Akustointiratkaisujen vaikutus taajuusvasteeseen



Samankaltaiset tiedostot
6. Äänitasomittauksia Fysiikka IIZF2020

Yleistä äänestä. Ääni aaltoliikkeenä. (lähde

2.1 Ääni aaltoliikkeenä

Mitä tulisi huomioida ääntä vaimentavia kalusteita valittaessa?

Mono- ja stereoääni Stereoääni

Johdanto tieto- viestintäteknologian käyttöön: Äänitystekniikka. Vfo135 ja Vfp124 Martti Vainio

LUT CS20A0650 Meluntorjunta 1. Tsunamin synty LUT CS20A0650 Meluntorjunta

16 Ääni ja kuuleminen

Kaiuttimet. Äänentoisto. Klas Granqvist Akun Tehdas / Oy Aku s Factory Ltd

FYS03: Aaltoliike. kurssin muistiinpanot. Rami Nuotio

M2A Suomenkielinen käyttöohje.

Suomenkielinen käyttöohje


Digitaalinen signaalinkäsittely Desibeliasteikko, suotimen suunnittelu

Mekaniikan jatkokurssi Fys102

Koesuunnitelma. Tuntemattoman kappaleen materiaalin määritys. Kon c3004 Kone ja rakennustekniikan laboratoriotyöt. Janne Mattila.

Mikrofonien toimintaperiaatteet. Tampereen musiikkiakatemia Studioäänittäminen Klas Granqvist

3 Ääni ja kuulo. Ihmiskorva aistii paineen vaihteluita, joten yleensä äänestä puhuttaessa määritellään ääniaalto paineen vaihteluiden kautta.

YLEISIMMÄT MIKROFONITYYPIT

KON C H03 Ryhmä G Samppa Salmi, 84431S Joel Tolonen, Koesuunnitelma

Äänen eteneminen ja heijastuminen

aktiivikaiuttimet Profel Nuovo Gamba aktiivinen High End subwoofer vallankumouksellisella bassoäänen automaattisella huonetilasäädöllä

Koesuunnitelma Alumiinin lämpölaajenemiskertoimen määrittäminen

Akustiikka ja toiminta

havainnollistaa Dopplerin ilmiötä ja interferenssin aiheuttamaa huojuntailmiötä

ILMANVAIHTOLAITOKSEN ÄÄNITEKNIIKKAA

M2A Suomenkielinen käyttöohje.

Tv-äänisuunnittelu. Antti Silvennoinen Tel

Aktiivinen jakosuodin Linkwitz-korjauksella

Koesuunnitelma Kimmokertoimien todentaminen

Petri Hänninen YLIVIESKATALO AKUSTIIKAN STUDION AKUSTINEN ARVIOINTI

Aaltoliike ajan suhteen:

Digitaalinen audio

Richter. POHDIN projekti

U-REMIX USB RF 2 RF 1 POWER

8000 Series. Käyttöohje Genelec 8040A- ja 8050Aaktiivikaiuttimet

SIIRTOMATRIISIN JA ÄÄNENERISTÄVYYDEN MITTAUS 1 JOHDANTO. Heikki Isomoisio 1, Jukka Tanttari 1, Esa Nousiainen 2, Ville Veijanen 2

Luento 15: Ääniaallot, osa 2


Pilkku merkitsee, että kysymyksessä on rakennusmittaus (in situ) R W (db) vaaka/pysty. L n,w (db) Rakennus

M2A Suomenkielinen käyttöohje.

1. Perusteita Äänen fysiikkaa. Ääniaalto. Aallonpituus ja amplitudi. Taajuus (frequency) Äänen nopeus

Yleistä. Digitaalisen äänenkäsittelyn perusteet. Tentit. Kurssin hyväksytty suoritus = Harjoitustyö 2(2) Harjoitustyö 1(2)

Kuuloaisti. Korva ja ääni. Melu

3. AUDIOTEKNIIKAN PERUSTEITA

Onnittelemme sinua Gradient Evidence -kaiuttimien valinnasta. Edessäsi on suomalainen huippukaiutin, pitkällisen kehitystyön ja kokemuksen

Projektisuunnitelma ja johdanto AS Automaatio- ja systeemitekniikan projektityöt Paula Sirén

Elektroniikan perusteet, Radioamatööritutkintokoulutus

AMPUMAMELUN TUTKIMUKSIA. Timo Markula 1, Tapio Lahti 2. Kornetintie 4A, Helsinki

Pinces AC-virtapihti ampèremetriques pour courant AC

SGN-4200 Digitaalinen audio

Esimerkki - Näkymätön kuu

THE audio feature: MFCC. Mel Frequency Cepstral Coefficients

HARJOITUSTYÖ: Mikropunnitus kvartsikideanturilla

HRTFN MITTAAMINEN SULJETULLA VAI AVOIMELLA KORVA- KÄYTÄVÄLLÄ? 1 JOHDANTO 2 METODIT

TRUTH B2030A/B2031A. Lyhyt käyttöopas. v

, tulee. Käyttämällä identiteettiä

Tapio Lokki, Sakari Tervo, Jukka Pätynen ja Antti Kuusinen Aalto-yliopisto, Mediatekniikan laitos PL 15500, AALTO

Pinces AC/DC-virtapihti ampèremetriques pour courant AC

CASE: KITARAVAHVISTIMEN AB-LUOKAN TEHOVAHVISTIMEN PÄIVITTÄMINEN D-LUOKKAAN

Suomenkielinen käyttöohje

Kokonaisuus 11: Ääni Kirjallinen esitys

FYSP105/2 VAIHTOVIRTAKOMPONENTIT. 1 Johdanto. 2 Teoreettista taustaa

Maks. sähköteho (kw) Suurin virtausnopeus (m 3 /t)

Ihmiskorva havaitsee ääniaallot taajuusvälillä 20 Hz 20 khz.

Metra ERW 700. Energialaskuri

Elektroniikan perusteet, Radioamatööritutkintokoulutus

3.1 PITKITTÄISEN AALLON NOPEUS JA ENERGIA

2 arvo muuttujan arvolla

Mekaniikan jatkokurssi Fys102

Ilmanvaihdon äänitekniikan opas

aktiivikaiuttimet Profel Nuovo Gamba aktiivinen High End subwoofer vallankumouksellisella bassoäänen automaattisella huonetilasäädöllä

Tiedonkeruu ja analysointi

Genelecaktiivikaiuttimet. kotikäyttöön

2.2 Ääni aaltoliikkeenä

Kuulohavainnon perusteet

Äänitiedostoista. 1 Äänen tallentaminen

S Elektroniikan häiriökysymykset. Laboratoriotyö, kevät 2010

OPERAATIOVAHVISTIN. Oulun seudun ammattikorkeakoulu Tekniikan yksikkö. Elektroniikan laboratoriotyö. Työryhmä Selostuksen kirjoitti

Infraäänimittaukset. DI Antti Aunio, Aunio Group Oy

EMC Säteilevä häiriö

HARJOITUS 7 SEISOVAT AALLOT TAVOITE

Linjasäteilijöiden käyttäminen kitarakaiuttimissa Using line arrays in guitar speakers

MITEN ÄÄNTÄVAIMENTAVAT AKUSTIIKKALEVYT TEKEVÄT PORRASKÄYTÄVÄSTÄ PAREMMAN KUULOISEN.

a s k e l ä ä n i e r i s t e

LOPPURAPORTTI Lämpötilahälytin Hans Baumgartner xxxxxxx nimi nimi

Aktiivinen meluntorjunta ulkotiloissa

Pinces AC-virtapihdit ampèremetriques pour courant AC

R = Ω. Jännite R:n yli suhteessa sisäänmenojännitteeseen on tällöin jännitteenjako = 1

BOOST-100 MASTER V OLUME MIC V OLUME POWER TREBLE BALANCE BASS SUOMI

Väliraportti: Vesipistekohtainen veden kulutuksen seuranta, syksy Mikko Kyllönen Matti Marttinen Vili Tuomisaari

Luento 14: Ääniaallot ja kuulo

LIITE 1 VIRHEEN ARVIOINNISTA

Harjoitustyö 1. Signaaliprosessorit Sivu 1 / 11 Vähämartti Pasi & Pihlainen Tommi. Kaistanestosuodin, estä 2 khz. Amplitudi. 2 khz.

TUULIVOIMALAMELU. Tuulivoimalan tavoiteseminaari Denis Siponen Teknologian tutkimuskeskus VTT

RAPORTTI ISOVERIN ERISTEIDEN RADIOTAAJUISTEN SIGNAALIEN VAIMENNUKSISTA

Jännite, virran voimakkuus ja teho

Luento 14: Ääniaallot ja kuulo

AV-muotojen migraatiotyöpaja - ääni. KDK-pitkäaikaissäilytys seminaari / Juha Lehtonen

Transkriptio:

AALTO-YLIOPISTO Insinööritieteidenkorkeakoulu Kon-41.4005Kokeellisetmenetelmät Akustointiratkaisujen vaikutus taajuusvasteeseen Koesuunnitelma Ryhmätyö TimoHämäläinen MikkoKalliomäki VilleKallis AriKoskinen DaiTrinh Palautuspäivämäärä:17.02.2014

Sisällysluettelo 1. JOHDANTO...1 2. AKUSTIIKKA...1 2.1. SULJETUNTILANAKUSTIIKKA...4 3. TOTEUTUS...6 3.1. MITTAUSMENETELMÄT...6 3.2 KOEJÄRJESTELY... 3.2. MITTALAITTEISTO...7 4. AIKATAULU...9 5. TURVALLISUUSSUUNNITELMA...10 6. VIRHETARKASTELU...10 LÄHTEET...12

1. Johdanto Kunmusiikkiakuunnellaankotistereoistaolohuoneessa,ontälläkuuntelutilalla merkittävä vaikutus kuuntelukokemukseen. Normaalitilanteessa korva vastaanottaasekäsuoria,ettäheijastuneitaääniaaltoja.suoranääniaallotovatlähimpänä sitä informaatiota, mikä alkuperäisessä tallenteessa on. Heijastuneet ääniaallot taas kulkevat erirajapintojenkauttajavaimenevatnäidenominaisuuksienmukaisesti,kunneslopultasaapuvatviiveelläkorvaan.tämäviiveelläkorvaantullut äänikoetaanjälkikaikuna.tilanteestariippuenvoijälkikaikuollapositiivinenilmiö.liiallinenjälkikaikuonkuitenkinepäsuotuisatilanne,silläihmisenaivojen on mahdotonta paikallistaa ääniä enää ja äänen erottelevuus, dynamiikka ym. ominaisuudetkärsivät. 2. Akustiikka Onolemassasuosituksia erijälkikaiunta-ajalleeritiloissaja käyttöolosuhteissa. Tässätutkimuksessaemmekuitenkaankeskityhuoneenakustiikkaan,vaantutkimmeerimateriaalienkykyävaimentaaeritaajuusalueillatapahtuvaaäänenvärähtelyä.Ajatuson,ettätämänperusteellasaadaanvoimakkaastikaikuvaahuonettakäsiteltyäsiihensuuntaan,jossakuuntelukokemusonselkeämpi,dynaamisempi,erottelevampijasyntynytäänikenttäehyt. Äänionväliaineenpitkittäistätaipoikittaistaaaltoliikettä.Väliainevoiollakiinteässä, nestemäisessä tai kaasumaisessa olomuodossa. Ääniaaltojen nopeuteen vaikuttavat väliaineen massa ja elastisuus. Kiinteillä aineilla jäykkyyttä kuvaa kimmokerroin; ilmassa kimmokerrointa vastaava arvo saadaan paineen ja adiabaattisen kaasulain kertoimen tulona. Ilmassa liikkuvan ääniaallon tapauksessalämmönsiirtymistäeitarvitseottaahuomioon,koskaääniliikkuuniinnopeasti,ettälämpöeiehdisiirtyäaaltoliikkeensynnyttämienpaine-erojenvälillä. Äänennopeudellekaasussavoidaanjohtaakaava: = (1) Kaavaosoittaa,ettääänennopeuskuitenkinriippuuympäristönlämpötilastaja moolimassasta, johon puolestaan vaikuttaa ilmankosteus. Ympäristön paine ei vaikuta äänennopeuteen kaasussa. Lämpötilan kasvaessa myös äänennopeus kasvaa, ilmankosteuden kasvaessa moolimassa kasvaa ja äänennopeus puolestaanpienenee.[2,s.1-7.] Ääntämitattaessaoleellisiasuureitaovatteho,intensiteettijaäänenpaine.Intensiteettikuvaaenergiavirtaapinta-alanläpi.Äänenpainettakäytetäänäänenmittarina,koskaihmistenkuuloelimetovatherkkiäpaineelle.Sitäonmyöshelpompi mitatakuinintensiteettiä.impedanssinjamitatunäänenpaineenavullavoidaan laskeaintensiteetti.impedanssionääniaallonpainekomponentinjanopeuskomponentinamplitudiensuhde.painejaintensiteettiovatyhtäsuuria,josmitataan yhtäääniaaltoa.useammanääniaallonesimerkiksialkuperäisenääniaallonheijastusten vaikuttaessa paine ja intensiteetti saavat eri arvot. Kaikkia suureita

mitataandesibeleinäjohonkinkontrolliarvoonverrattuna,esimerkiksi20µpa.[2, s.14-18.] Josäänisaaedetävapaastiäänilähteestä,äänenintensiteettipieneneeetäisyyden neliönä,koskapinta-ala,jolletehojakautuu,kasvaaetäisyydenlisääntyessä[1,s. 9].Mittauksiatehtäessääänilähteenjamittalaitteenetäisyydelläonsiismerkittävävaikutusmittaustuloksiin.[2,s.14-18.] Kuva1.Äänenintensiteetinheikkeneminenetäisyydenneliönä[1,s.9]. Koskaäänenpainejaäänentaajuusvaikuttavatäänenvoimakkuudenaistimiseen, senmittaaminenonongelmallista.mittalaitteenonkinannettavaarvioitujatuloksia, jotka saavutetaan painottamalla eri absoluuttisen äänenpaineen taajuuksia. Riippuenäänenpaineestakäytetäänkuvassaesitettyjäerilaisiapainotuskäyriä eli -suotimia. Jotta tulokset olisivat tarkoituksenmukaisia, mittauksissa tulee varmistaa,ettäääniaallostamitataanvähintäänyksijakso.mittajaksoavoisäätää mittalaitteissasiten,ettälyhyellävasteellasaadaantietoapienistääänenvoimakkuudenvaihteluistajapitkällävasteellakeskiarvotettutulos.[2,s.85-86.]

Kuva2.Äänenvoimakkuudenmittauksessakäytettäviäpainotuskäyriä[1,s.39]. Kuva3.Ihmisenkuuloaluejaäänenvoimakkuuseritaajuuksilla[1,s.51] Ihmisten kykyä aistia ääniä koskevaa tutkimusta kutsutaan psykoakustiikaksi, jokaonakustiikkaanverrattunasubjektiivistajatäysinkokeellistatutkimusta[2, s. 65-66]. Ihmisen kuuloalue ulottuu keskimäärin 20 Hz:stä 20 000 Hz:n. 20:n ikävuodenjälkeenylärajaontippunut16000hz:njalaskeesiitäaina000hz:n astiihmiseneliniänaikana.kutenkuvastavoidaannähdä,korkeattaajuudetvoi kuullapienemmällääänenpaineellakuinmatalatäänet.pieninkuultavissaoleva äänenpaineon10-5 Pajakipukynnyson64Pa:nkohdalla.Semitenvoimakkaana ääniaistitaan,onvaikeastimitattavasubjektiivinensuure,eikäriipupelkästään ääniaallonamplitudista.eritaajuksiset,muttaäänenpaineeltaanyhteneväisetääniaallot,aistitaanvoimakkuudeltaaneriävinä.tämäominaisuusonesitettykuvan

voimakkuuskäyrinä. Yli 000 Hz:n kohdalla käyrä aloittaa aaltomaisen liikkeen,jokajohtuukorvakäytävässäominaisvärähtelytaajuudesta.[2,s.79-83.] Ihmisenkuuloaistinerottelukykyonkeskimäärinnoin12.5Hzeli,joskahdeneri ääniaallon taajuuksien ero on alle tämän, ei ihminen kykene erottamaan ääniä toisistaan[2,s.71-75].ihmisenkuuloelimetaistivatheijastuneetääniaallotalkuperäistäääniaaltoavahvistavana,josniidenvaihe-eroonalle30ms.sitäsuurempivaihe-eroaistitaankaikuna.tätenonpäädytty20ms:nihanteelliseenmaksimiviiveeseen.[2,s.105.] 2.1. Suljetun tilan akustiikka Useinäänilähteitävoiollauseampiataiäänilähdeeiolevapaassatilassa,jolloin äänieikäyttäydyyksinkertaisillakaavoillaennustettavallatavalla.josääniaaltojentehoonsamaesimerkiksi,kunsamaasignaaliasoitetaankahdestakaiuttimestataiääniaaltoheijastuujayhdistyyviereiseenaaltoonpaineetsummautuvat.josääniaallotovatsamassavaiheessa,äänenpainetuplaantuu,josääniaallot ovatvastakkaisissavaiheissa,äänenpaineetkumoavattoisensa.josääniaaltoheijastuuuseitakertojajayhdistyyheijastumattomaanaaltoon,ääniaallotpoikkeavattoisistaanintensiteetiltään,amplitudiltaanjaaallonpituudeltaan,jolloinsyntyväsumma-aaltoonvääristynytversioäänilähteensynnyttämästäaallosta.[2,s. 20.] Kaikuna tunnettu äänten heijastuminen on kuuntelukokemuksen kannalta jossainmäärintoivottua,muttaaiheuttaauseinongelmia Suljetussatilassaääniheijastuutasaisistapinnoista,siroaaepätasaisistapinnoista ja osittain absorboituu pintamateriaaleihin. Heijastuneet ääniaallot aistitaan viiveestä riippuen alkuperäisten ääniaaltojen lisääntyneenä voimakkuutena ja kaikuna. Pintojen muodolla ja materiaaliominaisuuksilla voidaan vaikuttaa heijastumisen ja absorbtion suhteeseen ja siten saavuttaa toivottu kuuntelukokemus.[2,s.247-250.] Eri materiaaleille on määritetty absorptiokertoimia, jotka määrittävät kuinka suuriosaäänienergiastaabsorpoituumateriaaliinjakuinkasuuriosaheijastuu takaisin tai läpäisee materiaalin. Kertoimet vaihtelevat eri äänentaajuuksilla. Korkeataajuuksinen,ylikHz,äänienergiaabsorboituuumyösilmaan.Erityisesti ilmankosteusjapienetpartikkelitvaikuttavatilmanabsorptiokykyyn.näitätaajuuksiamitattaessaonkinerityisentärkeäätietäämuutoksetilmankoostumuksessa.[2,s.287-288.] Äänenabsorptiomateriaalitvoidaanjakaakahteenperustyyppiin:huokoisetvaimentajatjaresonoivatvaimentajat.Huokoisillavaimentajilla,esimerkiksimatoilla,verhoillataimuillapehmeillämateriaaleilla,vaimentumismekanismionkitka, johon vaikuttavat nopeuskomponentti ja vaimentavan materiaalin pinta. Koska kitka riippuu nopeuskomponentista, vaimentimen sijoittelu suljetussa tilassa mahdollisestiolevaankovaanpintaannähdensekävaimentimenpaksuusvaikuttavat voimakkaasti absorptiokykyyn. Nopeuskomponentti lähestyy nollaa voimakkaastiheijastavaapintaalähestyttäessä.nopeuskomponenttisaamaksimiarvonneljäsosa-aallonpituudenpäässäpinnasta elitehokasvaimennintuleesijoitellataimitoittaasiten,ettäjotainaallonpituuttatehokkaastivaimentavaamateriaaliaonoltavasopivallaetäisyydelläheijastavastaseinästä.kitkanarvokasvaa pinta-alansekääänentaajuudenfunktiona,jotenmatalientaajuuksienvaimenta-

miseenvaaditaanlaajapinta-alaja sopivaetäisyysheijastavasta seinästätaieri mekanismillatoimivavaimennin.[2,s.305-307.] Resonoiva vaimennin muuntaa äänienergian painekomponenttia resonoivan elementinvärähtelynäilmeneväksikineettiseksienergiaksisekälämpöenergiaksi. Tyypillisessä, kuvassa esitetyssä, rakenteessa resonoiva paneeli asetetaan sopivalleetäisyydellekiinteästäpinnastasiten,ettäelementtivoivärähdellävapaasti.tehokkaastivaimentuvaäänentaajuusriippuuresonoivanelementinmassastasekätaaksejäävästäilmavälistä.erimekanismeintoimiviavaimentimiayhdistelemälläsaadaanaikaanlaajallaaallonpituusalueellatoimivavaimennin.[2,s. 307-308.] KuvaTyypillinenresonoivavaimennin[1,s.209). Resonoivan ohuen paneelin ominaistaajuudelle voidaan laskea likiarvo seuraavallakaavalla,jossaonpaneelinneliömassajaonilmaväli[2,s.308].: = (2)

3. Toteutus 3.1. Mittausmenetelmät Koejärjestelyntavoitteenaontutkiaerieristemateriaalienäänenvaimennusominaisuuksiaeritaajuusalueilla.Mitattavasuurekoejärjestelyssäonäänenpainetaso.Äänenpaineonääniaallonaiheuttamahetkellinenpaineenvaihtelustaattiseen paineensuhteen.äänenpainetasoonäänenpaineentehollisarvonjavertailupaineensuhteenneliönkymmenkertainenlogaritmikahdellakymmenelläkerrottuna. Äänen painetason yhtälö on esitetty kaavassa (3) ja sen yksikkö on äänenpainedesibelidb. = 20lg( ) (3) Äänenintensiteetillämääritelläänääniaallonkuljettamantehonpinta-alaakohti. SenyksikköonW/m 2 Pienin intensiteetti, jonka ihmiskorva kykenee havaitsemaan on2,5 10 W/m 2 Korvan havaitsemalla äänen intensiteetillä ei ole ylärajaa,muttaw/m 2 ylittävänäänenintensiteettialkaatuottaakipuaistimuksiakorvassa.intensiteettitasomääritelläänvertaamallamitattavanäänenintensiteettiästandardinmäärittämäänreferenssitasoonnähden.intensiteettitasonlaskukaava on esitettyä kaavassa (4). Koska ilmassa etenevän ääniaallon lähteenä on yleensä pistelähde, muodostuu aallosta palloaalto. Äänen energia jakautuu näinollenpinta-alalle,jonkasuuruusonr Intensiteettitaso = (10) log ( 0,937 10 ) (4) Aina intensiteetin kasvaessa 10-kertaiseksi, intensiteettitaso kasvaa 10 desibeliä. Näin ollen intensiteetin lisääntyminen 1000-kertaiseksi tarkoittaa 30 desibelin kasvua intensiteettitasossa. 3.2 Koejärjestely Koejärjestelytoteutetaansuljetussatilassa kuvan mukaisesti.alustavastimittauksetsuoritetaanaaltoyliopistondesignfactorynisossaluentosalissaelistagella.tilantuleeollatarpeeksisuuri,ettääänenkulkuäänilähteenjamittausmikrofoninvälilläolisimahdollisimmanhäiriötöntä.eripinnoiltaheijastuvatääniaallothaittaavatmyösmittaustuloksia,jotenmittalaitteistopitääpystyttääniin,että kaikiltahäiriöiltävältytäänmahdollisimmantehokkaasti Koejärjestelyssätarvittavatmittausvälineetovat: - Windows-pohjainentietokone - REWv5-tietokoneohjelma - Behringerb2031a-studiomonitori - minidspumik-1-mittausmikrofoni Koejärjestelyssämittausmikrofoniasetetaansuurenvaneri-taimuunlevynsisällesamaantasoonlevynpinnankanssasiten,ettämittausmikrofoniavartenporataanensinsopivareikälevyyn.Sekälevyettämikrofoniseisovatomillajalustoillaan,jottaneeivätolekosketuksissatoisiinsa.Näinpyritäänmyösosaltaanvälttymäänhäiriöltämittaustuloksissa.

Mitattaviksiäänentaajuusalueiksivalittiin:125,250,500,000,000ja000 Hz. Nämä arvot valittiin kirjallisuudesta löydettyjen aiempien tutkimustulosten perusteella.[1] Äänilähteenä käytetään Behringerin studiomonitoria. Tutkittava kappale asetetaanmikrofonineteenniin,ettäseonäänilähteenjamikrofoninvälissä.tietokoneellajaohjelmistollaohjataankaiuttimestalähtevääääntäjasentaajuutta.samallalaitteistollatallennetaanmittausmikrofonindataarew-ohjelmistonavulla. Mittausmikrofonindatanavullavoidaanvertaillaerimateriaalienäänenvaimennuskykyä. Äänilähteenetäisyysmikrofonistatulleeolla0,5-1m.Lattiastamitattunaäänilähteen tulee olla vähintään 1,5-2 metrin korkeudella, jotta vältytään ääniaaltojen kimpoaminenlattiastamikrofoniin.kaiutinjokoripustetaanroikkumaanvapaastikatostasiltanosturinavullataisenostetaansopivantasonpäälle. Tutkittaviamateriaalejaovatalustavastivaneri,uretaani,styroksilevy,eristysvilla,akryylijavaahtomuovi.Materiaalittarkentuvatvielämyöhemmin,kunerimateriaaliensaatavuudetsaadaanselvitettyä.Tavoitteenaonkuitenkinpyrkiätestaamaan käytettävissä olevan ajan puitteissa mahdollisimman kattavasti useita erilaistamateriaalia. Mitattavanmateriaalinmitatovatnoin30x30cm.Kaikkitutkittavatmateriaalit leikataansamankokoisiksipaloiksi,jottatutkimuksentuloksetolisivatmahdollisimmanyhteneväisiäjakeskenäänvertailukelpoisia.tavoitteenaonmyöskokeilla eri materiaalien paksuuden vaikutusta vaimennuskykyyn. Tämä toteutetaan yksinkertaisestilaittamallauseampisamankokoinenkerroseristäväämateriaalia mikrofoninjaäänilähteenvälille. Koejärjestelynluotettavuudenvarmistamiseksimittauksettoistetaanuseitakertojasamoillaarvoillajamateriaaleilla.Toistojasamoillaarovillatuleetehdävähintäänkymmenenkappaletta.Varmistamallamittaustulostenyhteneväisyyden erimittauskertojenvälilläpyritäänvälttymäänkarkealtasatunnaiseltavirheeltä. 3.2. Mittalaitteisto Signaalinmittaussuoritetaankoetilassa,jokaonesitettykuvassa5.Mittaussuoritetaankoetilassailmanakustointia.Mittaukseenkäytetyttärkeimmätkomponentitonesitettyalla: 1. Windows-pohjainentietokone 2. REWv5tietokoneohjelma 3. Behringerb2031astudiomonitori 4. minidspumik-1mittausmikrofoni

Kuva5.Koetilajamittalaitteisto ÄänenaiheuttamiaäänenpaineenintensiteetinmittaukseenkäytetäänsiihensoveltuvaaREWv5tietokoneohjelmaajaminiDSPUMK-1mittausmikrofonia.Mikrofonionkalibroitujasenkalibrointitiedostonladataanvalmistajansivuiltaennenensimmäistämittausta. Mittausmikrofonintavoitteenaonhavaitaäänenaiheuttamiaäänenpaineenmuutoksia. Toimintaperiaate on yksinkertainen. Äänenpaine muuttaa mikrofonin ja kalvontakanaolevantaustalevynvälistäkapasitanssia,jonkamuutosyhdessäpolarisaatiojännitteen kanssa aiheuttaa jännitevarauksen. Tämä varaus siirretään mikrofonin integroidulle äänitasomittarille, joka muuttaa edelleen digitaaliseen muotoon. Tämän jälkeen tietokoneohjelmalla voidaan analysoida saatua dataa taajuusvasteena. Mittausmikrofonintärkeimmätominaisuudetonesitettytaulukossa [3]. Taulukostanähdään,ettämittausmikrofoninmittausalueulottuu20hertsistä20kilohertsiin1dBvirheenrajoissa. Taulukko1.MiniDspUMIK-1mittausmikrofoninteknisettiedot,muokattu[3] Tekniset tiedot Taajuusvaste 20 Hz - 20kHz +/- 1dB, kalibroitu USB Audio USB Audio luokka 1 Resoluutio 24bit ADC @ 44.1 tai 48 khz Lähdön melutaso -74 dbfs Kaiutinelementtinä käytetään Behringer studiomonitoria b2031a, jonka tärkeimmätominaisuudetonesitettytaulukossa[4].kyseinenstudiomonitorion aktiivikaiutin,jokamuuttaatässätapauksessaäänikortiltasaapuvanlinjatasoisen

signaalin (0 1V vaihtovirran) ilmapaineen vaihteluiksi eli ääneksi. Tämä studiomonitorikaiutin sisältää samassa kotelossa kaiutinelementin, aktiivisten 265 teholähteen, Butterworth-neljännen kertaluvun jakosuotimen ja erilliset sisäänrakennetut päätevahvistimet kaiutin elementille. Tulevan signaalin taajuus jaetaan vahvistimille aktiivisuotimilla ennen vahvistusta [5]. Aktiivikaiuttimen jakosuodattimentoiminnanansiostaseeioleriippuvainenkaiuttimentaajuuden mukaan vaihtelevasta kuormasta. Jakosuodatus on tarkempi ja lineaarisempi kuinpassiivikaiuttimessa.kullekinäänialueelleonomavahvistin,jokaeivaikuta toisenäänialueenvahvistukseen.ympäristönlämpötilakuitenkinvaikuttaavahvistimentoimintaanjatämäonotettavahuomioonmittauksensuorittaessa. Kaiuttimen elementtien erilaiset suuntakuviot saattavat aiheuttaa ongelmia. Suuntakuviotmuuttuvatelementinhalkaisijankoonmuuttuessa.Tämätaasvaikuttaaeritaajuuksienintensiteettiin[6]. Monitorin toistokäyrän alue alkaa vasta 50 Hertsistä ja ulottuu 21 kilohertsiin. Tämäseikkaonotettavahuomioonmittauksensuorittaessa. Taulukko2.B2031astudiomonitorinteknisettiedot,muokattu[4] Äänisisääntulot XLR-liitäntä servo-symmetroitu sisääntulo 6,3 mm jäkkiliitäntä servo-symmetroitu sisääntulo Sisäänmenovastus 10 kohm Maks. Sisääntulotaso +22 dbu Kovaääninen Korkeiden äänten kaiutin 22 mm kalotti, ferrofluidijäähdytetty Bassokaiutin 220 mm, polypropylentikalvo Vahvistin RMS @ 0.1 % THD 140 Wattia Huipputeho 265 Wattia Jakosuodatin Tyyppi aktiivinen, Butterworth-neljännen kertaluku Vastaanottotaajuus 2 khz Järjestelmätiedot Toistokäyrä 50 Hz - 21 khz Äänenpaine max. 116 db SPL @ 1m (pari) 4. Aikataulu viikko DL vk8 17.2. Koesuunnitelma vk10 3.3. Päivitettykoesuunnitelma

vk10ta11 7.tai14.3. Menetelmäesitys vk1011 Mittauslaitteistonhankintajakokoaminen vk12 Mittaus vk13 Analysointi vk14tai15 4.4.tai11.4 Tulostenesitys vk17 27.4. Loppuraportti Koesuunnitelma17.2. Tuloksetanalysoitujaesitystehty4.4.tai11.4.mennessä 5. Turvallisuussuunnitelma Mittausten aikana mittaajien korvat altistuvat testiäänelle, jonka voimakkuus ylittää100db.mittauksenajaksimittaajienkuuloonsuojattava.testattavienmateriaalienkäsitellyssäontarvittaessakäytettäväkäsi-jahengityssuojaimiamateriaaleistairtoavienkuitujentaipölynvuoksi.muutasuoraaterveydellistähaittaa eitestauksenaikanasynny.kokeidenaikanaonsyytänoudattaayleistähuolellisuuttajatarkkuutta. 6. Virhetarkastelu Mittamikrofonin ilmoitettu epätarkkuus on +/-1 db. Kaiuttimen taajuusvaste saattaa hieman muuttua testin aikana komponenttien lämpötilan muuttuessa. Virhesaadaanmitattuakokeenaikanatekemälläkokeenalussajalopussavertailumittaukset,joissahavaitaankaiuttimenantamavirhe. Testitilasaattaaaiheuttaahäiriötätuloksiin.Tietyillätaajuuksillaseinistäheijastuvatääniaallotkumoavattaivahvistavatvastaantuleviaaaltojasuperpositioperiaatteenmukaisesti.Tämänäkyymittatuloksissasiten,ettätietyttaajuudetvaimentuvat. Koejärjestely on pyritty rakentamaan siten, että kyseisten ilmiöiden vaikutusonmahdollisimmanvähäinen.mikrofoninympärilläonlaajaseinäjonka tarkoitusonohjatamikrofonilleainoastaansuoraankaiuttimeltatulevatääniaallot. Kaiutinonkohdistettavakohtimikrofonia.Vääräsuuntaussaattaaaiheuttaatiettyjen taajuuksien vaimentumista. Ennen mittauksia testaan myös, ettei kaiuttimenasentoaiheutahäiriöitämittaustuloksiin. Koepaikallataustahälynvaikutuseliminoidaankäyttämällätarpeeksivoimakasta testiääntä, jolloin taustahälyn maksimivoimakkuus on selvästi alle testiäänen voimakkuuden. Ennen mittausta taustahäly mitataan ja mittauksissa käytetään kaksikertaakovempaatestiääntä. 10

Edellämainitutvirhetekijätpyritäänminimoimaankokeenaikanajanepysyvät muuttumattominakaikkienmittauksienajan,jotenneeivätsitenvaikutavertailtaviinarvoihin.nesaattavatvaikeuttaavertailtavienarvojenhavainnointia. Mikrofonintarkkuus Kaiuttimentarkkuus +/-1dB eiilm. (todennetaanmittauksenyhtedessä) 11

LÄHTEET [1] F. Alton Everest, THE MASTER HANDBOOK OF ACOUSTICS, Fourth Edition, McGraw-Hill,Yhdysvallat,2001. [2]Howard,D.Angus,J.2001.AcousticsandPsychoacoustics.Secondedition. Oxford:FocalPress. [3] Verkkolehti. Viitattu 8.2.2014. Saatavissa http://www.minidsp.com/images/documents/product%20brief%20- %20Umik.pdf [4]Verkkolehti.Viitattu9.2.2014.Saatavissa http://www.behringerdownload.de/b2030a_b2031a/m_fi_b2030a_v03_web.p df [5]Verkkolehti.Viitattu10.2.2014.Saatavissa http://en.wikipedia.org/wiki/powered_speakers [6] Verkkolehti.Viitattu16.2.2014.Saatavissa https://www.hifistudio.fi/fi/servlet/fetchreviewfile?id=25 12