Statistinen fysiikka, osa A (FYSA241) Vesa Apaja vesa.apaja@jyu.fi Huone: YN212. Ei kiinteitä vastaanottoaikoja. kl 2016 5. Faasitransitiot 1
Olomuodonmuutokset eli faasitransitiot Arkisesti: kvalitatiivinen muutos makroskooppisissa ominaisuuksissa : sulaminen,... Termodynamiikan määritelmä: Epäjatkuvuuskohta jossain termodynaamisessa suureessa tai sen derivaatassa. (Höyrystyminen: V (T, P, N) = ( G(T, P, N)/ P) T,N epäjatkuva T :n funktiona ) Esimerkkejä 2.17K 4 He suprajuoksevaksi 7K lyijy suprajohteeksi 90K happi nesteytyy 273K jää sulaa 373K vesi höyrystyy 710K happikalvo W(110)-pinnalla epäjärjestyy 1043K raudan ferromagnetismi katoaa 1808K rauta sulaa 3023K rauta höyrystyy 10eV/k B 10 4 K vety ionisoituu 200MeV/k B 2 10 12 K QCD-transitio (protonit, neutronit sulavat kvarkeiksi ja gluoneiksi) 100GeV/k B 2 10 15 K: sähköheikko transitio (alkeishiukkaset menettävät massansa) 2
Veden faasidiagrammi, terminologiaa (Oikeasti jäästä on monia eri muotoja.) Faasit: kiinteä, neste, höyry Rajana koeksistenssikäyrä (cx), jolla eri olomuodot voivat olla TD tasapainossa. Kolmoispiste: kolme faasia termodynaamisessa tasapainossa Kriittinen piste: cx-käyrän loppu. (Höyrystä nesteeksi voi mennä ilman epäjatkuvuutta, kiertämällä rajapinta yläkautta.) Järjestysparametri: oleellinen faasitransitiota kuvaava parametri Jokin epäjatkuva suure voidaan valita järjestysparametriksi. Neste höyry: järjestysparametri tiheys (tai tilavuus, N kiinteä) Ferromagneetti: järjestysparametri magnetoituma onisoituminen: järjestysparametri esim. sähkönjohtavuus Järjestysparametri ei ole yksikäsitteinen; valitaan kuvaavin suure. 3
Faasitasapaino Ferromagneetti ja singin malli Clausius-Clapeyron Lisa a faasimuunnoksista Tasapainoehdot Kertausta Saman aineen kaksi faasia tasapainossa E2, V2, N2 E = E1 + E2 kiintea, E1, E2 voivat muuttua V = V1 + V2 kiintea, V1, V2 voivat muuttua N = N1 + N2 kiintea, N1, N2 voivat muuttua S = S1 + S2 Tasapainoehdot T1 = T2 E1, V1, N1 P1 = P2 µ1 = µ2 P, T vakiot: luonteva TD potentiaali on Gibbsin vapaa energia G dg = VdP SdT + µdn Ekstensiivisyys: Gi = Ni µi (T, P) (i = 1, 2) tasapainoehto µ1 (T, P) = µ2 (T, P) µ = G/N = (E TS + PV )/N 4
Faasidiagrammi, Gibbsin vapaan energian minimit µ T kaasu ρ cx neste P µ Esim höyrystyminen: Järjestysparametri tiheys muuttuu epäjatkuvasti. TD tasapaino: G:n minimi kaksi faasia G(ρ):lla on kaksi minimiä eri tiheyksillä Metastabiili faasi: nopeassa T :n tai P:n muutoksessa systeemi voi unohtua väärään minimiin. (esim. alijäähtyneen veden lämpötila on alle veden sulamislämpötilan, T < 0 C.) µ kaasu neste ρ kaasu neste ρ kaasu neste ρ cx: molemmat faasit mahdollisia samalla T, P T tai P T tai P 5
Faasien Gibbsin vapaa energia erikseen Kaasusta nesteeksi µ µ µ neste kaasu kaasu neste kaasu ρ ρ Seurataan kahden minimin µ i (T, P):tä erikseen. Huom: ( ) G = V 1 ( ) G P ρ > 0 = S < 0 T µ kaasu neste P T,N ρ kaasu neste P µ neste P,N kaasu T S neste neste kaasu ρ T 6
Huomioita Höyrystymistransitiossa Gibbsin vapaan energian 1. derivaatat epäjatkuvia, kuten ( ) G = V 1 ( ) G = S. P T,N ρ T P,N Tällaista nimitetään 1. kertaluvun transitioksi Faasista toiseen äärellinen S kiinteällä T latentti lämpö Q. 1. kertaluvun faasitransitiossa voi kaksi faasi olla termodynaamisessa tasapainossa keskenään. Hiukkasen siirtyminen faasista toiseen ei muuta Gibbsin potentiaalia, koska µ on molemmissa faaseissa sama. Kemiallinen reaktion voi ajatella faasitransitiona, jossa faasit ovat reaktioaineita. Höyry ja vesi tasapainossa reaktioyhtälön eri puolet tasapainossa. Faasitransitiossa voi olla vasta 2. tai korkeampi derivaatta epäjätkuva Jatkuva faasitransitio. Tällöin esim: Ei latenttia lämpöä, S jatkuva silti esim. ( S/ T ) P (lämpökapasiteetti) voi olla epäjatkuva 7
Faasitasapaino Ferromagneetti ja singin malli Clausius-Clapeyron Lisa a faasimuunnoksista Magneettisysteemi, singin malli B Paramagneetti: oletettiin, etteiva t spinit vuorovaikuta keskena a n: Sen energia on EB = si µb si = ±1 i=1 Ta ydenneta a n mallia: spinin luoma magneettikentta vaikuttaa naapurispineihin. Lasketaan la hinaapuriparit hi, ji ja lisa ta a n energiaan termi, jossa samansuuntaiset spinit alentavat energiaa J, jos tai eli si sj = 1 J, jos tai eli si sj = 1 E = J X hi,ji N X si sj N X si µb i=1 Jos B = 0 ja T = 0, on systeemilla uusi perustila, jossa kaikki spinit tai kaikki, energia JNpareja ferromagneetti (kestomagneetti) 8
Faasidiagrammi B, T -tasossa Mitä tiedetään/odotetaan T < T c: järjestynyt, systeemi on kestomagneetti, M = 0, vaikka B = 0 T > T c: epäjarjestynyt, entropia voittaa, M = 0, kun B = 0 Kun B 0 on enemmän spinejä B:n suuntaan M = 0. TD potentiaali on nyt Helmholzin vapaa energia, luonnolliset muuttujat T ja B df = SdT MdB B M > 0 M < 0 T c T M on järjestysparametri T < T c: M epäjatkuva, kun B vaihtaa merkkiä äärellinen määrä spinejä kääntää suuntaa 1. kertaluvun faasitransitio T = T c: jatkuva faasitransitio 9
Helmholzin vapaa energia Millainen on vapaa energia F(B, T ; M)? B, T ovat ulkoisesti määrättyjä tilamuuttujia Järjestysparametri M on muu makroskooppinen muuttuja Termodynaamisessa tasapainossa F(M) on minimi Päätellään sopiva Helmholzin vapaan energian muoto. Ehtoja: 1) Ulkoisen kentän vaikutus on BM Jos B = 0, ei suunnilla ylös ja alas voi olla mitään eroa symmetria F(B = 0, T, M) = F(B = 0, T, M) F(B, T ; M) sisältää vain M:n parillisia potensseja Vapaan energian minimien lukumäärän pitää muuttua 1 2 lämpötilassa T = T c lisätään neliötermiin kerroin (T T c) Yksinkertaisin sopiva muoto on sarjakehitelmän alku F(B, T ; M) = a 0 + a 2 (T T c)m 2 + a 4 M 4 BM. Tämä on Landaun faasitransitioteorian (Landaun mallin) lähtökohta. 10
Helmholzin vapaa energia Landaun mallissa F(M) = a 0 + a 2 (T T c)m 2 + a 4 M 4 BM Landau T > T c: Yksi faasi, ei faasitransitiota B < 0 F F B = 0 F B > 0 T < T F c: Faasitransitio B < 0 M F B = 0 M F B > 0 M M faasit tasapainossa B = 0: - Transitio T :n muuttuessa M M 11
Seurauksia Landaun mallista F (M) = a 0 + a 2 (T T c)m 2 + a 4 M 4 BM Magnetoituma nollakentässä (eli spontaani magnetoituma) Asetetaan B = 0 ja lasketaan M ehdosta F=minimi a) M = 0, kun T > T c b) M T c T, kun T < T c, joten M T c T β,missä β on kriittinen eksponentti Muillakin suureilla on kriittisiä eksponentteja: Lämpökapasiteetti C V T T c α Suskeptibiliteetti χ T T c γ. Suskeptibiliteetti Landaun mallissa Jos T T c voidaan M 4 -termi unohtaa ja saadaan M B T Curien laki 12
singin malli Numeerinen laboratoriotyö Yllä määriteltiin ns. singin malli ferromagneetille E({s i } i=1...n ) = J i,j s i s j N s i µb i=1, i, j = i, j lähinääpureita 1D:ssä (spinketju) analyyttinen ratkaisu oppikirjoissa 2D:ssä Onsagerin kuuluisa analyyttinen ratkaisu, magnetoitumistransitio 3D... ei analyyttistä ratkaisua ratkaistaan numeerisesti Tietokonesimulaation idea: Halutaan Boltzmannin jakauma p({s i } i=1...n ) = 1 Z e βe({s i } i=1...n ) Jos tiedetään spinit {s i } i=1...n, on energia E({s i } i=1...n ) helppo laskea Jo aika pienen sing-hilan 2 N konfiguraatiota on mahdotonta käydä läpi systemaattisesti Monte Carlo menetelmä: arvotaan erilaisia spinrakenteita siten, että niiden jakauma lähestyy oikeaa. Keskiarvot lähestyvät oikeaa tulosta. 13
Metropolis-algoritmi 1. Arvotaan alkutilan spinit {s i } i=1...n ja lasketaan energia E 0 2. Kokeillaan muuttaa yhtä spiniä: lasketaan energian muutos E 3. Hyväksytään muutos todennäköisyydellä min { 1, e β E} Energiaa alentava muutos hyväksytään aina Energiaa kasvattava muutos hyväksytään todennäköisyydellä e β E : arvotaan satunnaisluku r [0, 1]; jos e β E > r niin muutos hyväksytään, muulloins se hylätään. 4. Palataan kohtaan 2. Keskiarvo simulaatioajan yli = keskiarvo Boltzmann-jakauman yli Seuraavaksi käydään läpi Metropolis-algoritmin toiminnan syytä. Oleellista on todistaa, että algoritmi tuottamilla tiloilla on haluttu jakauma silti vain asymptoottisesti, eli kun algoritmia toistetaan loputtomiin on raja-arvona haluttu jakauma. Tämän asymptoottisuuden vuoksi on tiloja tuotettava hyvin monta ja otettava tuloksista keskiarvo. 14
Lisämateriaalia: Metropolis-algoritmin johto Metropolis-algoritmi toimii mielivaltaiselle todennäköisyysjakaumalle. Oletetaan, että systeemillä on hyvin monta (mikro)tilaa x, ja tilan x statistinen paino on π(x). Aloitetaan jostakin mahdollisesta tilasta x ja ehdotetaan uutta tilaa x jne. (Marcovin ketju x, x, x...). Jos ehdotus hyväksytään aina, on tilojen statistinen paino sama, eli vakio. Miten hyväksymistä pitää muuttaa, että statistinen paino on π(x)? Kuvataan tätä hyväksy/hylkää prosessia todennäköisyydellä P(x x). Tasapainotilassa siirtymiä kuhunkin tilaan on yhtä monta kun tilasta pois, joten tilasta x : P(x x)π(x) = P(x x )π(x ) : tilaan x. x x Riittää, kun löydämme yhden ratkaisun, helpoin on detaljibalanssi (detailed balance): P(x x)π(x) = P(x x )π(x ) x, x, eli P(x x) P(x x ) = π(x ) π(x). Tämä ei vielä riitä määräämään yksikäsitteistä P(x x ). 15
Lisämateriaalia: Metropolis-algoritmin johto jatkuu Detaljibalanssiehdon toteuttaa mikä hyvänsä funktio f, jolle P(x x) = f (π(x )/π(x)) f (y)/f (1/y) = y Metropolis-algoritmissa f (y) = min{1, y} eli P(x x) = min{1, π(x ) π(x) }. Muitakin ratkaisuja löytyy, heat bath -algoritmissa f (y) = y/(1 + y), eli P(x x) = π(x ) π(x ) + π(x). Huom: algoritmeissa ei tarvita normitettua todennäköisyysjakaumaa, pelkkä painojakauma riittää. Tämä on suuri helpotus - partitiofunktion laskeminen on yhtä kuin koko ongelman ratkaiseminen. 16
Faasitasapaino Ferromagneetti ja singin malli Clausius-Clapeyron Lisa a faasimuunnoksista Latentti la mpo T, P, N2 Tarkastellaan kahta faasia tasapainossa Merk. vi = Vi /Ni ; si = Si /Ni ; εi = Ei /Ni jne. Kaikki T, P:n funktioita Tiedeta a n T, P, N1 µ1 (T, P) = µ2 (T, P) ε1 Ts1 + Pv1 = ε2 Ts2 + Pv2 Siirreta a n yksi molekyyli faasista 1 faasiin 2. Sisa energia muuttuu ε2 ε1 tuotava ulkoa energiaa Tilavuus muuttuu v2 v1 tuotava ulkoa energiaa tyo ho n P(v2 v1 ) Yhteensa : `1 2 = ε2 ε1 + P(v2 v1 ) = h2 h1 = T (s2 s1 ) (cx-ehdosta) Latentti la mpo Faasien eri entropioista johtuva energiaero (tuodaan yleensa la mpo na ) latentti la mpo L1 2 = Tcx S = H Esim ho yrystymisla mpo, sulamisla mpo 17
Veden faasidiagramma uudelleen Sulamiskäyrä ja höyrystymiskäyrä eri suuntaan: miksi? Miksi tavallinen transitiolämpötila kasvaa paineen kasvaessa? Mitä erikoista on jäässä? Miksi se näkyy paineriippuvuudessa? P H 2 O tavallinen kiinteä neste T 18
Clausius-Clapeyron-yhtälö P kiinteä (1) neste (2) T Edetään pitkin cx-käyrää µ 1 (T, P) = µ 2 (T, P) dµ 1 (T, P) = dµ 2 (T, P) dµ = sdt + vdp (dn = 0) s 1 dt + v 1 dp = s 2 dt + v 2 dp ( ) P = s 2 s 1 T v 2 v 1 cx = l 1 2 T (v 2 v 1 ) = L 1 2 T (V 2 V 1 ) Clausius-Clapeyron-yhtälö Latentti lämpö ja tilavuuden muutos määräävät koeksistenssikäyrän: ( ) P = L 1 2 T T V cx 19
Clausius-Clapeyron; huomioita ( ) P = L 1 2(T ) T cx T V (T ) Ajateltava differentiaaliyhtälöksi, joka määrää koeksistenssikäyrän P cx(t ). DY:n ratkaisuun vaikuttavat L 1 2 (T ):n ja V (T ). Latentti lämpö L 1 2 ja tilavuuden muutos V ovat mitattavia suureita Yleensä L 1 2 > 0 V > 0 (suuremman entropian faasin 2 tiheys on pienempi) cx-käyrä on nouseva T, P-tasossa Vedellä tilanne on päinvastainen: kiinteän faasin tiheys on nestefaasia pienempi. 20
Clausius-Clapeyron; esimerkki Kiehumisen paineriippuvuus ( ) P = L 1 2(T ) T cx T V (T ) Meren pinnan tasolla P 101kPa, kiehumispiste T b = 373.15K Mt. Everestillä P 36kPa. Mikä on T b? Tarvitaan V /m V kaasu /m 1.7m 3 /kg L/m 2.3J/kg. Saadaan dp dt = 2.3J/kg 373.15 1.7m 3 /kg 3.6kPa/K Jos paine muuttuu P 65kPa, niin T b 65/3.6K 18 K. Mt. Everestillä vesi kiehuu noin 82 C:ssä (mitattu 71 C). cx-käyrä oletettiin suoraksi (dp/dt =vakio). 21
Laboratoriotyö: höyrystymislämpö ( ) P = L 1 2(T ) T cx T V (T ) Laboratoriotyön idea: testataan yhtälöä mittaamalla erikseen: latentti lämpö L 1 2 (normaalipaineessa) höyrynpainekäyrä mitattava P(T ) tai itse asiassa T (P) useassa kohdassa cx-käyrää, jotta saadaan arvio derivaatalle Sekä L 1 2 että V riippuvat T :stä / P:stä Laboratoriotyössä oletetaan riippuvuus L 1 2 (T ) = Nk B (α + βt ) Oletetaan kaasu harvaksi ja ideaaliseksi V V g = Nk B T /P ( ) P Nk B(α + βt ) T cx T (Nk B T /P) dp ( α P = T + β ) dt 2 T ( ) β { ( T 1 P(T ) = P 0 exp α 1 )} T 0 T 0 T 22
Kiinteä-neste-kaasu faasidiagramma uudelleen, PV -tasossa P, V -tasossa: Tyypillinen aine: ρ kiint. > ρ neste Tilavuus V epäjatkuva kielletty alue P, V -tasossa. tse asiassa täällä on sekoitus kahta faasia. Kriittinen piste C: 1. kertaluvun alue/koeksistenssialue loppuu Kolmoispiste K : pienemmällä paineella ei enää nestettä. 23
Vesi, realistinen faasidiagrammi Sublimaatio Kiinteästä kaasuksi. Härmistyminen Kaasusta kiinteäksi V kiint kaasu pieni dp/dt suuri Kiinteitä faaseja on oikeasti monta (eri kiderakenteet). 24
Faasitasapaino Ferromagneetti ja singin malli Clausius-Clapeyron Lisa a faasimuunnoksista Ka yta nno n esimerkki: vetta juomalasissa P = Pv + Pa Nv + Na Lasissa vetta (w), pa a lla ilmaa (a) ja vesiho yrya (v). Nyt Pw 6= Pv, koska myo s ilmanpaine on otettava huomioon ei olla cx-ka yra lla, jossa paineet ovat samat Pcx. La hto kohdat: P = P w, Nw kem. tasapaino µw (Pw, T ) = µv (Pv, T ) cx-ka yra n ma a rit. µw (Pcx, T ) = µv (Pcx, T ) Gibbs-Duhem dµ(p, T ) = V S dp dt N N (1) Approksimaatioita: Ho yry ideaalikaasua: µv (Pv, T ) = kb T ln Neste kokoonpuristumaton: µw (Pw, T ) = Pv Pcx + µ(pcx, T ) V (Pw N Pcx ) + µ(pcx, T ) Korjaus normaalioloissa pieni, koska nesteen kb TN/V suuri. 25