Määritelmä Ominaisarvo ja ominaisvektori Oletetaan, että A on n n -neliömatriisi. Reaaliluku λ on matriisin ominaisarvo, jos on olemassa sellainen vektori v R n, että v 0 ja A v = λ v. Vektoria v, joka toteuttaa yllä mainitun ehdon kutsutaan ominaisarvoon λ liittyväksi ominaisvektoriksi. Huom. Edellinen määritelmä on sekä ominaisarvon että ominaisvektorin määritelmä. Ominaisarvoa ei voida määritellä ilman ominaisvektoria eikä ominaisvektoreista voida puhua mainitsematta ominaisarvoa. LM1, Kesä 2014 103/174
Ominaisarvo ja ominaisvektori Huom. Matriisin A ominaisvektori on vektori, jolle matriisilla A kertominen vastaa reaaliluvulla λ kertomista. Nollavektorin ei haluta olevan ominaisvektori, sillä jos niin olisi, kaikki reaaliluvut olisivat kaikkien matriisien ominaisarvoja. LM1, Kesä 2014 104/174
Ominaisarvo ja ominaisvektori Esimerkki 25 Matriisilla A = on ominaisarvo 4, sillä 3 1 1 = 1 3 1 3 1 1 3 4 = 4 4 1. 1 Eräs ominaisarvoa 4 vastaava ominaisvektori on siis (1, 1). LM1, Kesä 2014 105/174
Samaa ominaisarvoa voi vastata useampi eri ominaisvektori. Esimerkiksi (2, 2) on myös matriisin A ominaisarvoa 4 vastaava ominaisvektori, sillä 3 1 2 8 2 = = 4. 1 3 2 8 2 Matriisilla A on toinenkin ominaisarvo: 3 1 1 2 1 = = 2, 1 3 1 2 1 joten reaaliluku 2 on matriisin A ominaisarvo ja (1, 1) on yksi siihen liittyvä ominaisvektori. LM1, Kesä 2014 106/174
Ominaisarvo ja ominaisavaruus Jos kaikki matriisin A ominaisarvoa λ vastaavat ominaisvektorit sekä nollavektori kerätään yhteen, saadaan ominaisarvoa vastaava ominaisavaruus. Määritelmä Oletetaan, että matriisilla A M n n on ominaisarvo λ R. Ominaisarvoa λ vastaava ominaisavaruus on joukko V λ = { v R n A v = λ v }. LM1, Kesä 2014 107/174
Esimerkki 26 Ominaisavaruus Määritetään esimerkin 25 matriisin 3 1 A = 1 3 ominaisarvoa 4 vastaava ominaisavaruus eli kaikki ominaisarvoa 4 vastaavat ominaisvektorit. Vektori v = (v 1, v 2 ) R 2 on ominaisarvoa 4 vastaava ominaisvektori, jos ja vain jos 3 1 v1 v1 = 4 1 3 v 2 v 2 eli 3 1 v1 4v1 = 1 3 v 2 4v 2 0. 0 LM1, Kesä 2014 108/174
Yhtälö saadaan muotoon v1 + v 2 = v 1 v 2 0 0 ja sitä vastaava lineaarinen yhtälöryhmä on { v1 + v 2 = 0 v 1 v 2 = 0, jossa tuntemattomina ovat v 1 ja v 2. Yhtälöryhmän ratkaisuiksi saadaan { v1 = s missä s R. v 2 = s, Koska nollavektori ei ole ominaisvektori, ovat ominaisvektorit muotoa (s, s), missä s R \ {0}. LM1, Kesä 2014 109/174
Ominaisavaruuteen otetaan mukaan myös nollavektori. Siten ominaisarvoa 4 vastaava ominaisavaruus on V 4 = { (s, s) s R } = { s(1, 1) s R } = span((1, 1)). LM1, Kesä 2014 110/174
Ominaisarvot ja ominaisvektorit Esimerkki 27 Tarkastellaan matriisien 2 0 A =, B = 0 1 1 0 0 1 ja C = 0 1 1 0 ominaisarvoja. LM1, Kesä 2014 111/174
Matriisilla A kertominen venyttää vektoreita vaaka-akselin suunnassa kaksinkertaisiksi. Tästä voidaan päätellä, että matriisin A ominaisvektoreita ovat vektorit muotoa t(1, 0), missä t R {0}, ja vastaava ominaisarvo on 2. matriisin A ominaisvektoreita ovat vektorit muotoa t(0, 1), missä t R {0}, ja vastaava ominaisarvo on 1. L A LM1, Kesä 2014 112/174
Matriisilla B kertominen peilaa vektorit pystyakselin suhteen. Tästä voidaan päätellä, että matriisin B ominaisvektoreita ovat vektorit muotoa t(1, 0), missä t R {0}, ja vastaava ominaisarvo on 1. matriisin B ominaisvektoreita ovat vektorit muotoa t(0, 1), missä t R {0}, ja vastaava ominaisarvo on 1. L B LM1, Kesä 2014 113/174
Matriisilla C kertominen kiertää vektoreita origon ympäri 90 vastapäivään eli positiiviseen kiertosuuntaan. Tästä voidaan päätellä, että matriisilla C ei ole ominaisvektoreita eikä ominaisarvoja. L C LM1, Kesä 2014 114/174
Karakteristinen polynomi Lause 9 Oletetaan, että A on n n -neliömatriisi. Reaaliluku λ on matriisin A ominaisarvo, jos ja vain jos det(a λi) = 0. Todistus. : Oletetaan, että λ R on matriisin A ominaisarvo. Tällöin on olemassa v R n \ { 0}, jolle pätee A v = λ v. Matriisien laskusääntöjen nojalla tätä yhtälöä voidaan muokata: A v = λ v A v = λi v A v λi v = 0 (A λi) v = 0. Vektori v on siis yhtälöä (A λi) x = 0 vastaavan homogeenisen yhtälöryhmän epätriviaali (eli nollasta poikkeava) ratkaisu. Siten matriisi A λi ei ole kääntyvä. Näin ollen det(a λi) = 0. LM1, Kesä 2014 115/174
: Oletetaan, että det(a λi) = 0 jollakin λ R. Tällöin matriisi A λi ei ole kääntyvä. Tästä seuraa, että yhtälöllä (A λi) x = 0 on epätriviaali ratkaisu. Olkoon tuo ratkaisu v. Nyt siis v 0. Koska (A λi) v = 0, saadaan matriisien laskusääntöjen avulla yhtälö A v = λ v kuten edellä. Siten λ on matriisin A ominaisarvo. LM1, Kesä 2014 116/174
Karakteristinen polynomi Määritelmä Oletetaan, että A on n n -neliömatriisi. Muuttujan λ polynomi, joka saadaan kirjoittamalla auki determinantti det(a λi), on nimeltään matriisin A karakteristinen poynomi. Esimerkki 28 Matriisin A = 1 2 karakteristinen polynomi on λ 3 2 2 3λ 4, sillä 1 λ 2 det(a λi) = = (1 λ)(2 λ) 6 3 2 λ = 2 λ 2λ + λ 2 6 = λ 2 3λ 4. LM1, Kesä 2014 117/174