Suora 1/5 Sisältö ESITIEDOT: vektori, koordinaatistot, piste



Samankaltaiset tiedostot
Taso 1/5 Sisältö ESITIEDOT: vektori, koordinaatistot, piste, suora

Suora. Hannu Lehto. Lahden Lyseon lukio

Ensimmäisen asteen polynomifunktio

Tekijä Pitkä matematiikka Suoran pisteitä ovat esimerkiksi ( 5, 2), ( 2,1), (1, 0), (4, 1) ja ( 11, 4).

Suorista ja tasoista LaMa 1 syksyllä 2009

3 Suorat ja tasot. 3.1 Suora. Tässä luvussa käsitellään avaruuksien R 2 ja R 3 suoria ja tasoja vektoreiden näkökulmasta.

Vektorit, suorat ja tasot

Juuri 4 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty Kertaus. b) B = (3, 0, 5) K2. ( )

Avaruuden kolme sellaista pistettä, jotka eivät sijaitse samalla suoralla, määräävät

Solmu 3/2001 Solmu 3/2001. Kevään 2001 ylioppilaskirjoitusten pitkän matematiikan kokeessa oli seuraava tehtävä:

Tekijä Pitkä matematiikka

Vanhoja koetehtäviä. Analyyttinen geometria 2016

VEKTORIT paikkavektori OA

4.1 Kaksi pistettä määrää suoran

Suorat ja tasot, L6. Suuntajana. Suora xy-tasossa. Suora xyzkoordinaatistossa. Taso xyzkoordinaatistossa. Tason koordinaattimuotoinen yhtälö.

Tekijä Pitkä matematiikka Poistetaan yhtälöparista muuttuja s ja ratkaistaan muuttuja r.

Suora. Määritelmä. Oletetaan, että n = 2 tai n = 3. Avaruuden R n suora on joukko. { p + t v t R},

y=-3x+2 y=2x-3 y=3x+2 x = = 6

TASON YHTÄLÖT. Tason esitystapoja ovat: vektoriyhtälö, parametriesitys (2 parametria), normaalimuotoinen yhtälö ja koordinaattiyhtälö.

Vektorialgebra 1/5 Sisältö ESITIEDOT: vektori

c) Määritä paraabelin yhtälö, kun tiedetään, että sen huippu on y-akselilla korkeudella 6 ja sen nollakohdat ovat x-akselin kohdissa x=-2 ja x=2.

origo III neljännes D

Koordinaatistot 1/6 Sisältö ESITIEDOT: reaaliluvut

Tekijä Pitkä matematiikka

Vektorien pistetulo on aina reaaliluku. Esimerkiksi vektorien v = (3, 2, 0) ja w = (1, 2, 3) pistetulo on

yleisessä muodossa x y ax by c 0. 6p

Geometriset avaruudet Pisteavaruus, vektoriavaruus ja koordinaattiavaruus

Lauseen erikoistapaus on ollut kevään 2001 ylioppilaskirjoitusten pitkän matematiikan kokeessa seuraavassa muodossa:

Tehtävien ratkaisut


Yleistä vektoreista GeoGebralla

Ota tämä paperi mukaan, merkkaa siihen omat vastauksesi ja tarkista oikeat vastaukset klo 11:30 jälkeen osoitteesta

x 5 15 x 25 10x 40 11x x y 36 y sijoitus jompaankumpaan yhtälöön : b)

5.3 Suoran ja toisen asteen käyrän yhteiset pisteet

BM20A5800 Funktiot, lineaarialgebra ja vektorit Harjoitus 4, Syksy 2016

Ratkaisut vuosien tehtäviin

GEOMETRIA MAA3 Geometrian perusobjekteja ja suureita

Yhteenlaskun ja skalaarilla kertomisen ominaisuuksia

Taso. Hannu Lehto. Lahden Lyseon lukio

Suorien ja tasojen geometriaa Suorien ja tasojen yhtälöt

Juuri 4 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty Kertaus. b) B = (3, 0, 5) K2. 8 ( 1)

Tekijä Pitkä matematiikka b) Kuvasta nähdään, että b = i 4 j. c) Käytetään a- ja b-kohtien tuloksia ja muokataan lauseketta.

Insinöörimatematiikka D

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

Pyramidi 4 Analyyttinen geometria tehtävien ratkaisut sivu 180 Päivitetty Pyramidi 4 Luku Ensimmäinen julkaistu versio

A-osio. Tehdään ilman laskinta ja taulukkokirjaa! Valitse tehtävistä A1-A3 kaksi ja vastaa niihin. Maksimissaan tunti aikaa suorittaa A-osiota.

Laudatur 4 MAA4 ratkaisut kertausharjoituksiin

Preliminäärikoe Tehtävät Pitkä matematiikka / 3

1.2 Kulma. Kulmien luokittelua. Paralleeliaksiooma

Tekijä Pitkä matematiikka Pisteen (x, y) etäisyys pisteestä (0, 2) on ( x 0) Pisteen (x, y) etäisyys x-akselista, eli suorasta y = 0 on y.

Paraabeli suuntaisia suoria.

Lineaarialgebra MATH.1040 / voima

9. Vektorit. 9.1 Skalaarit ja vektorit. 9.2 Vektorit tasossa

Vektoreiden A = (A1, A 2, A 3 ) ja B = (B1, B 2, B 3 ) pistetulo on. Edellisestä seuraa

Insinöörimatematiikka D, laskuharjoituksien esimerkkiratkaisut

MATEMATIIKAN PERUSKURSSI I Harjoitustehtäviä syksy Millä reaaliluvun x arvoilla. 3 4 x 2,

Suoran yhtälöt. Suoran ratkaistu ja yleinen muoto: Suoran yhtälö ratkaistussa, eli eksplisiittisessä muodossa, on

1.1 Vektorit. MS-A0007 Matriisilaskenta. 1.1 Vektorit. 1.1 Vektorit. Reaalinen n-ulotteinen avaruus on joukko. x 1. R n. 1. Vektorit ja kompleksiluvut

3 Skalaari ja vektori

1. Olkoot vektorit a, b ja c seuraavasti määritelty: a) Määritä vektori. sekä laske sen pituus.

Ympyrä 1/6 Sisältö ESITIEDOT: käyrä, kulma, piste, suora

Epäeuklidista geometriaa

3 TOISEN ASTEEN POLYNOMIFUNKTIO

Kaikkiin tehtäviin ratkaisujen välivaiheet näkyviin! Lue tehtävänannot huolellisesti. Tee pisteytysruudukko B-osion konseptin yläreunaan!

Ympyrän yhtälö

Anna jokaisen kohdan vastaus kolmen merkitsevän numeron tarkkuudella muodossa

Ristitulolle saadaan toinen muistisääntö determinantin avulla. Vektoreiden v ja w ristitulo saadaan laskemalla determinantti

Tekijä Pitkä matematiikka On osoitettava, että jana DE sivun AB kanssa yhdensuuntainen ja sen pituus on 4 5

Maksimit ja minimit 1/5 Sisältö ESITIEDOT: reaalifunktiot, derivaatta

l 1 2l + 1, c) 100 l=0 AB 3AC ja AB AC sekä vektoreiden AB ja

Pyramidi 4 Analyyttinen geometria tehtävien ratkaisut sivu 352 Päivitetty Pyramidi 4 Luku Ensimmäinen julkaistu versio

l 1 2l + 1, c) 100 l=0

Hilbertin aksioomat ja tarvittavat määritelmät Tiivistelmä Geometria-luentomonisteesta Heikki Pitkänen

Vapaus. Määritelmä. Vektorijono ( v 1, v 2,..., v k ) on vapaa eli lineaarisesti riippumaton, jos seuraava ehto pätee:

MAA15 Vektorilaskennan jatkokurssi, tehtävämoniste

Kahden suoran leikkauspiste ja välinen kulma (suoraparvia)

1 2 x2 + 1 dx. (2p) x + 2dx. Kummankin integraalin laskeminen oikein (vastaukset 12 ja 20 ) antaa erikseen (2p) (integraalifunktiot

1 Ensimmäisen asteen polynomifunktio

2.7 Neliöjuuriyhtälö ja -epäyhtälö

MAB3 - Harjoitustehtävien ratkaisut:

102 Käyrä. Piste ( 3,0 ) on käyrällä, jos ja vain jos sen koordinaatit. Siis piste ( 1, 2) Siis piste ( 3,0 ) ei ole käyrällä.

MAB3 - Harjoitustehtävien ratkaisut:

Kertausosa. 5. Merkitään sädettä kirjaimella r. Kaaren pituus on tällöin r a) sin = 0, , c) tan = 0,

Osoita, että kaikki paraabelit ovat yhdenmuotoisia etsimällä skaalauskuvaus, joka vie paraabelin y = ax 2 paraabelille y = bx 2. VASTAUS: , b = 2 2

Yhtälön oikealla puolella on säteen neliö, joten r. = 5 eli r = ± 5. Koska säde on positiivinen, niin r = 5.

Vapaus. Määritelmä. jos c 1 v 1 + c 2 v c k v k = 0 joillakin c 1,..., c k R, niin c 1 = 0, c 2 = 0,..., c k = 0.

Tekijä Pitkä matematiikka a) Ratkaistaan nimittäjien nollakohdat. ja x = 0. x 1= Funktion f määrittelyehto on x 1 ja x 0.

3.3 Paraabeli toisen asteen polynomifunktion kuvaajana. Toisen asteen epäyhtälö

HARJOITUSTEHTÄVIÄ. Millä vektorin c arvoilla voidaan vektoreita a + b, a + c ja b +2 c siirtelemällä muodostaa kolmio?

Diplomi-insinööri- ja arkkitehtikoulutuksen yhteisvalinta 2017 Insinöörivalinnan matematiikan koe , Ratkaisut (Sarja A)

Juuri Kertaus Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty

Juuri 6 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty Vastaus: Määrittelyehto on x 1 ja nollakohta x = 1.

Tampereen yliopisto Tietokonegrafiikka 2013 Tietojenkäsittelytiede Harjoitus

Transkriptio:

Suora 1/5 Sisältö KATSO MYÖS:, vektorialgebra, geometriset probleemat, taso Suora geometrisena peruskäsitteenä Pisteen ohella suora on geometrinen peruskäsite, jota varsinaisesti ei määritellä. Alkeisgeometriassa voidaan suoraa havainnollistaa viivoittimen reunalla, taitetun paperiarkin taittosärmällä, valonsäteellä jne. Suora ulottuu kummassakin suunnassa äärettömyyteen ja on suora intuitiivisen mielikuvan mukaisesti. Tällaiset mielikuvat eivät kuitenkaan kelpaa logiikkaan pohjautuviksi määritelmiksi. Geometrian historia myös osoittaa, että vasta suoran käsitteen täsmentäminen ratkaisi vuosisatojen ajan avoimina olleet ongelmat. Tavanomaisessa alkeisgeometriassa sekä taso- että avaruusgeometriassa suoria voidaan käsitellä intuitiivisen mielikuvan pohjalta. Tavanomaiseen alkeisgeometriaan viitataan myös puhumalla euklidisesta geometriasta; perusjoukko, johon pisteet ja suorat sijoitetaan, on joko euklidinen taso tai euklidinen avaruus. Suoria merkitään yleensä pienillä latinalaisilla kirjaimilla: s, t,jne. Suorien perusominaisuuksia ovat seuraavat: piste logiikka (euklidinen) (euklidinen) Kahden erillisen pisteen kautta voidaan asettaa täsmälleen yksi suora. Suoran ulkopuolella olevan pisteen kautta voidaan asettaa täsmälleen yksi sen suuntainen suora. (Paralleeliaksiooma) Tason kaksi suoraa joko leikkaavat yhdessä pisteessä, ovat yhdensuuntaiset tai yhtyvät. paralleeliaksiooma paralleeliaksiooma Avaruuden kaksi suoraa joko leikkaavat yhdessä pisteessä, ovat yhdensuuntaiset, yhtyvät tai ovat ristikkäiset (esimerkiksi -akseli ja y-akselin suuntainen suora, jonka pisteiden z-koordinaatti on =1). Jos A ja B ovat kaksi suoran s pistettä, näiden välinen suoran osa on jana AB. Suoralla s oleva piste P jakaa suoran kahteen osaan; kumpaakin näistä kutsutaan puolisuoraksi tai säteeksi.

Suora 2/5 Sisältö KATSO MYÖS:, vektorialgebra, geometriset probleemat, taso Suoran vektoriesitys Olkoon annettuna kaksi tason tai avaruuden pistettä paikkavektoreidensa avulla: P 1 = r 1, P 2 = r 2. Nämä määräävät yksikäsitteisesti suoran s. Vektori s = r 2 r 1 on suoran s suuntainen; sitä kutsutaan suoran suuntavektoriksi. Jos P = r on mikä tahansa suoran s piste, sen paikkavektori voidaan kirjoittaa muotoon r = r 1 + a s, kun skalaari a valitaan sopivasti. Toisaalta jos a on mikä tahansa reaaliluku, antaa eo. lauseke aina jonkin suoralla s olevan pisteen paikkavektorin. P 1 s vektori paikkavektori skalaari O r 1 r P s Tämän johdosta sanotaankin, että r = r 1 + a s, a R, on suoran s vektoriesitys. Luku a on parametri, jota vaihtelemalla saadaan kaikki suoran pisteet. Suuntavektori s ei ole yksikäsitteinen, vaan mikä tahansa suoran suuntainen vektori kelpaa. Myöskään paikkavektori r 1 ei ole yksikäsitteinen. Tämä merkitsee, että samalle suoralle saadaan useita erilaisia vektoriesityksiä. Suorien vektoriesitykset mahdollistavat vektorialgebran käytön geometrian menetelmänä. (vektori-)

Suora 3/5 Sisältö KATSO MYÖS:, vektorialgebra, geometriset probleemat, taso Suoran yhtälö Olkoon tasossa piste P 0 = r 0 suoran s piste ja olkoon n suoraa vastaan kohtisuora vektori, ns. normaalivektori. Jotta piste P = r olisi suoralla, on vektoreiden n ja r r 0 ilmeisestikin oltava toisiaan vastaan kohtisuorat, ts. niiden skalaaritulon n (r r 0 ) on oltava =0. vektori skalaaritulo n O r 0 r s Kun merkitään r = i + y j, r 0 = 0 i + y 0 j, n = a i + b j, saa ehto muodon n (r r 0 )=a( 0 )+b(y y 0 )=0 eli a + by + c =0, missä on merkitty c = a 0 by 0. Tätä sanotaan suoran yhtälöksi yssa. Huomattakoon, että koordinaattien ja y kertoimina ovat normaalivektorin komponentit. Piste (, y) on siis suoralla, jos ja vain jos ehto a + by + c =0toteutuu. Kolmiulotteisessa euklidisessa avaruudessa ei vastaavalla tavalla voida muodostaa yhtälöä suoralle, vaan analoginen tarkastelu johtaa tason yhtälöön. Suoraa voidaan tällöin käsitellä kahden tason leikkauskuviona, jolloin se esitetään kahdella tason yhtälöllä. Yhtälöiden käyttö suorien esittämiseen johtaa ns. analyyttiseen geometriaan, jossa geometrisia ongelmia ratkaistaan algebran menetelmillä. (y-) komponentti taso (yhtälö) (analyyttinen)

Suora 4/5 Sisältö KATSO MYÖS:, vektorialgebra, geometriset probleemat, taso Suoran kulmakerroin Tarkastellaan suoran yhtälöä a + by + c =0tavallisessa y-tasossa. Jos b 0, tästä voidaan ratkaista y: (y-) y = a b c b. Muuttujan kerroin a/b on suoran kulmakerroin, joka kuvaa sen kaltevuutta. Vakiotermi c/b osoittaa, missä pisteessä suora leikkaa y-akselin. Jos b =0, on suoran yhtälö a + c =0eli = c/a. Tällöin se on y-akselin suuntainen. Tällaisen suoran yhtälöä ei voida ratkaista y:n suhteen, so. saattaa muotoon y = k + p. Suoran ja -akselin positiivisen suunnan välistä kulmaa α kutsutaan suoran suuntakulmaksi. Tämä valitaan aina väliltä ] 90, 90 ].Arvo90 vastaa y-akselin suuntaista suoraa. Jos suoran yhtälössä y = k + p asetetaan =0, ony =p; vastaavasti jos =1, niin y = k + p. Alla olevan kuvion perusteella on tällöin k =tanα,ts. kulmakerroin on suuntakulman tangentti. Jos suora on nouseva, kulmakerroin on positiivinen; laskevalla suoralla se on negatiivinen. y väli (reaaliakselin) tangentti (trigonometrinen) (0,p) α (1,k+p)

Suora 5/5 Sisältö KATSO MYÖS:, vektorialgebra, geometriset probleemat, taso Kulmakertoimen laskeminen Pisteiden ( 1,y 1 )ja ( 2,y 2 )kautta kulkevan suoran kulmakerroin k saadaan laskemalla suuntakulman tangentti oheisen kuvion mukaisesti: k = y 2 y 1 2 1. (y-) tangentti (trigonometrinen) y ( 2,y 2 ) ( 1,y 1 ) 2 1 y 2 y 1 Koska lisäksi esimerkiksi pisteen ( 1,y 1 ) koordinaattien tulee toteuttaa suoran yhtälö, saadaan yhtälöksi y y 1 = y 2 y 1 2 1 ( 1 ). Kahden kohtisuoran suoran kulmakertoimille pätee k = u/v ja k = v/u, jolloin niiden tulo on kk = 1. Tämä nähdään helpoimmin oheisen kuvion avulla. y u v v u