TÄHDET JA AVARUUS 8/2009

Samankaltaiset tiedostot
Kosmos = maailmankaikkeus

Planeetan määritelmä

Tarinaa tähtitieteen tiimoilta FYSIIKAN JA KEMIAN PERUSTEET JA PEDAGOGIIKKA 2014 KARI SORMUNEN

Tähtitiede Tutkimusta maailmankaikkeuden laidoilta Aurinkokuntaan

Maan ja avaruuden välillä ei ole selkeää rajaa

Mustien aukkojen astrofysiikka

Kosmologia: Miten maailmankaikkeudesta tuli tällainen? Tapio Hansson

Tähtitieteen peruskurssi Lounais-Hämeen Uranus ry 2013 Aurinkokunta. Kuva NASA

Tähtitieteessä SI-yksiköissä ilmaistut luvut ovat usein hyvin isoja ja epähavainnollisia. Esimerkiksi

Jupiter-järjestelmä ja Galileo-luotain II

Aloitetaan kyselemällä, mitä kerholaiset tietävät aurinkokunnasta ja avaruudesta ylipäänsä.

Jupiterin magnetosfääri. Pasi Pekonen 26. Tammikuuta 2009

SATURNUS. Jättiläismäinen kaasuplaneetta Saturnus on aurinkokuntamme toiseksi suurin planeetta heti Jupiterin jälkeen

AKAAN AURINKOKUNTAMALLI


Planeetat. Jyri Näränen Geodeettinen laitos

1. Kuinka paljon Maan kiertoaika Auringon ympäri muuttuu vuodessa, jos massa kasvaa meteoroidien vaikutuksesta 10 5 kg vuorokaudessa.

Kosmologia ja alkuaineiden synty. Tapio Hansson

spiraaligalaksi on yksi tähtitaivaan kauneimmista galakseista. Sen löysi Charles Messier 1773 ja siksi sitä kutsutaan Messierin kohteeksi numero

Syntyikö maa luomalla vai räjähtämällä?

Fotometria Eskelinen Atte. Korpiluoma Outi. Liukkonen Jussi. Pöyry Rami

ASTROFYSIIKAN TEHTÄVIÄ VI

Kääpiöplaneettojen eteeriset laadut ja niiden määrittäminen (2006)

Planetologia: Tietoa Aurinkokunnasta

Aurinkokunta. Jyri Näränen Paikkatietokeskus, MML

LUENTO Kyösti Ryynänen

Havaitsevan tähtitieteen peruskurssi I. Ilmakehän vaikutus havaintoihin. Jyri Lehtinen. kevät Helsingin yliopisto, Fysiikan laitos

AMMATTIKORKEAKOULUJEN TEKNIIKAN JA LIIKENTEEN VALINTAKOE ÄLÄ KÄÄNNÄ SIVUA ENNEN KUIN VALVOJA ANTAA LUVAN!

Muunnokset ja mittayksiköt

Karstula Korkeakangas Kulttuuriperintökohteiden täydennysinventointi 2014

Raamatullinen geologia

Aine ja maailmankaikkeus. Kari Enqvist Helsingin yliopisto ja Fysiikan tutkimuslaitos

5. Laske lopuksi jalokivisaaliisi pisteet ja katso, minkä timanttiesineen niillä tienasit.

Aurinko. Tähtitieteen peruskurssi

Havaitsevan tähtitieteen peruskurssi I

Fysiikan menetelmät ja kvalitatiiviset mallit Rakenneyksiköt

Käyttämällä annettua kokoonpuristuvuuden määritelmää V V. = κv P P = P 0 = P. (b) Lämpölaajenemisesta johtuva säiliön tilavuuden muutos on

Ensimmäinen matkani aurinkokuntaan

Atomimallit. Tapio Hansson

Muista, että ongelma kuin ongelma ratkeaa yleensä vastaamalla seuraaviin kolmeen kysymykseen: Mitä osaan itse? Mitä voin lukea? Keneltä voin kysyä?

Supernova. Joona ja Camilla

Harjoitustehtävä 1. Kiviä ja muita

SUHTEELLISUUSTEORIAN TEOREETTISIA KUMMAJAISIA

HÄRKÄMÄEN HAVAINTOKATSAUS

CASIO-KOULULASKIMET CASIO. OPETTAJAOSIO JULKAISU 8 TEEMAOSIO: ASTRONOMIA: LASKENTAA TAIVAAN JA MAAN VÄLILLÄ. Astronomia ja astrologia SIVU 1

VARESJÄRVI KOEKALASTUS

Lataa Onko siellä ketään - Markus Hotakainen. Lataa

Havaitsevan tähtitieteen pk I, 2012

Sisällys. Vesi Avaruus Voima Ilma Oppilaalle Fysiikkaa ja kemiaa oppimaan... 5

RAUTARALLI RASTIT PELIOHJEET KIVIVISA. Tervetuloa pelaamaan Heurekan Maan alle -näyttelyyn!

Havaitsevan tähtitieteen peruskurssi I, kevät Luento 2, : Ilmakehän vaikutus havaintoihin Luennoitsija: Jyri Näränen

5.3 Ensimmäisen asteen polynomifunktio

AURINKOKUNNAN RAKENNE

Monimuotoinen Aurinko: Aurinkotutkimuksen juhlavuosi

7. AURINKOKUNTA. Miltä Aurinkokunta näyttää kaukaa ulkoapäin katsottuna? (esim. lähin tähti n AU päässä

Gravitaatioaallot - uusi ikkuna maailmankaikkeuteen

Harjoitustehtävä 1. Kiviä ja muita

Pimennys- yms. lisäsivut Maailmankaikkeus nyt -kurssi

Pilviratkaisut ovat entistä suositumpia. Mutta mikä on oikea ratkaisu sinun maailmassasi? Lähde matkalle läpi avaruuden, ajaan ja maalaisjärjen

S Havaitseminen ja toiminta

Firmaliiga Högbacka

Turun seitsemäsluokkalaisten matematiikkakilpailu Tehtävät ja ratkaisut

TAIVAANMEKANIIKKA IHMISEN PERSPEKTIIVISTÄ

ETÄISYYS TÄHDESTÄ PYÖRÄHDYSAIKA JA KIERTOAIKA

Ilman suhteellinen kosteus saadaan, kun ilmassa olevan vesihöyryn osapaine jaetaan samaa lämpötilaa vastaavalla kylläisen vesihöyryn paineella:

Kemiönsaaren Nordanån merikotkatarkkailu kesällä 2017

Tähtitaivaan alkeet Juha Ojanperä Harjavalta

Planck satelliitti. Mika Juvela, Helsingin yliopiston Observatorio

Työssä määritetään luokkahuoneen huoneilman vesihöyryn osapaine, osatiheys, huoneessa olevan vesihöyryn massa, absoluuttinen kosteus ja kastepiste.

Ulottuva Aurinko Auringon hallitsema avaruus

Ajan osasia, päivien palasia

Alkupiiri (5 min) Lämmittely (10 min) Liikkuvuus/Venyttely (5-10min) Kts. Kuntotekijät, liikkuvuus

Havaitsevan tähtitieteen peruskurssi I, Havaintoaikahakemuksen valmistelu. Luento , V-M Pelkonen

SUBSTANTIIVIT 1/6. juttu. joukkue. vaali. kaupunki. syy. alku. kokous. asukas. tapaus. kysymys. lapsi. kauppa. pankki. miljoona. keskiviikko.

PARADIGMOJEN VERTAILUPERUSTEET. Avril Styrman Luonnonfilosofian seura

Negatiiviset luvut ja laskutoimitukset

Tabbyn tähti - KIC Mysteeritähden havainnot. Arto Oksanen

Atomien rakenteesta. Tapio Hansson

Taurus Hill Observatory Venus Transit 2012 Nordkapp Expedition. Maailman äärilaidalla

Tähtitieteen historiaa

Vuolukivi on yksi Suomen kallioperän aarteista

Havaitsevan tähtitieteen peruskurssi I. Spektroskopia. Jyri Lehtinen. kevät Helsingin yliopisto, Fysiikan laitos

Fysiikan maanalaisen tutkimuksen nykytila Suomessa

AS Automaatio- ja systeemitekniikan projektityöt

Mikkelin lukio. Marsissako metaania? Elisa Himanen, Vilma Laitinen, Aatu Ukkonen, Pietari Miettinen, Vesa Sivula Pariisi

Atomimallit. Tapio Hansson

Fysiikan laboratoriotyöt 1, työ nro: 2, Harmoninen värähtelijä

Työssä määritetään luokkahuoneen huoneilman vesihöyryn osapaine, osatiheys, huoneessa olevan vesihöyryn massa, absoluuttinen kosteus ja kastepiste.

Avaruuden kolme sellaista pistettä, jotka eivät sijaitse samalla suoralla, määräävät

3 Raja-arvo ja jatkuvuus

2.3 Juurien laatu. Juurien ja kertoimien väliset yhtälöt. Jako tekijöihin. b b 4ac = 2

TURUN YLIOPISTO GEOLOGIAN PÄÄSYKOE

LUENTO Kyösti Ryynänen

LUENTO Kyösti Ryynänen HAVAITTAVUUSTEKIJÖITÄ HAVAINTOMENETELMÄT HAVAITTAVUUSTEKIJÖITÄ ENSIMMÄISET LÖYDETYT EKSOPLANEETAT

5.2 Ensimmäisen asteen yhtälö

SMG-4500 Tuulivoima. Ensimmäisen luennon aihepiirit. Ilmavirtojen liikkeisiin vaikuttavat voimat TUULEN LUONNONTIETEELLISET PERUSTEET

Lataa Polaris - Heikki Oja. Lataa

Planetaariset sumut Ransun kuvaus- ja oppimisprojekti

Etäisyyden yksiköt tähtitieteessä:

Transkriptio:

Tällä pla Taiteilijan näkemys korundisateesta. Näkymä on CoRoT-7b-planeetan yöpuolen reuna-alueelta, jossa pinta saattaa olla osin sulaa laavaa, osin hieman kiinteämpää kiveä. 14

neetalla sataa kiviä Syyskuussa julkaistun simulaation mukaan CoRoT-7bplaneetalla on varsin erikoiset olosuhteet. Päiväpuolella vallitsee 2 000 asteen lämpötila. Vesipisaroiden sijaan planeetan laavan peittämää pintaa rummuttavat erityyppiset kivisateet. TEKSTI SAKARI NUMMILA Lava ground by G. Brad Lewis / SPL / SKOY. Sky rock rain by T+a Vain vajaa vuosisata sitten monet uskoivat naapurimme Venuksen olevan kostea ja ehkä suon tai viidakon peittämä planeetta. Kosteus on todennäköisesti noin kuusinkertainen Maan keskitasoon nähden. Meidän täytyy päätellä, että kaikki Venuksessa on vedestä märkää. Suuren kuumuuden myötä kasvien prosessit ovat huomattavasti nopeutuneet, ja siksi organismien elinikä on luultavasti lyhyt. Näin kirjoitti Nobelpalkinnon voittanut kemisti Svante Arrhenius vuonna 1918. Vasta kun todellinen avaruusaika eri puolilla aurinkokuntaa seikkailevine astronautteineen näytti olevan tuloillaan, naapuriplaneettamme paljasti todelliset kasvonsa. Kävi ilmi, että Venuksen pinnan keskilämpötila onkin tukahduttavat 460 celsiusastetta, mikä riittää jopa sulattamaan lyijyä. Planeetta on siis hedelmällisen paratiisin sijaan kuollut ja kuiva tulinen pätsi. Tämän vuoden helmikuussa tutkijat löysivät 500 valovuoden päästä kivisen planeetan, jonka rinnalla jopa Venus tuntuu mukavan viileältä keitaalta. CoRoT-7b on niin lähellä kotitähteään, että se saattaa hyvinkin vastata Danten helvettiä. Päiväpuolella Sääennuste: odotettavissa on ainakin wollastoniitti-, enstatiitti-, spinelli- ja korundisateita. 15

Tällä planeetalla sataa kiviä Taiteilijan näkemys CoRoT-7b-planeetasta laavakenttineen. Oikeassa yläkulmassa näkyy punaisena pisteenä samaa tähteä kiertävä toinen planeetta CoRoT-7c. Laura Schaeferin tietokonemallinnuksen perusteella CoRoT-7b-planeetalla sataa pieniä kiviä. Kuva ESO / L. Calçada Kuva Laura Schaefer lämpötila on todennäköisesti yli 2 000 celsiusastetta ja yöpuolella 200 astetta, selostaa Didier Queloz Geneven yliopistosta. Teoreettiset mallit viittaavat siihen, että planeetan pinnalla voi olla laavaa tai kiehuvia valtameriä. Nämä ääriolosuhteet eivät missään nimessä ole otolliset elämän kehittymiselle. Planeetta muuttui vieläkin erikoisemmaksi, kun tutkijat saivat mallinnettua sen kaasu kehän. Tietokonesimulaatioiden perusteella näyttää nimittäin siltä, että kyseisellä planeetalla sataa vesipisaroiden sijaan pikkukiviä. VUOSI VIERÄHTÄÄ 20,5 TUNNISSA Vajaan viiden maapallon massainen ja halkaisijaltaan 1,8 maapallon kokoinen CoRoT- 7b on pienin tunnettu eksoplaneetta. Se kiertää hieman Aurinkoamme keveämpää ja viileämpää oranssia kääpiötähteä, joka on 1,5 miljardin vuoden ikäinen. Koska eksoplaneetan massa on paljon lähempänä Maan massaa kuin esimerkiksi aurinkokuntamme seuraavaksi kevyintä planeettaa eli 17 maapallon massaista Neptunusta, CoRoT-7b kuuluu niin sanottujen supermaapallojen luokkaan. Näitä planeettoja tunnetaan nykyisin vajaat kaksikymmentä, mutta nyt tutkittu planeetta on niistä ensimmäinen, jonka tiheys on saatu tarkasti mitattua. Tunnetuista eksoplaneetoista CoRoT-7b myös kiertää lähimpänä emotähteään. Sen etäisyys lähitähdestään on vain noin 2,5 miljoonaa kilometriä mitätön matka verrattuna esimerkiksi aurinkokuntamme sisimmän planeetan Merkuriuksen 23 kertaa suurempaan kiertorataan. Tämän takia eksoplaneetan kiertoaika on lukittunut niin, että CoRoT-7b:n toinen puoli kylpee koko ajan lähellä paistavan tähden valossa, kun taas toinen puoli on ikuisessa varjossa. Pienen kiertoratansa ansiosta CoRoT-7b on samalla myös nopein tunnettu eksoplaneetta. 750 000 kilometriä tunnissa kiitävä kivipallo kulkee radallaan yli seitsemän kertaa nopeammin kuin Maa, ja planeetan vuosi kestää ainoastaan 20 tuntia ja 29 minuuttia. Yhdistämällä massa- ja kokomittaukset CoRoT-7b-planeetan tiheydeksi saadaan 5,5 grammaa kuutiosenttiä kohden. Se on käytännössä identtinen Maan tiheyden kanssa, iloitsee Kalifornian yliopistossa työskentelevä eksoplaneettatutkija Gregory Laughlin. Yhtenevä tiheys merkitsee sitä, että molemmat planeetat koostuvat samoista aineista. Kyseessä on siis lähes varmasti maankaltainen kivinen planeetta. Emmin kuitenkin termin kivinen liittämistä CoRoT-7b:n maisemaan samasta syystä kuin pidättäytyisin kuvaamasta Amazonjoen suistoa jäiseksi, Laughlin korjaa. Emotähtensä läheisyyden takia CoRoT-7b:n pinta lienee nimittäin suurelta osin sulaa laavaa. KAASUKEHÄSSÄ TIIVISTYY KIVIÄ Ainoa kaasukehä, joka tällä kohteella on, syntyy laavajärvien tai -merien silikaateista nousevasta höyrystä, toteaa Bruce Fegley Washingtonin yliopistosta. Tulos perustuu Fegleyn ja hänen kollegansa Laura Schaeferin kehittämiin tietokonemalleihin. Tämä on tieteen jännittävimpiä ja hämmästyttävimpiä puolia. Halusimme selvittää, miltä kohde näyttää, ja löysimme ainutlaatuisen järjestelmän. 16

Kuva Mikko Suominen / Stellarium Kuva Nasa / T+a CoRoT-7b:n (oikealla) halkaisija on noin 1,7 maapallon halkaisijaa. Taiteilijan näkemys. CoRoT-7b sijaitsee Yksisarvisen tähdistössä noin 500 valovuoden päässä meistä. Koska planeetan tarkka koostumus ja alku aineiden eri suhteet sen pintaosissa eivät olleet tiedossa, tutkijat tekivät neljä erilaista mallia ja katsoivat, millainen kaasukehä lopulta syntyisi. Saimme käytännössä saman lopputuloksen kaikissa neljässä tapauksessa, Fegley selittää. Natrium, kalium, piimonoksidi ja lisäksi happi muodostavat suurimman osan kaasukehästä. Lisäksi kaasukehässä uskotaan olevan vähäisempiä määriä ainakin kalsiumia, magnesiumia, alumiinia ja rautaa. Schaeferin ja Fegleyn tekemien tietokonemallien mukaan kivihöyry kuitenkin jäähtyy uudelleen liikkuessaan planeetan kaasukehässä ja putoaa lopulta kivisateena takaisin planeetan pinnalle. Kivet siis kirjaimellisesti tiivistyivät suoraan planeetan kaasukehästä. Sen sijaan, että muodostuisi vesipilviä ja sataisi vesipisaroita, syntyy kivipilviä ja sataa eri kivilajeista muodostuvia pikkuruisia kiviä, Fegley selittää. CoRoT-7b:n sateiden kummallisuus ei kuitenkaan lopu tähän. Planeetalla voi esiintyä kokonainen joukko erilaisia kivisateita. Se, mitä alkuaineita ja minkälaisia kiviä tiivistyy, riippuu nimittäin tiivistymiskorkeudesta. Seuraa pitkän aikavälin sääennuste. Schae ferin mukaan odotettavissa on ainakin lukuisia wollastoniitti-, enstatiitti-, spinellija korundisateita. Esimerkiksi maapallolta löydettävä korundi on jalokivi, joka häviää kovuudessaan vain timantille ja jonka punaista muotoa kutsutaan rubiiniksi. Koska CoRoT-7b:n mineraalit eivät synny suuressa paineessa maan povessa, niiden kiderakenne voi kuitenkin poiketa meille tutuista muodoista. Muista planeetan kaasukehän muodostavista alkuaineista poiketen natrium ja kalium pysyvät höyrynä suhteellisen alhaisissakin lämpötiloissa. Siksi ne eivät missään vaiheessa sada alas, vaan jäävät kaasukehään muodostaen suuria pilviä. Schae fer arvioi, että nämä kaasupilvet voisivat ehkä olla havaittavissa maanpäällisin teleskoopein. Oranssina hehkuvan, aurinkotuulen virittämän natriumkaasun takia CoRoT-7b saattaa itse asiassa muistuttaa kaukaista katulamppua. Nekin nimittäin loistavat virittyneen natriumkaasun valoa. 70 TUNTIA HAVAINTOJA CoRoT-7b-planeetta on saanut nimensä sen löytäneen CoRoT-satelliitin mukaan. Planeetta havaittiin, kun se kulki emotähtensä editse himmentäen hieman siitä tulevaa valoa. Syntyneen varjon avulla tutkijat pystyivät laskemaan eksoplaneetan koon. Planeetan massaa ei kuitenkaan onnistuttu mittaamaan luotaimen tekemistä havainnoista. Tätä varten piti kutsua apuun Euroopan eteläisen observatorion HARPS-laitteis- to (High Accuracy Radial velocity Planet Searcher). Tähtien huojunnasta planeettoja etsivä HARPS sijaitsee Atacaman aavikolla Chilessä, La Sillan observatoriossa, ja se on tähän mennessä löytänyt yhteensä jo yli 75 entuudestaan tuntematonta eksoplaneettaa 30:stä eri planeettakunnasta. Massan selvittämiseksi tutkijat tekivät 106 erillistä 30 60 minuutin mittausta neljän kuukauden kuluessa. Joskus tähteä havaittiin jopa kolme kertaa saman yön aikana. Kyseessä on pisin HARPS-laitteistolla koskaan tehty havaintosarja. Vaikka HARPS on voittamaton, mitä tulee pienten eksoplaneettojen etsimiseen, mittaukset CoRoT-7b:stä paljastuivat niin vaativiksi, että meidän täytyi kerätä 70 tuntia havaintoja, kertoo mittaukset tehneeseen ryhmään kuuluva François Bouchy. Uhkapeli kannatti, sillä vasta massan selvittyä paljastui planeetan tiheys ja sitä kautta sen kivinen olemus ja erikoiset sateet. Tämä on tieteen jännittävimpiä ja hämmästyttävimpiä puolia, näkee puolestaan tutkimusryhmän johtaja Didier Queloz. Halusimme kaikin keinoin selvittää, miltä CoRoT-satelliitin havaitsema kohde näyttää, ja löysimme ainutlaatuisen järjestelmän. ROPPAKAUPALLA PLANEETTOJA Mittava havaintosarja paljasti myös toisen planeetan samasta Yksisarvisen tähdistössä 17

Tällä planeetalla sataa kiviä Maan tulivuorista purkautuvien magmavirtojen lämpötila on tavallisesti vain 700 1 200 celsiusastetta. CoRoT-7b -planeetan lämpötila sen sijaan nousee päiväpuolella luultavasti jopa yli 2 000 asteeseen. Kuva G. Brad Lewis /SPL / SKOY sijaitsevasta planeettakunnasta. Hieman sisartaan ulommalla radalla kulkeva CoRoT- 7c kiertää emotähtensä vajaassa neljässä päivässä ja on noin kahdeksan Maan massainen. Massansa puolesta myös sen lasketaan kuuluvan supermaapallojen joukkoon. Toisin kuin naapurinsa, CoRoT-7c ei kulje maapallolta katsottuna koskaan kotitähtensä editse. Siksi sen kokoa ja tiheyttä ei ole pystytty mittaamaan samalla menetelmällä. HARPS-laitteiston tuoreet löydöt eivät kuitenkaan ole jääneet tähän. Lokakuussa Euroopan eteläinen observatorio ilmoitti 30 uuden eksoplaneetan ja kahden niin sanotun ruskean kääpiön löytymisestä HARPSin avulla. Pelkkä planeettojen luku määrä löi tutkijat ällikällä. Pienimmät planeetoista ovat noin viiden Maan massaisia ja suurimmat noin viiden Jupiterin massaisia. Uutinen nosti tunnettujen eksoplaneettojen lukumäärän yli neljäänsataan. Erityistä nyt löydetyissä planeetoissa oli pienten kohteiden suhteellisen suuri määrä. Havaintojemme perusteella ainakin 40 prosentilla auringonkaltaisista tähdistä on pienimassaisia planeettoja, selittää Stephane Udry Geneven yliopistosta. Tämä tieto on erittäin tärkeä, koska se merkitsee, että pienimassaisia planeettoja on käytännössä kaikkialla. Erityisen kiinnostavaa on myös se, että teoreettiset mallit ennustavat näiden planeettojen olemassaolon ja me löydämme niitä, mutta lisäksi samat mallit ennustavat vieläkin keveämpiä Maan kaltaisia planeettoja. Alle kahdenkymmenen Maan massaisia eksoplaneettoja tunnetaan nykyään 28 kappaletta, ja HARPS on löytänyt näistä peräti 24. Useimmat nyt löydetyistä pienimassaisista planeetoista sijaitsevat monen planeetan aurinkokunnissa, joista suurimmassa jopa viisi planeettaa kiertää samaa tähteä. Tähän mennessä kaikki varmistetut planeetat sijaitsevat omassa Linnunradassamme. Kaukaisin niistä on noin 21 000 valovuoden päässä. Ainakin 40 prosentilla Auringon kaltaisista tähdistä on pienimassaisia planeettoja. Tutkijoilla on silti viitteitä myös paljon etäisemmistä planeetoista. Tänä kesänä onnistuttiin tutkimaan naapurissamme Andromedan galaksissa sijaitsevaa planeettamaista kohdetta niin sanotun painovoimalinssi-ilmiön avulla. Mittausten perusteella kyseessä on 2,5 miljoonan valovuoden päässä sijaitseva kuuden Jupiterin massainen kohde. Havaintoa ei kuitenkaan pystytä varmistamaan, joten kappale ei tule luultavasti koskaan saamaan virallista asemaa planeettojen joukossa. Etäisimmät merkit planeetoista löytyvät kuitenkin useiden miljardien valovuosien päästä, ajalta ennen kuin aurinkokuntamme alkoi edes muodostua. Marraskuussa julkaistun tutkimuksen mukaan kaukaisista galakseista tulleessa säteilyssä näkyy jälkiä tähtiä kylmemmästä, mutta tähtienvälistä pölyä kuumemmasta aineesta. Tutkimuksen julkaissut ryhmä uskoo, että paras selitys havainnolle ovat tähtien ympärille kietoutuneet, planeettoja synnyttävät materiakiekot. Jos tulkinta on oikea, maailmankaikkeus näyttää olleen täynnä planeettoja jo suhteellisen varhaisista ajoista asti. Se antaisi myös tilaisuuden tutkia planeettakuntien kehittymistä kauan ennen oman aurinkokuntamme muodostumista. 18