejä: B19 CPV MVM AAV Boca papillooma (oma heimo) polyooma (oma heimo) SV40 BK, JC HBV HSV LCV CMV rana FV3 EBV VZV HHV-6, 7,8, AcMNPV isorokko vaccinia molluscum contagiosum 9
BAKTERIOFAGIT Bakteerien syöjät, eli bakteerivirukset, eli bakteriofagit, eli fagit, eli faagit (phage) Todennäköisesti kaikilla bakteereilla omat faaginsa, joiden isäntäspesifisyys johtuu solun ulkopinnan reseptoreista. Eri morfologiatyyppejä (A-F) T4 faagi Tectiviridae faagi T4 faagi Enterobacteria virus P2 Virophage" = viruksen faagi Jättiviruksilla on omat faaginsa, jotka tekevät ne sairaiksi Faagin nimi on Sputnik ~50 nm ikosahdraalinen kapsidi ~18 kbp dsdna rengasmainen genomi sisältää 21 geeniä, jotka homologisia eri eliödomenien kanssa (eukaryootit, arkkibakteerit ja bakteerit) Different morphological aspects of mamavirus and Sputnik. La Scola et al. Nature 000, 1-5 (2008) doi:10.1038/nature07218 10
VIRUKSEN MONISTUMINEN SOLUSSA 1. ADSORPTIO (KIINNITTYMINEN) - virus tarttuu solun reseptoreihin 2. PENETRAATIO - virus läpäisee solukalvon Infektoivia yksiköitä per solu Infektiivisiä virus- partikkeleita solussa Ekstrasellulaarisia viruspartikkeleita 3. KUORIUTUMINEN (uncoat) - genomin vapautuminen kapsidista 4. PROTEIINI JA NUKLEIINIHAPPOSYNTEESI - solu tuottaa viraalisia proteiineja - viruksen genomi monistuu (replikoituu) 1, 2 3, 4 5 6 Eklipsi Aika 5. VIRUKSEN KOKOAMINEN/ ASSEMBLY (KYPSYMINEN) - proteiiniyksiköt muodostavat kapsidin, jonka sisälle joutuu nukleiinihappo 6. VAPAUTUMINEN - valmiit virukset lähtevät isäntäsolusta joko eksosytoosilla tai kuroutumalla, tai rikkomalla solukalvon 1. ADSORPTIO Satunnainen yhteentörmäys, fysikaalinen ilmiö, ei vaadi energiaa > korkea virionikonsentraatio, josta kuitenkin vain harva kiinnittyy soluun Virus tunnistaa jonkin reseptorin (vastaanottajamolekyylin) solun pinnalla ja tarttuu siihen > usein hyvin spesifi tarttuminen Virus infektoi vain muutaman solun Virus voi päästä myös sellaisiin soluihin, joissa se ei kykene lisääntymään > voi tappaa solun Beanpod mottle virus (kasvi) Chlorellavirus (levä) 11
SOLUKALVO JA RESEPTORIT Koiran parvoviruksen transferriinireseptori (C.R. Parrish 2001) Esimerkkejä solureseptorista: Integriinit, hepariinisulfaatti, sialihappo, CD21, CD4, globosidi, ICAM-1, laminiini-reseptori, EGF-reseptori... Monet virukset tarvitsevat ko-reseptorin päästäkseen solun sisään Reseptoreilla usein tärkeä merkitys solu- ja kudoshakuisuudelle 2. PENETRAATIO Monta eri menetelmää miten virus tunkeutuu solukalvon läpi a) Virus luovuttaa vain nukleiinihapponsa tai nukleokapsidinsa suoraan plasmamembraanin läpi sytoplasmaan (esim T4 bakteriofaagi) b) Virusvaipan ja solukalvon yhteensulaminen, eli fuusio (esim. HIV) c) Reseptori-välitteinen endosytoosi, eli virus kulkeutuu soluun solurakkulassa - fuusio endosomin kalvon kanssa (influenssa) - endosomin lyysi (adeno) HI-viruksen kiinnittyminen ja sisääntulo PBCV-1 viruksen DNA:n syöttö Chlorellalevään 12
BAKTERIOFAGIEN PENETRAATIO E. colin T4-faagi ruiskuttaa nukleiinihapponsa soluseinän läpi Virusten endosytoottiset kuljetusreitit Marsh, Helenius: Virus entry Cell 2006 13
VIRUKSEN KULKEUTUMINEN SOLUSSA Sytoplasma eli solulima on virukselle iso viskoosinen meri jonka läpi täytyy päästä tumaan. Virukselle 1 cm matka kestäisi vedessä solulimassa Poliovirus kapsidi 16 nm 45 vrk 61 vuotta Adenovirus kapsidi 45 nm 122 vrk 166 vuotta HSV kapsidi 63 nm 169 vrk 231 vuotta From Sodeik, 2000. Trends Microbiol 8: 465 Monet virukset (rabies, influenssa, herpes, adeno, parvo) käyttävät hyväkseen solun tukirakenteita, eli mikrotubuluksia, sekä solun tumakuljetusproteiineja, dyneiinia ja kinesiinia Nucleus MTs Maija Vihinen-Ranta, Jyväskylä VIRUKSEN KULKEUTUMINEN SOLUSSA Viruksen tumakuljetus ja DNA-genomin vapautuminen 1) Vapautuneen genomin (+ proteiineja) tumakuljetus - genomi vapautuu sytoplasmassa: HIV, influenssa tumakalvolla: herpesvirus, adenovirus, hepatiitti B virus 2) Kokonainen viruspartikkeli kuljetetaan tumaan - genomi vapautuu tumassa - esim. geminivirukset, parvovirukset (?) 3) Virus tumaan mitoosin aikana (tumakalvo häviää) - simian retrovirus 1 Tuma- huokonen Tuma Genomin vapautuminen kuorestaan uncoating 14
3-4 EKLIPSI (NUKLEIINIHAPON JA PROTEIININ SYNTEESI) Aika, jolloin emme näe viruksia solun sisällä sillä virus on hajonnut. Virus on hyvin kehittynyt parasiitti: solun oma proteiinituotanto loppuu melkein kokonaan ja solu rupeaa tuottamaan ainesosia virukselle. Eräät DNA-virukset käyttävät solun polymeraasia replikaatioon eli genominsa monistukseen, mutta useimmilla on oma entsyymi. RNA-viruksilla oma. DNA-virukset monistuvat tumassa ja RNA-virukset sytoplasmassa. Virus EI monistu integroitumalla solun kromosomiin. VIRUSTEN REPLIKAATIOSTRATEGIA - tai + ssdna (parvo, anello, circo) +ssrna -ssdna (retrovirus) Kantaa käänteis-transkriptaasia mukanaan ±dsdna (papillooma, polyooma, adeno, herpes, hepadna, irido, pox) +ssrna (picorna, flavi, toga, calici, corona) Koodaa RNA/RNA-polymeraasia -ssrna +RNA -ssrna ±dsrna (reo) Kantaa RNA/RNA-polymeraasia mukanaan (rabdo, paramyxo, ortomyxo, arena, filo, bunya, borna) Kantaa RNA/RNA-polymeraasia mukanaan 15
DNA-virukset DNA > aikainen mrna > aikainen proteiini (entsyymejä) DNA-virus DNA replikoituu myöhäisiä mrna:ta > myöh. proteiineja (rakenneprot.) DNA-virukset menevät tumaan - pienillä viruksilla solun polymeraasi ja isoilla viruksilla oma esim. HSV:n transkriptio, translaatio ja replikaatio > RNA-virukset Yleensä suhteellisen pieni genomi, ehkä koska solussa ei juuri ole RNAvirheiden korjausta Tarvitsevat oman RNA-RNA-polymeraasin, jota ei ole sytoplasmassa Mitään proteiineja ei voida tehdä ilman mrna:ta, siksi RNA-genomin laatu virionissa vaikuttaa viruksen monistumiseen: +ssrna -ssrna dsrna RNA > DNA + tai - ssrna:n kohtalo voi olla: - replikaatio, täyspitkien templaattien synteesi - enkapsidaatio - translaatio tai templaatti mrna-synteesille proteiineja 16
VIRUKSEN VAIPPAPROTEIINIEN KYPSYMINEN Vaippaproteiinien eritysreitti: 1. ER: - proteiinien tuotto - laskostuminen - rikkisidosten muodost. - glykosylaation aloitus 2. Golgi: - glykosylaatio saatetaan päätökseen - kuljetusvesikkelit siirtävät proteiinit solukalvolle 5-6. KYPSYMINEN JA VAPAUTUMINEN Nukleiinihappo ja proteiinit yhdistyvät uusiksi viruspartikkeleiksi Viruspartikkelin kokoaminen on ohjelmoituneena sen rakenneproteiinien aajärjestykseen = self assembly Vaippaproteiinit glykosyloidaan ja kuljetetaan solukalvolle Vaipalliset virukset saavat ympärilleen lipideistä koostuvan vaipan joko solukalvosta tai solunsisäisistä kalvoista (tuma tai golgi) Vapautumisreitit: a) b) c) d) Isäntäsolu hajoaa = solu lyysaa ja virionit vapautuvat ympäristöön. Solu kuolee. Vaipalliset virukset kuroutuvat ( budding ) ulos solusta. Viruspartikkeli hakeutuu niihin alueisiin membraanipinnalla, joissa löytyy valmiiksi ulokkeita Virus tulee ulos samoin kuin sisään, eli solurakkula-kuljetussysteemillä, eksosytoosilla Virus saa aikaiseksi solun apoptoosin ja siirtyy kuolleen solun mukana uusiin soluihin esim makrofaagien fagosytoosilla 17
BAKTERIOFAGIEN ULOSPÄÄSY Vaipattomien bakteriofagien solulyysi burst TARTTUMINEN TUNKEUTUMINEN VAPAUTUMINEN Isäntäsolun toiminta Replikaatio Transkriptio Translaatio VIRUKSEN LISÄÄNTY- MINEN KOKOAMINEN (kypsyminen) VAPAUTUMINEN 18
VIROLOGINEN TUTKIMUS TÄNÄÄN 1. 2. 3. 4. 5. 6. 7. Pystymme ylläpitämään eläviä soluja kudoksen ulkopuolella (lisääntyvät keinotekoisella alustalla). Virukset kasvavat näissä soluviljelmissä hyvin. Huom Kaikki virukset eivät kasva soluviljelmissä. Elektronimikroskoopilla ja röntgendiffraktiolla voidaan tutkia virusten rakennetta Spesifisiä vasta-aineita käytetään serotyypitykseen, diagnosointiin ja viruspartikkeleiden löytämiseen kudoksissa ja soluviljelmissä Rekombinantit antigeenit ja virukset ovat käytössä tutkimuksessa, diagnostiikassa ja rokotteissa PCR auttaa meitä löytämään viruksia yhä vähempiä määriä eri kudoksissa > diagnostiikka ja antiviraalisen hoidon seuranta > genotyyppaus > molekulaari-epidemiologiset ja evoluutiotutkimukset Antiviraalisia aineita (lääkkeitä) käytetään hoidossa. Pystymme tekemään infektiivisiä virusplasmidi-klooneja, joita voi käyttää tutkiessamme solunsisäisiä tapahtumia (replikaatio, transkriptio), tropismia, patogeneettisia mekanismeja sekä evoluutiota. Virustutkimus hyödyntää molekyyli- ja solubiologian tutkimusta 8. Viruksia käytetään geeniterapian työkaluina vektoreina. 9. Pystymme hävittämään tiettyjä viruksia maan päältä (isorokko, polio...) 10. Emme pysty kontrolloimaan kaikkia viruksia. Emme pysty estämään uusien vaarallisten virusten ilmestymistä (emerging diseases). Emme edes vielä tunne kaikkia viruksia... 11. Bioterrori uhkaa: isorokkovirus tai rekombinanttiviruksia LÄHTEET Virus Ultrastructure by Linda Stannard [http://web.uct.ac.za/depts/mmi/stannard/linda.html] All the virology on the web by David Sander [http://www.tulane.edu/~dmsander/] ICTV [http://www.ncbi.nlm.nih.gov/ictvdb/index.htm] Molecular genetics by Ulrich Melcher OSU [http://opbs.okstate.edu/~melcher/] Maija Vihinen-Ranta, Jyväskylän yliopisto Fundamental Virology, Fields and Knipe, Raven Press Principles of Virology, Flint et al, ASM Press Jatkokursseja: Molecular Virology Molecular epidemiology of virus infections Clinical virology 19