Matematiikka - kurssi matemaattisten taitojen kehityksestä, oppimisvaikeuksista, arvioinnista ja interventioista Osa 1: Taitojen kehityksestä Tammikuu 2015 Erityispedagogiikka
Kurssin tukimateriaali www.lukimat.fi Sousa David, A.(2008): How the brain learns mathematics. Corwin Press, California. Berch Daniel, B. & Mazzocco Michéle, M.M (2007): Why is math so hard for some children?: The nature and origins of mathematical learning difficulties and disabilities. Paul H. Brookes Publishing Co. Baltimore Dowker, A. (toim.) (2008): Mathematical Difficulties: Psychology and Intervention. Elsevier, London. Clements, D. H. & Sarama, J. (2009): Learning and teaching early math: The learning trajectories approach. Routledge, New York http://wiki.helsinki.fi/display/ajatellaan/kirjallisuutta 2
Korvaava materiaali Sousalle Price, G.R & Ansari, D. (2013). Dyscalculia: Characteristics, Causes and Treatments. Numeracy: Advancing Education in Quantitative Literacy, 6 (1) article 2, 1-16. Good review and overview on the characteristics and causes of mathematical learning difficulties. (Literature synthesis) Jordan, N., Glutting, J. & Ramineni, C. (2010). The importance of number sense to mathematics achievement in first and third grades. Learning and Individual Differences, 20, 82-88. Good example how early mathematical skills develop and about assessment. (longitudinal) LeFevre, J-A., Berrigan, L., Vendetti, C., Kamawar, D., Bisanz, J., Skwarchuk, S-L., & Smith-Chant, B. L. (2013). The role of executive attention in acquisition of mathematical skills for children in grades 2 through 4. Journal of Experimental Child Psychology, 114, 243-261. Good example how cognitive factors are related to mathematical skills development. (longitudinal) Korhonen, J., Linnanmäki, K. & Aunio, P. (2013) Learning difficulties, academic well-being and educational dropout: A person-centered approach. Learning and Individual Differences, 31, 1-10. Article about learning difficulties in the end of compulsory school and about the effects on academic well-being and educational drop-out. (longitudinal study) Toll, S. W.M. & Van Luit, J.E.H. (2012) Early numeracy intervention for low performing kindergartners. Journal of Early Intervention, 34 (4) 243-264. Article about intervention on early math skills in children performing low (intervention study) Gersten, R., Beckmann, S., Clarke, B., Foegen, A., Marsh, L., Star, J. R., & Witzel, B. (2009). Assisting Students Struggling with Mathematics: Response to Intervention (RtI) for Elementary and Middle Schools (NCEE 2009-4060). Washington, DC: National Center for Education Evaluation and Regional Assistance, Institute of Education Sciences, U.S. Department of Education. Retrieved from http://ies.ed.gov/ncee/wwc/publications/practiceguides/. Good overview how teaching can be planned to be suitable for those students who have challenges in math learning. Easy to read report. 3
Matemaattisten perustaitojen kehitys Matematiikan oppimisvaikeudet Taitojen arviointi Pedagoginen tukeminen Ennen koulua Dyscalculia Kehit.psyk testit ja seulat Mat. Op. Vaik OPS-pohjaiset mittarit Interventioista Alakoulussa Heikko osaaja Observointi, haastattelu, portfolio, päiväkirja 4
Erityispedagogisen ajattelun pilarit Oppimisen/kehityksen ymmärtäminen Oppimiseen/kehitykseen puuttuminen (interventio) Oppimisen/kehityksen arviointi (heikkojen löytäminen) 5
Mitkä ovat matemaattiset perustaidot? Mitä arvostetaan, mihin keskitytään, mistä ollaan huolissaan?
Keskeiset matemaattiset taitorypäät esi- ja alkuopetusikäisillä lapsilla I vaihe: testit joiden tarkoituksena on arvioida 5-8 -vuotiaiden lasten matemaattista osaamista. Tarkasteluun otimme testit, joihin oli julkaistu normit (eli on tieto miten lapset suoriutuvat testistä keskimäärin + validointiprosessi) jotka olivat opettajien käytössä useissa eri maissa joissa mitattiin erityyppisiä matemaattisia taitoja jotka eivät olleet opetussuunnitelma riippuvaisia Lukukäsitetesti (Van Luit, et al. 1994), Number Knowledge Test (Griffin 2003), Early Numearcy (Wright et al. 2006) ja TEMA-3 (Ginsburg & al. 2006) II Vaihe: Pitkittäistutkimukset
Keskeiset matemaattiset taitoryppäät esi-ja alkuopetusikäisillä lapsilla (Aunio & Räsänen, 2017 kts. myös www.lukimat.fi) Matemaattisten suhteiden ymmärtäminen matemaattis-loogiset periaatteet aritmeettiset periaatteet matemaattiset symbolit paikka-arvo ja kymmenjärjestelmä Laskemisen taidot numerosymbolien hallinta Aritmeettiset perustaidot aritmeettiset yhdistelmät lukujonon luettelemisen taidot lukumäärän laskutaidot yhteen- ja vähennyslaskutaidot Lukumääräisyyden taju
Laskemisen taidot Lukujonon luettelemisen taidot 1. Lukujonon luetteleminen eteen- ja taaksepäin (usein: Osaatko sinä laskea?) 2. Lukujonon luetteleminen hyppäyksittäin (l. sanomalla joka toinen, joka viides tai joka kymmenes luku) 3. Lukujonon luettelemisen jatkaminen annetusta luvusta (l. jatka laskemista luvusta kahdeksan eteenpäin) Number words sequence skills (synonyms often acoustic counting, reciting number words, counting) (VanDerHeyden et al. 2006; Clarke and Shinn 2004)
Laskemisen taidot (jatkuu) Lukumäärien laskemisen taidot: 1. Osaa luetella lukujonon oikeassa järjestyksessä 2. Osaa luoda yksi-yhteen-suhteen sanotun sanan ja laskettavan esineen sekä osoittavan eleen välille 3. Oivaltaa, että viimeiseksi sanottu luku kertoo sen kuinka monta esinettä kokonaisuudessa on 4. Oivaltaa, että kaikenlaisia keskenään erilaisiakin esineitä ja asioita voi laskea 5. Tietää, että esineet voi laskea missä järjestyksessä tahansa, kunhan laskee jokaisen esineen vain kerran Enumeration (often counting the numerosity of a set, counting, cardinal meaning of number, counting objects) Child uses her/his number word sequence skills to enumerate (Aunio & Niemivirta 2010; Jordan et al. 2006)
Laskemisen taidot (jatkuu) Numerosymbolien hallinta: 1. Yhdistää sanottu lukusana -> numerosymboliin (nimeäminen ja tunnistaminen). Lapselle sanotaan joku lukusana, jolloin lapsen tehtävänä on kirjoittaa sitä vastaava numerosymboli Lapselle näytetään joku numerosymboli ja lapsen tehtävä on sanoa sitä vastaava lukusana. 2. Ilmaisee numerosymboleilla lukumääriä Pyydetään näyttämään se numerosymboli mikä on yhtä suuri kuin näytettyjen esineiden lukumäärä Näytetään numerosymboli ja pyydetään antamaan yhtä monta esinettä Symbol-verbal and verbal-symbol transitions = word identification and recognition of numbers (e.g. choose number in VanDerHeyden et al. 2006)
Kehityskaari: Lukusanoista laskemiseen 2 v. Primäärinen ymmärrys lukumääristä lukusanoilla viitataan eri lukumääriin hyvin karkeat lukumäärät selkeitä 3 v 4 v Lorumainen laskeminen käsittelee numeroita osana lauluja ja loruja ei välttämättä erota lukusanoja erillisinä sanoina vaan rimpsuna yksikaksikolmeneljä Eriaikainen laskeminen Ymmärtää, että lukusanoja voidaan käyttää esineiden laskemiseen Osaa luetella lukusanat oikeassa järjestyksessä, mutta ei kykene osoittamaan esinettä ja merkkaamaan sitä samaan aikaan. Jättää laskematta jonkun esineen, laskee (merkkaa) yhden esineen kaksi kertaa
Kehityskaari: Lukusanoista laskemiseen (2) 4-5 v 5 v 6 v. Samanaikainen laskeminen Sanoo lukusanan, osoittaa esineitä Hallitsee 1-1-suhteella operoimisen Järjestää esineet, yhdistää niihin lukusanan (l. laskee) Tuloksen laskeminen Laskeminen alkaa luvusta yksi Jokainen esine lasketaan vain kerran Viimeinen lukusana kertoo esineiden lukumäärän Lyhentynyt laskeminen Kykenee tunnistamaan tietystä lukujoukosta numeron, josta he jatkavat laskemista Ei enää tarvitse aloittaa luvusta yksi, kun heiltä kysytään esineiden lukumäärää.
Aritmeettiset perustaidot Lukujonon luettelemisen ja lukumäärän laskemisen taitojen kehittyessä alkavat lapset myös harjoitella aritmeettisia perustaitoja Pienillä luvuilla & lukujen luettelu ja sormilla esineillä laskeminen Kun taidot kehittyvät ja kokemus lisääntyy, lapsen ei enää tarvitse laskea yksinkertaisia ja usein toistuvia yhdistelmiä, vaan hän voi palauttaa vastauksen suoraan muistista (l. aritmeettisten yhdistelmien muistaminen) Kehityksen kuluessa lapsi keksii uusia strategioita ja voi jättää jo opittuja käyttämättä
Aritmeettiset perustaidot Aritmeettisista perustaidoista keskeisiä esi- ja alkuopetusiässä ovat yhteen- ja vähennyslaskutaidot -> sujuva peruslaskutaito 2lkn keväällä ja 3:lla luokalla yhteen ja vähennyslaskutaidon oletetaan yksinumeroisilla luvuilla olevan suhteellisen sujuvaa ja aletaan opetella kerto- ja jakolaskua
Aritmeettiset perustaidot Laskutoimitukset eroavat siinä,missä määrin niiden harjoittelussa painottuu muistista haku tai erilaiset laskemisen strategiat Kertolasku pohjaa ulkoaoppimiseen ja siinä muistista hakeminen on keskeinen strategia Vähennys ja jakolaskuissa on vähemmän ulkoaoppimista niissä käytetään erilaisia laskustrategioita useimmiten pohjaten yhteen ja kertolaskuun.
Yhteen- ja vähennyslaskustrategioiden oppiminen ja kehityksen tukeminen Aritmeettiset laskustrategiat Lukujen luetteluun perustuvat strategiat Strukturoitu laskeminen Muistamiseen perustuvat strategiat Välineet vapaasti lasten käytössä Mielessä tapahtuva laskeminen Välineillä ohjatusti Toisen laskun kautta (derived facts) Osavaiheisiin pilkkominen ja uudelleen kokoaminen (decomposition) Suora muistista palauttaminen (fact retrieval) Lukualue 1-20 17
Van den Heuvel-Panhuizen (1999/2001): Children Learn Mathematics Wright et al. (2012): Developing Number Knowledge Yksittäinen laskeminen esineillä ja/tai lukujonolla Välineiden lapsilähtöinen käyttö Strukturoitu laskeminen välineillä Piilottaminen Välineiden ohjattu käyttö (ryhmittely, systemaattisuus) Välineiden nivominen strategioihin Mielessä tapahtuva laskeminen ilman välineitä Muistista palauttaminen Toisten laskujen hyödyntäminen Faktojen muistaminen 18
Aritmeettiset perustaidot Se mitä strategiaa lapsi käyttää riippuu esimerkiksi laskun tekijöistä: Esikoululainen voi muistaa ulkoa vastauksen osaan pienistä laskuista (1+1, 2+2, 1+2) Kun laskuissa vaaditaan 10-ylitystä (8+6, 9+5) on se jo hankalampi (laskemisen strategia käyttöön) 0 ja 1 sisältävät laskut näyttää nojaavaan sääntöjen muistamiseen (esim. kun nollan lisääminen ei muuta lukumäärää)
Aritmeettiset perustaidot Strategiat selviää seuraamalla lapsen laskemista ja pyytämällä häntä selittämään, miten ratkaisee tehtävän Tavallisesti lapsilla on käytössään useita strategioita Sujuva laskija: Pääasiassa palauttaa vastauksen nopeasti muistista Tarvittaessa valitsee muista strategioista tehtävään sopivimman Niillä lapsilla, joilla on matematiikan oppimisvaikeuksia on käytössään yleensä vain hitaita luetteluun pohjautuvia strategioita Aritmeettisten yhdistelmien muistaminen on heille vaikeaa (pysyy vaikeina tarvitsee tukea!)
Yhteen- ja vähennyslaskutaidon kehittyminen Asteittain: Luetteluun pohjautuvan laskemisen kautta kohti aritmeettisten yhdistelmien muistamista Vähennyslaskustrategiat ovat vaikeampia kuin yhteenlaskustarategiat - Vähennyslaskuissa pitää muistaa useampia vaiheita kuin yhteenlaskussa - Vähennyslaskustrategioiden käytössä auttaa yhteenja vähennyslaskun välisen suhteen ymmärtäminen
Lukujen luetteluun pohjautuva laskeminen yhteen- ja vähennyslaskussa Laskutehtävien ratkominen aloitetaan lukujen luetteluun pohjatuvien strategioiden kautta Konkretian ja visuaalisen tuen avulla (esineet, sormet, piirtäminen) Mielessä tapahtuvaa laskemista lukujonoja luettelemalla Eri tapoja käyttää lukujonoa laskemisessa tueksi:
Laske kaikki, aloita alusta Lukujen luetteluun pohjautuvat strategita yhteenlaskussa konkretia/visuaalinen tuki Laske toinen luvuista, aloita alusta Laskeminen eteenpäin Laskeminen eteenpäin, aloittaen suuremmasta luvusta Esim. 3 + 2 =? Lapsi laskee kolme esinettä yksitellen "1,2,3". Hän lisää yksitellen laskien kaksi esinettä "1,2", laskee sitten alusta kaikki esineet "1,2,3,4,5" ja saa tulokseksi viisi. Esim. 3 + 4 =? Lapsi näyttää sormillaan suoraan luvun 3 ja lisää siihen luetellen neljä lisää "1, 2, 3, 4". Sitten hän laskee alusta kaikki sormet tai katsoo vastauksen suoraan sormien lukumäärästä. Esim. 4 + 3 =? Lapsi näyttää sormillaan luvun 4 ja laskee eteenpäin sormien avulla "5, 6, 7". Vastauksena on viimeiseksi sanottu lukusana. Esim. 2 + 5 =? Lapsi aloittaa laskemisen suuremmasta luvusta. Hän näyttää sormillaan luvun viisi ja laskee sormien avulla eteenpäin "6, 7". Vastaus on viimeiseksi sanottu lukusana. 23
Lukujen luetteluun pohjautuvat strategia yhteenlaskussa mielessä tapahtuva laskeminen Laskeminen eteenpäin ensimmäisestä luvusta Laskeminen eteenpäin suuremmasta luvusta Esim. 3 + 4 =? Lapsi aloittaa luvusta 3 ja laskee mielessään eteenpäin "4, 5, 6, 7". Vastaus on viimeiseksi sanottu lukusana. Esim. 2 + 5 =? Lapsi aloittaa laskemisen suuremmasta luvusta. Hän sanoo luvun viisi ja laskee mielessään eteenpäin "6, 7". Vastaus on viimeiseksi sanottu lukusana. 24
Lukujen luetteluun pohjautuvat strategia vähennyslaskussa konkretia/visuaalinen tuki Laske kaikki, aloita alusta Esim. 5 3 =? Lapsi laskee viisi esinettä yksitellen. Sitten hän laskee pois kolme esinettä, laskee jäljelle jääneet ja saa tulokseksi kaksi Laskeminen eteenpäin Esim. 7 4 =? Lapsi aloittaa luvusta 4, laskee eteenpäin sormien tuella 5, 6, 7. Vastaus on lueteltujen lukujen määrä eli kolme. Laskeminen taaksepäin annetun luvun verran Laskeminen eteen- ja taaksepäin Esim. 8 3 =? Lapsi aloittaa laskemisen luvusta 8 ja laskee sormien avulla taaksepäin kolme lukua 7, 6, 5. Vastaus on viimeiseksi sanottu luku. Lapsi valitsee laskun ratkaisemisen tavaksi edellä esitellyistä kohdista joko kohdan 2 tai 3, riippuen siitä, kummalla tavalla tarvitsee laskea vähemmän. Esim. laskussa 9 7 =?, lapsi valitsisi kohdan 2. 25
Lukujen luetteluun pohjautuvat strategia vähennyslaskussa mielessä tapahtuva laskeminen Laskeminen eteenpäin Esim. 7 4 =? Lapsi aloittaa luvusta 4, laskee eteenpäin mielessään 5, 6, 7. Vastaus on lueteltujen lukujen määrä eli kolme. Laskeminen taaksepäin annetun luvun verran Laskeminen taaksepäin annettuun lukuun asti Laskeminen eteen- tai taaksepäin Esim. 8 3 =? Lapsi aloittaa laskemisen luvusta 8 ja laskee mielessään taaksepäin kolme lukua 7, 6, 5. Vastaus on viimeiseksi sanottu luku. Esim. 8-6 =? Lapsi aloittaa laskemisen luvusta 8 ja laskee mielessään taaksepäin lukuun 6 asti "7, 6". Vastaus on lueteltujen lukujen määrä eli 2. Lapsi valitsee laskun ratkaisemiseen edellä esitellyistä kohdista joko kohdan 2, 3 tai 4, riippuen siitä millä tavalla tarvitsee laskea vähiten. Esim. laskussa 9-7 =?, lapsi valitsisi kohdan 2 tai 4. 26
Aritmeettisten yhdistelmien muistaminen Palauttaa muististaan suoraan laskun vastauksen (2+3=5) Johtaa laskun vastauksen jonkin tuntemansa yhdistelmän kautta 6-3=3 joten 6-4=2, koska luku 4 on yhden suurempi kuin 3 Pilkkoo laskun osavaiheisiin ja kokoaa laskun uudelleen niin, että käyttää hyväkseen tuntemiaan yhdistelmiä ja tietojaan lukujärjestelmästä 7+5 -> 7 + (3+2) -> 10 + 2=12 Toisen laskun kautta laskun johtaminen voi auttaa aritmeettisten yhdistelmien oppimista Tuplien kautta oppiminen + niitä lähellä olevat aritmeettiset yhdistelmät
Toisen laskun kautta johtaminen yhteenlaskussa Tupla +1, +1 Tupla -1, -2 10-parit 10-lasku Jaettu Käytetään hyväksi tunnettua tuplaa ja lisätään siihen yksi tai kaksi. esim. 6 + 7 = (6 + 6) + 1 = 13 Käytetään hyväksi tunnettua tuplaa ja vähennetään siitä yksi tai kaksi. esim. 7 + 6 = (7 + 7) - 1 = 13 Käytetään hyväksi opittuja 10-pareja. esim. 8 + 2 = 10, joten 8 + 3 = 11 Käytetään apuna 10-laskua, jossa toisena tekijänä on 10. esim. 10 + 8 = 18, joten 9 + 8 = 17 Yhteenlasku havainnollistuu hyvin palikoilla, kun toisesta palikkapötköstä siirretään yksi palikka toiseen, jolloin saadaan tupla. Myöhemmin tästä syntynyttä mielikuvaa voidaan käyttää hyväksi laskemisessa. esim. 7 + 5 = 6 + 6 Toisen tunnetun yhdistelmän kautta esim. 7+5=(7+4)+1=12 28
Toisen laskun kautta johtaminen vähennyslaskussa lisäämisen kautta tapahtuvia johtamisia vähennyslaskuissa Tupla +1 Tupla -1 Jaettu Käytetään hyväksi tunnettua tuplaa ja lisätään siihen yksi. esim. 13-6 --> 6 + = 13 --> 6 + (6 + 1) = 13 Käytetään hyväksi tunnettua tuplaa ja vähennetään siitä yksi. esim. 11-6 --> 6 + = 11 --> 6 + (6-1) = 11 Yhteenlasku havainnollistuu hyvin palikoilla, kun toisesta palikkapötköstä siirretään yksi palikka toiseen, jolloin saadaan tupla. Tätä mielikuvaa käytetään hyväksi myös vähennyslaskussa. esim. 12-7 --> 6+6=12, joten 7+5=12 29
Toisen laskun kautta johtaminen vähennyslaskussa vähentämisen kautta tapahtuvia johtamisia vähennyslaskuissa 10-lasku Käytetään apuna 10-laskua, jossa toisena tekijänä on 10. Esim. 16-10=6, joten 16-9=7 Toisen tunnetun yhdistelmän kautta Esim 12-7=>12-8=4, joten 12-7=5 30
Osavaiheisiin pilkkominen ja uudelleen kokoaminen yhteenlaskussa Lisääminen 10 kautta Luku täydennetään ensin kymmeneen ja katsotaan kuinka paljon tulee vielä kymmenen yli lisää. Esim 8+5-> (8+2)+3=10+3=13 31
Osavaiheisiin pilkkominen ja uudelleen kokoaminen vähennyslaskussa Lisääminen 10 kautta Vähentäminen 10 kautta Vähentäminen kymmenestä Luku täydennetään ensin kymmeneen ja katsotaan kuinka paljon tulee vielä kymmenen yli lisää. Esim 13-6-> 6+4=10, 10+3=13 -> 4 + 3= 7 Luku vähennetään ensin kymmeneen ja otetaan vielä jäljelle jäänyt kymmenestä pois 12-7-> 12-2=10, 10-5=5 Otetaan kymmenen yli menevä luku talteen, sen jälkeen otetaan vähentäjä pois kymmenestä ja lisätään talteen laitettu luku muistista 12-4= (10-4) + 2= 8 32
Strukturoitu laskeminen välivaihe/silta lukujen luettelusta muistista palautta Kymppipohja/viitospohja Helmitaulu (viiden kautta) Numeroruudukko -> lukusuoraan Tyhjä lukusuora Osa-kokonaisuus pallomalli (esim Emerson & Babtie, 2010) Matikka-vuori Math-mountain (esim. Wright et al. 2012) Osa muistista palauttamista strategioista voidaan myös ottaa opetuksen kohteeksi Kielellistäminen 33
Strukturoidun laskemisen vaihe Osa-kokonaisuus pallo malli Esim. Emerson & Babtie, 2010) Matikka-vuori (Wright et al. 2012) 6 12 10 2 34
Kerto ja jakolaskutaidon kehittyminen Oppimisprosessi on suoraviivaisempi ja harjoittelussa korostuu suuremmassa määrin ulkoa opettelu kuin yhteen- ja vähennyslaskussa Hakeminen muistista on keskeinen ratkaisutapa heti alusta lähtien Jakolaskun kehityksestä tiedetään vähemmän: Alussa yhteenlaskun avulla Kertolasku nousee nopeasti yleisemmäksi Jakolaskujen ratkaisu hankalaa ilman kertolaskun hallintaa (kertolaskun ja jakolaskun suhteen ymmärtäminen) 35
Lukujen luetteluun pohjautuva laskeminen kertolaskussa Alkuvaiheessa toistuva yhteenlasku ja lukujonon luetteleminen tietyn askeleen välein on yleisesti käytettjä strategioita - Ääneen tai mielessä luettelemalla lukujonoa (ei visuaalista tukea) esim viiden välein 5x4 -> 5,10, 15, 20 - Sormien avulla + luettelu, auttaa muistamaan montako harppausta lukujonossa on menty ( viisi yksi sormi, kymmenen kaksi sormea) Osalle lapsista hyppiminen lukujonossa vaikeaa - Laskee yksitellen, piirtää viivoja, ryhmittelee, laskee ne - => hidas, virhealtis, ei mielekäs 5.12.2012 36
Lukujen luetteluun pohjautuva laskeminen jakolaskussa Luettelupohjaiset strategiat: - Toistuva yhteenlasku, jossa jakajaa lasketaan yhteen kunnes saavutetaan jaettava - Toistuva vähennyslasku, jossa jaettavasta vähennetään jakajan osoittamaa määrää kunnes päädytään nollaan - Ryhmittely, lapsi miettii, kuinka monta jakajan suuruista ryhmää jaettavasta saadaan 37
Aritmeettisten yhdistelmien muistaminen kerto- ja jakolaskussa Aritmeettisten yhdistelmien hakeminen suoraan muistista nousee yleisemmäksi strategiaksi Kansainväliset tutkimukset (lisää lähde): - 2- luokalla yleisin ratkaisutapa: lapset käyttävät sitä yli puolessa kertolaskuissa - 4-luokalla (9 v) suurimmaksi osaksi (noin 70-80% kertolaskuista) Jakolaskuissa - Muistiinpohjaavat strategiat: vastauksen hakeminen suoraan muistista, kertolaskun avulla vastauksen ratkaiseminen, sekä laskun jakaminen pienempiin helpommin ratkaistaviin osiin - Vähiten automatisoituva - 6-7 luokalla yhdistelmien muistamista käytettiin vähemmän kuin kertolaskua 38
Matemaattisten suhteiden ymmärtäminen Matemaattis-loogiset periaatteet l. säännönmukaisuuksien ymmärtäminen ja soveltaminen määrällisessä kontekstissa 1. Sarjoittaminen (Bryant 1996) (esim. Järjestä nämä kukat pisimmästä lyhyinpään) 2. Vertailu (Sophian 1998) (esim. Kummassa laatikossa on enemmän kuulia?) 3. Luokittelu (Smith 2002) (esim. Laita tähän laatikkoon kaikki siniset suuret pallot?) 4. Yksi-yhteen suhde (Alibali & DiRusso 1999) (esim. Missä laatikossa on riittävästi pipoja näille viidelle lapselle?)
Matemaattisten suhteiden ymmärtäminen (jatkuu) Aritmeettiset periaatteet (l. osa-kokonaisuus -suhteiden ymmärtäminen) 1) kokonaisuudet muodostuvat pienemmistä osista luku kuusi voidaan muodostaa laskemalla yhteen esimerkiksi 5+1; 4+2; tai 3+2+1. 2) yhteenlaskettavat voidaan laskea yhteen missä tahansa järjestyksessä ja aina saadaan sama tulos -> a+b=b+a.
Matemaattisten suhteiden ymmärtäminen aritmeettiset periaatteet (jatkuu) 3) yhteenlasku voidaan hajottaa uudelleen osiin ja laskea osat yhteen uudella tavalla eri järjestyksessä ja saadaan sama tulos -> (a+b) + c = a + (b + c) 4) käänteisyyden periaate, millä tarkoitetaan sitä, että yhteen-ja vähennyslasku ovat toisilleen käänteisiä eli ne kumoavat toisensa ->3+1-1=3 often the understanding of part-whole relations in addition or subtraction tasks (Canobi, Reeve & Pattison 2002; Robinson, Niowski & Gray, 2006, Wilkins, Baroody & Tiilikainen 2001)
Matemaattisten suhteiden ymmärtäminen matemaattiset symbolit Vertailun symbolit alkuopetuksessa mikä on suurempi kuin (>) pienempi kuin (<), yhtä suuri kuin (=) eri suuri kuin ( )
Matemaattisten suhteiden ymmärtäminen paikka-arvo ja kymmenjärjestelmä Kun lapsi alkaa käyttää suurempia lukuja kuin yhdeksän täytyy oivaltaa, että luvun todellinen arvo riippuu siitä, millä paikalla se on luvussa, esimerkiksi onko se ykkösten, kymmenten vai satojen paikalla. 2 23 233 2333
Lukumääräisyyden taju kykyä hahmottaa lukumääriä ilman kieleen perustuvaa laskemista lukumääräisyyden tajua pidetään perustavimmanlaatuisena matemaattisena kykynä, jonka päälle kielellinen (kulttuurinen) matemaattinen taito rakentuu (Dehaene, 1997/2011; Lipton & Spelke 2003)
Lukumääräisyyden taju (2) Myötäsyntyinen kyky määrien hahmottamiseen Ei laskemista vaan suhteellinen, epätarkkaa, lukumäärien hahmotuskyky Aistikanavasta riippumaton kyky Mitä suurempi ero lukumäärien välillä on, sitä helpompaa on ne erottaa toisistaan. Kyky näyttää paranevan kohtuullisesti aina varhaislapsuuteen -> kehitys tasaantuu ei muutu täysin tarkaksi -> ainoa keino tarkkaan määrän hahmottamiseen on kieli ja laskeminen.
Mitkä taidot todettu hyviksi ennustajiksi? Pitkittäistutkimuksista (viimeisen 10 vuoden aikana) tietoa, mitkä taidot ennustavat myöhempää matematiikan osaamista
Tavalliset lapset 1) Esiopetusikäisen lapsen lukujonotaidot ennustavat hyvin myöhempää yhteen- ja vähennyslaskun taitoa 2) Spontaani lukumäärien havaitseminen ja lukumääräisyyden taju nuorilla lapsilla ennustaa myöhempää lukumäärän laskemisen taitoa. 3) Yleinen matematiikan osaaminen ennen kouluikää ennustaa hyvin myöhempää aritmetiikan osaamista koulussa.
Lapset, joilla oppimisvaikeuksia 1) Lukumäärän laskutaito esikoulussa on hyvä ennustaja myöhemmälle matematiikan osaamiselle. 2) Lapsilla, joilla on matematiikan ja/tai lukemisen vaikeuksia - todennäköisesti vaikeuksia kaikkien taitoryppäiden kehityksessä - erityisesti: laskuprosessien ymmärtämisessä, aritmeettisten faktojen muistamisessa ja aritmeettisten strategioiden käyttämisessä 3) Ristiriitaiset tulokset koskevat lukumäärän laskutaidon kehitystä lapsilla, joilla on kielen oppimisen vaikeuksia. - Osa raportoi, että vaikeuksia laskutaidoissa ei ole - Toiset taas, että esimerkiksi lukujonon hallinta on heikkoa nuorilla dysfasia lapsilla.
Heikkous lukumääräisyyden tajussa - Potentiaalinen selittäjä vaikeille matematiikan oppimisvaikeuksille (Mazzocco, Feigenson & Halberda 2011a; Price & Ansari 2013) - Estimointiin keskittyvä lukumäärän ymmärräys (i.e., approximate number system) ennustaa myöhempiä taitoja (Libertus, Feigenson & Halberda 2011; Mazzocco, Feigenson & Halberda, 2011b) - Onko kyseessä mentaali mallinnus numerosymboleista vai ei-symbolinen lukumäärän representaatio? (De Smedt, Nöel, Gilmore & Ansari, 2013) 49