Luento 12: Duaalitehtävä. Tarkennuksia Lagrangen kertoimen tulkintaan. Hajautettu optimointi. Konveksisuus Muista. + αd, α 0, on pisteessä R n alkava puolisuora, joka on vektorin d suuntainen. Samoin 2 + α( 1 2 ), α 0, on pisteestä 2 alkava, vektorin 1 2 suuntainen puolisuora. Määritelmiä Pisteiden 1 ja 2 välinen jana on joukko {α 1 + (1 α) 2 α [0, 1]}, jota lyhyesti merkitään α 1 + (1 α) 2, α [0, 1]. Huomaa, että α = 0 ja α = 1 vastaavat janan päätepisteitä 1 ja 2. R n :n joukko S on konveksi, jos 1, 2 S : α 1 + (1 α) 2 S α [0, 1] Kuvan 1 ensimmäinen joukko on konveksi ja toinen ei. 01 2 01 01 000 111 0000 1111 1 0000 1111 0000 1111 0000 1111 2 00 1101 1 01 Kuva 1: Konveksi ja ei-konveksi joukko. Olkoon S R n, S, konveksi ja f : S R. Funktio f on konveksi, jos 1, 2 S: f(α 1 + (1 α) 2 ) αf( 1 ) + (1 α)f( 2 ) α [0, 1] f : S R on konkaavi, jos f on konveksi. 1
f α f( 1 ) + (1 α) f( ) 2 f( α + (1 α) ) 1 2 1 2 α + (1 α) 1 2 Kuva 2: Konveksi funktio. Lagrangen duaalisuus geometrisesti S y p taso H Kuva 3: Lagrangen duaalisuus. Olkoon S R n suljettu ja konveksi joukko ja y / S. Pisteen y etäisyys joukosta S on luku γ > 0, γ := min y = y (1) S 2
Weierstrassin lauseesta seuraa, että minimoiva vektori S on aina olemassa. Lisäksi pätee: S on lausekkeen (1) minimoiva vektori (y ) T ( ) 0, S. Katsotaan sitten edellä olleen minimointitehtävän duaalitehtävää. Tutkitaan pisteiden ja y välistä kulkevia tasoja H. R 2 :ssa tällaisen tason yhtälö on muotoa p 1 1 + p 2 2 = α, missä p = [p 1, p 2 ] T on ko. tason, tässä tapauksessa suoran, normaali ja α sopiva luku. R n :ssä H := { R n p T = α}, missä p on kiinteä vektori ja α jokin luku. Lasketaan nyt y:n etäisyys y:n ja :n välisestä tasosta ja otetaan näistä luvuista maksimi. Tulos on tehtävän (1) kohdefunktion minimiarvo γ: y = ma {min y H on y:n ja :n välinen taso}. (2) H Huomaa. (2):ssa riittää tutkia vain niitä y:n ja :n välisiä tasoja, jotka tangeeraavat joukkoa S. Duaalitehtävä Olkoon alkuperäinen tehtävä, ns. primaali-tehtävä (P) muotoa: min f() s.t. g i () 0, 1 i m A = b X (P) missä X R n konveksi, ja g i :t konvekseja funktioita X R, ja A R l n, b R l vakioita. Määritellään nyt funktio φ : R m+l R seuraavasti: missä g = [g 1,...,g m ] T. φ(u, v) := min X {f() + ut g() + v T (A b)}, Annetulla (u, v) R m+l, φ(u, v) on tehtävän Lagrangen funktion minimiarvo, missä minimointi on yli X. Jos ajatellaan f():n esittävän hypoteettisen pisteen y (esim. f:n minimipiste X:n suhteen) etäisyyttä g:n, A:n ja b:n määrittelemästä käyvästä joukosta, huomataan pienen pohdinnan jälkeen analogia geometrisen duaalisuuden kanssa. Tehtävän (P) duaalitehtävä on: ma φ(u, v) s.t. u R m, v R l u 0 3
Lause φ(u, v) on konkaavi R m+l :ssä. Lause Oletetaan: ˆ siten, että g(ˆ) < 0 ja Aˆ= b, ja piste 0 R l on joukon {A b X} sisäpiste. Tällöin (a), min {f() g() 0, A b = 0, X} = ma {φ(u, v) u R m, v R l, u 0}. Olkoot, ja u, v vastaavat minimi- ja maksimipisteet. Tällöin (b) ja minimoi Lagrangen funktion u T g() = 0 L(, u, v) := f() + u T g() + v T (A b) yli X. (c), u, v toteuttaa tehtävän P KKT-ehdot. Esimerkki LP:n duaali P : min c T D : ma φ(v) s.t. A = b s.t. v R m 0 missä, nyt X = { R n 0}, φ(v) = min {c T + v T (A b) X} [ = min (c T + v T A) ] v T b X { v T b, c T + v T A 0 =, muulloin Joten duaalitehtävä D saa muodon ma ( v) T b s.t. A T ( v) c v R m (D) Tehtävän D ratkaisu antaan tehtävän P rajoitukseen A = b liittyvän Lagrangen kertoimen v. Luennosta 9 muistamme, että v esittää P:n kohdefunktion optimiarvon muutosta z resurssimäärän b muuttuessa. Jos nyt D:ssä määritellään uusi muuttuja y := v, päädytään luennon 4 duaalisuusformulointiin. 4
Resurssinjako, hajautettu optimointi, ja Arrowin hintakoordinointi Tutkitaan seuraavaksi erästä taloustieteessä keskeistä resurssinjakoon liittyvää optimointitehtävää, missä Lagrangen kerrointa sopivasti päivittämällä päädytään optimiin. Resurssinjako: Resurssi, määrä 0, on jaettava N:n agentin kesken s.e. agenttien kokonaishyöty maksimoituu. i:nnen agentin hyöty jaolle i on g i ( i ). Tehtävä on siis: N ma g i ( i ) s.t. i=1 N i = 0, i 0 i i=1 Ratkaisu. Jätetään ehto i 0 pois, koska se on asian kannalta epäoleellinen; osoittautuu, että i > 0 i, kun g i :t järkeviä hyötyfunktioita. Tehtävän välttämättömät ehdot ovat: { g i ( i ) = λ, 1 i N i = 0 Yllä on N+1 yhtälöä ja N+1 tuntematonta optimiratkaisun i, 1 i N, λ löytämiseksi. Oletetaan, että g i on aidosti kasvava i, joten g i ( i ) = λ > 0. Tutkitaan sitten tehtävää, missä resurssille on asetettu hinta p = λ ja kysytään, paljonko resurssia agentti i ottaa ko. hinnalla. Vastaus saadaan ratkaisemalla ma g i () p g i () = p Huomaa. Edellä on oletettu, että g i :t ovat myös konkaaveja funktioita, jolloin KKT-ehdot ovat myös riittäviä lokaalille optimille. Kenneth Arrow esitti 1950-luvulla Nobel-palkintoon johtaneet mikrotaloustieteen tasapainoteorian perusteesit seuraavasti: (a) Resurssilla on hinta p, joka tyhjentää markkinat; so. kysyntä = tarjonta. (b) Hintaa p vastaava jako johtaa agenttiporukan yhteisoptimiin, eli ns. sosiaaliseen optimiin. 5
Hajautettu optimointi Edellä olevan tehtävän tyyppisiä optimointitehtäviä voidaan ratkoa hajautetusti ns. koordinointimuuttujan p avulla seuraavan kaavion mukaisesti: KOORDINAATTORI: Paljonko resurssia otat, jos hinta on p (p) i paivita! 0 (p) i i p YKSIKKO 1: YKSIKKO i: YKSIKKO N:...... ma g () p i vastaus: (p) i Päivityskaava p:lle on esimerkiksi sekanttimenetelmä: [ ] 1 s(pk ) s(p k 1 ) p k+1 = p k s(p k ) p k p k 1 N s(p k ) := i (p k ) 0 i=1 Kun muistetaan, että p on λ on alkuperäisen tehtävän Lagrangen kerroin, yllä oleva päivityskaava on tehtävän Lagrangen kertoimen päivityskaava. Kyseessä olevaa menetelmää tämän tyyppisten tehtävien ratkaisemiseksi kutsutaan Lagrangen kertoimen relaksointimenetelmäksi. 6