- Zj + +i, virittämän suunnikkaan pinta-ala. 2x + Y: 4. 3x 2y:2 -x+y:-1. 3x + y:5. -x +2y:2. 4x + Y: 4. voitto : qr Aq+ rr q. : -!A_'r.



Samankaltaiset tiedostot
Suora. Määritelmä. Oletetaan, että n = 2 tai n = 3. Avaruuden R n suora on joukko. { p + t v t R},

Oikeustieteellisen tiedekunnan opinto-opas 2011 HELSINGIN YLIOPISTON OHJELMA 2012

Lineaarialgebra MATH.1040 / trigonometriaa

Talousmatematiikan perusteet, ORMS1030

Pienimmän Neliösumman menetelmä (PNS)

Tehtäväsarja I Kertaa tarvittaessa materiaalin lukuja 1 3 ja 9. Tarvitset myös luvusta 4 määritelmän 4.1.

Ortogonaaliset matriisit, määritelmä 1

Ratkaisuehdotukset LH 7 / vko 47

YLIOPPILASTUTKINTO MATEMATIIKAN KOE - PITKÄ OPPIMÄÄRÄ

s = 11 7 t = = 2 7 Sijoittamalla keskimmäiseen yhtälöön saadaan: k ( 2) = 0 2k = 8 k = 4

Ristitulolle saadaan toinen muistisääntö determinantin avulla. Vektoreiden v ja w ristitulo saadaan laskemalla determinantti

Harjoitus Nimi: Op.nro: Tavoite: Gradientin käsitteen sisäistäminen ja omaksuminen.

Matematiikka B2 - Avoin yliopisto

BM20A5800 Funktiot, lineaarialgebra ja vektorit Harjoitus 4, Syksy 2016

Ominaisarvoon 4 liittyvät ominaisvektorit ovat yhtälön Ax = 4x eli yhtälöryhmän x 1 + 2x 2 + x 3 = 4x 1 3x 2 + x 3 = 4x 2 5x 2 x 3 = 4x 3.

Lineaarialgebra, kertausta aiheita

Numeeriset menetelmät TIEA381. Luento 5. Kirsi Valjus. Jyväskylän yliopisto. Luento 5 () Numeeriset menetelmät / 28

MAY1 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty Julkaiseminen sallittu vain koulun suljetussa verkossa.

Geometriset avaruudet Pisteavaruus, vektoriavaruus ja koordinaattiavaruus

3 Suorat ja tasot. 3.1 Suora. Tässä luvussa käsitellään avaruuksien R 2 ja R 3 suoria ja tasoja vektoreiden näkökulmasta.

Matriisit ja vektorit Matriisin käsite Matriisialgebra. Olkoon A = , B = Laske A + B, , 1 3 3

MAA15 Vektorilaskennan jatkokurssi, tehtävämoniste

1. Etsi seuraavien funktioiden kriittiset pisteet ja tutki niiden laatu: (a.) f(x,y) = 20x 2 +10xy +5y 2 (b.) f(x,y) = 4x 2 2y 2 xy +x+2y +100

ääexgäl*ääääe ääg I ä*fre3 I äee iäa ää-äälgü il leääö ää; i ääs äei:ä ä+ i* äfä g u ;; + EF'Hi: 2 ä ; s i r E:;g 8ää-i iää: Ffärg',

Luento 9: Yhtälörajoitukset optimoinnissa

Piiri K 1 K 2 K 3 K 4 R R

Ratkaisu: Ensimmäinen suunta. Olkoon f : R n R m jatkuva eli kaikilla ε > 0 on olemassa sellainen δ > 0, että. kun x a < δ. Nyt kaikilla j = 1,...

Insinöörimatematiikka D

Harjoitus Tarkastellaan luentojen Esimerkin mukaista työttömyysmallinnusta. Merkitään. p(t) = hintaindeksi, π(t) = odotettu inflaatio,

1.1 Vektorit. MS-A0007 Matriisilaskenta. 1.1 Vektorit. 1.1 Vektorit. Reaalinen n-ulotteinen avaruus on joukko. x 1. R n. 1. Vektorit ja kompleksiluvut

Taloustieteen perusteet 31A Ratkaisut 3, viikko 4

Ortogonaalisen kannan etsiminen

MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 7: Pienimmän neliösumman menetelmä ja Newtonin menetelmä.

Matematiikan perusteet taloustieteilij oille I

Kurssikoe on maanantaina Muista ilmoittautua kokeeseen viimeistään 10 päivää ennen koetta! Ilmoittautumisohjeet löytyvät kurssin kotisivuilla.

p'ø):{. P: f (ù: 10 Thlousmatematiikan perusteet, orrvrs ro:o - 5) - O'\lq - 4x, kun g(x) :7x2l5x-3, kun ft(.r) :3x. (x2 f'(3), g'(*), h'(*),

Havainnollistuksia: Merkitään w = ( 4, 3) ja v = ( 3, 2). Tällöin. w w = ( 4) 2 + ( 3) 2 = 25 = 5. v = ( 3) = 13. v = v.

(1.1) Ae j = a k,j e k.

a b c d

Matemaattinen Analyysi

Harjoitustehtävien ratkaisuja

Matemaattinen Analyysi

(d) f (x,y,z) = x2 y. (d)

Tekijä Pitkä matematiikka On osoitettava, että jana DE sivun AB kanssa yhdensuuntainen ja sen pituus on 4 5

ERIKOISIA MERKKEJÄ Kirjoita harjoitukset fontilla Times New Roman, pistekoko16, ellei toisin mainita.

Neliömatriisin adjungaatti, L24

Lineaarialgebra MATH.1040 / voima

Paikannuksen matematiikka MAT

Yhteenlaskun ja skalaarilla kertomisen ominaisuuksia

Suora. Hannu Lehto. Lahden Lyseon lukio

Aki Taanila LINEAARINEN OPTIMOINTI

Voitonmaksimointi esimerkkejä, L9

4. Lasketaan transienttivirrat ja -jännitteet kuvan piiristä. Piirielimien arvot ovat C =

Harjoitusten 5 vastaukset

Taso 1/5 Sisältö ESITIEDOT: vektori, koordinaatistot, piste, suora

MS-C1340 Lineaarialgebra ja

läheisyydessä. Piirrä funktio f ja nämä approksimaatiot samaan kuvaan. Näyttääkö järkeenkäyvältä?

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt

Insinöörimatematiikka D

min x x2 2 x 1 + x 2 1 = 0 (1) 2x1 1, h = f = 4x 2 2x1 + v = 0 4x 2 + v = 0 min x x3 2 x1 = ± v/3 = ±a x 2 = ± v/3 = ±a, a > 0 0 6x 2

Koontitehtäviä luvuista 1 9

Avaruuden kolme sellaista pistettä, jotka eivät sijaitse samalla suoralla, määräävät

Numeeriset menetelmät TIEA381. Luento 6. Kirsi Valjus. Jyväskylän yliopisto. Luento 6 () Numeeriset menetelmät / 33

Talousmatematiikan perusteet: Luento 9. Matriisien peruskäsitteet Yksinkertaiset laskutoimitukset Transponointi Matriisitulo

802118P Lineaarialgebra I (4 op)

Ristitulo ja skalaarikolmitulo

811120P Diskreetit rakenteet

MS-A0004/MS-A0006 Matriisilaskenta Laskuharjoitus 6 / vko 42

Matematiikan tukikurssi

BM20A0700, Matematiikka KoTiB2

keskenään isomorfiset? (Perustele!) Ratkaisu. Ovat. Tämän näkee indeksoimalla kärjet kuvan osoittamalla tavalla: a 1 b 3 a 5

Määritelmä Olkoon T i L (V i, W i ), 1 i m. Yksikäsitteisen lineaarikuvauksen h L (V 1 V 2 V m, W 1 W 2 W m )

π( f (x)) 2 dx π(x 2 + 1) 2 dx π(x 4 + 2x 2 + 1)dx ) = 1016π 15

Luento 1: Optimointimallin muodostaminen; optimointitehtävien luokittelu

Numeeriset menetelmät

Ville Turunen: Mat Matematiikan peruskurssi P1 1. välikokeen alueen teoriatiivistelmä 2007

Tampereen yliopisto Tietokonegrafiikka 2013 Tietojenkäsittelytiede Harjoitus

Juuri 4 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty Kertaus. b) B = (3, 0, 5) K2. 8 ( 1)

r > y x z x = z y + y x z y + y x = r y x + y x = r

Lineaarialgebra II, MATH.1240 Matti laaksonen, Lassi Lilleberg

Lineaarialgebra ja matriisilaskenta I

3 Yhtälöryhmä ja pistetulo

Pienimmän neliösumman menetelmä (PNS)

Lineaarialgebra ja differentiaaliyhtälöt Harjoitus 4 / Ratkaisut

Matematiikan tukikurssi

Vektorien pistetulo on aina reaaliluku. Esimerkiksi vektorien v = (3, 2, 0) ja w = (1, 2, 3) pistetulo on

Ominaisarvo ja ominaisvektori

ax + y + 2z = 0 2x + y + az = b 2. Kuvassa alla on esitetty nesteen virtaus eräässä putkistossa.

Matemaattinen Analyysi

MS-A0102 Differentiaali- ja integraalilaskenta 1

origo III neljännes D

Harjoitus 8: Excel - Optimointi

Matriisilaskenta Laskuharjoitus 1 - Ratkaisut / vko 37

Lineaarialgebra ja matriisilaskenta I, HY Kurssikoe Ratkaisuehdotus. 1. (35 pistettä)

MS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 4: Ketjusäännöt ja lineaarinen approksimointi

802120P Matriisilaskenta (5 op)

Solmu 3/2001 Solmu 3/2001. Kevään 2001 ylioppilaskirjoitusten pitkän matematiikan kokeessa oli seuraava tehtävä:

MATEMATIIKAN KOE, LYHYT OPPIMÄÄRÄ HYVÄN VASTAUKSEN PIIRTEITÄ

3 = Lisäksi z(4, 9) = = 21, joten kysytty lineaarinen approksimaatio on. L(x,y) =

Transkriptio:

Vaasan yliopisto, syksy 2014 Lineaarialgebra, MAH. lo4o 7. harjoitus, (viikko 2, 5.1.-9.1.2015 R01: ma 12-14 Dl15, R02: ke 14-16 D115, R03: to 10-12 F651 Viimeisellä luennolla käsiteltiin opetusmonisteen sivut 116-120, sekä kalvosarja PNS, joka löytyy kurssin verkkosivulta. Näiden avulla käsittele seuraavat tehtävät. Alla olevien tehtävien lisäksi harjoituksissa käydään lyhyesti läpi toisen välikokeen tehtävät. 1. Laske vektoreiden d :2î + Zj -i iat : 5î - Zj + +i, virittämän suunnikkaan pinta-ala. 2. Suora Z kulkee pisteiden Pr : (1,2,-3 ja P2: (0, -1,4 kautta. Mikä on pisteen Q : (3,2,0 etäisyys suorasta L? 3. Suora Z1 kulkee pisteiden Pr : (1,2,-3 ja P2: (0,-1,4 kautta ja suora Z2 kulkee pisteiden P: : (5, -1, 1 ja Pa: (-2,1,1 kautta. Laske suorien välinen etäisyys. 4. Etsi muuttujille x ja y sellaiset arvot, että seuraavat yhtälöt toteutuvat niin hyvin kuin mahdollista "Pienimmän Neliösumman Mielessä" (Voit ottaa mallia PNS-kalvosarjan sivulta 9. 2x + Y: 4 3x 2y:2 -x+y:-1 3x + y:5 -x +2y:2 4x + Y: 4 5. PNS -kalvosarjan lopussa käsiteltiin monen tuotteen yhteiskysynnän vaikutusta tuottoihin. Esimerkissä ei lainkaan huomioitu kustannuksia. Jos kustannuksetkin huomioidaan, niin yrityksen voittoa voidaan yksinkertaisessa tapauksessa mallintaa lausekkeella voitto : qr Aq+ rr q. Voidaan osoittaa, että voiton lauseke'saa suurimman mahdollisen arvonsa, kun valmistusmäärä vektoriksi q valitaan Qoptimi : -!A_'r. 2 Sijoita eoptimi:nlauseke voiton lausekkeese en q:îpaikalle ja sievennä lauseketta niin paljon kuin mahdollista. Voit nyt olettaa, etta A on symmetrinen (Ar : A. 6. Tiarkastellaan esimerkkinä kahden tuotteen tilannetta, jossa 41 on ensimmåiisen tuotteen valmistusmäärä viikoss a ja qz on toisen tuotteen valmistusmä2irä viikossä, ja voitto-lausekkeessa edellä esiintyvät matriisit ja vektorit ovat q: ('r:, ^: ( ;,i,j,:yr, 1: ( ;S a Laske nyt optimaalinen tuotantovektori qoo, ^ ja voitto (kuukaudessa kun tuotanto on optimivektorin mukainen.

b Antamalla q1:le ja q2:lle enlausia arvoja, yritä löytää arvot, joilla voitto tulisi vielä isommaksi kuin a-kohdassa. 7. Laske voiton lausekkeen voitto:qraq+,rq: ( qt,,1(;ié t;fr G:+ ( 50 ^ (rr: matriisitulot niin, että saat voiton lausekkeen kahden muuttujan tavallisena funktiona.

llli llt- Vaasan yliopisto, syksy 2014 iillllil bra, MATH.to4o 7. harjoitus, (viikko 2, 5.1.-9.1.2015 R01: ma l2-l4 Dl15, R02: ke 14-16 Dl15, R03: to 10-12 F651 Viimeisellä luennolla käsiteltiin opetusmonisteen sivut 1lÇ120, sekä kalvosarja PNS, joka löytyy kurssin verkkosivulta. Nåüden avulla käsittele seuraavat tehtävät. Alla olevien tehtävien lisäksi harjoituksissa käydään lyhyesti läpi toisen välikokeen tehtävät. 1. Laske vektoreiden d:2-í+li_i,iat:5-í-zî++i virittämän suunnikkaan pinta-ala.

i-l,i''l 3. Suora L1 kulkee pisteiden Pr : (1,2,-3 ja P2: (0,-1,4 kautta ja suora kulkee pisteiden P3 : (5,- 1, 1 ja Pa: (-2,1,1 kautta. Laske suorien välüen etåiisyys. a 3 l/ x ù (

4. Etsi muutfiille x ja y sellaiset arvot, että seuraavat yhtälöt toteutuvat niin hyvin kuin mahdollista "Pienimmän Neliösumman Mielessä" (Voit ottaa mallia PNS-kalvosarjan sivulta 9. 2x + y - 4 3x 2y: 2 -x + Y: -l 3x + y:5 -x +2Y:2 4x + y: 4

5. PNS -kalvosarjan lopussa käsiteltiin monen tuotteen yhteiskysynnän vaikutusta tuottoihin. Esimerkissä ei lainkaan huomioitu kustannuksia. Jos kustannuksetkin huomioidaan, niin yrityksen voittoa voidaan yksinkertaisessa tapauksessa mallintaa lausekkeella voitto: qraq+ rr q. Voidaan osoittaa, että voiton lauseke saa suurimman mahdollisen arvonsa, kun valmistusmäärä vektoriksi q valitaan 1, QoPtimi : --A-'f ' Sijoita eoptimi;ír lauseke voiton lausekkeeseen q:n paikalle ja sievennä lauseketta niin paljon kuin mahdollista. Voit nyt olettaa, etta A on symmetrinen (,,1r : A. Vt- A o X;6 c L(ñ ' t'r Æ l * l"r 4\' f (- A l J z ðx yl 2_ -t rira- t 4 r t.rá-' r 6. Tarkastellaan esimerkkinä kahden tuotteen tilannetta, jossa 41 on ensimmäisen tuotteen valmistusmäåirä viikossa ja qz on toisen tuotteen valmistusmäåirâ viikossä, ja voitto-lausekkeessa edellä esiintyvät matriisit ja vektorit ovat A- -0,1 0,02 0,02-0,2, l: 50 20 a Laske nyt optimaalinen tuotantovektori qoo, ^ ja voitto (kuukaudessa kun tuotanto on optimivektorin mukainen. b Antamalla q1:lle ja q2:lle enlusia arvoja, yritä löytää arvot, joilla voitto tulisi vielä isommaksi kuin a-kohdassa. A (: o,t ('csrr- o,qz -( -O o? - O' o - oo!? C Oot oa toi 6 Lõ -z 7 -tò a? o -c

o E z Ò ô L, 6 0Z + 2 f 4/ 4 ( Ò T 4 z -f? \ ldl ø t l (..\ q o o + l vl

+ q_l= q_2= voitto = 265,3 76,5 7397,96 250 76,5 7374,55 240 76,5 7333,95 270 76,5 7395,75 280 76,5 7376,35 300 76,5 7277,55 265,3 70 7399,43 265,3 60 7343,3L 265,3 g0 7395,55 265,3 g0 736L,67 265,3 100 7297,79 265,3 70 7399,43 300 100 7200,00 300 50 7100,00 200 100 6800,00 200 200 3600,00 50 50 2850,00 lr 7. Laske voiton lausekkeen voitto : qr Aq + rr q : ( er * (;i; \fr G:+ ( so ^ (rr: -L matriisitulot nün, että saat voiton lausektceen kahden muuttujan tavallisena funktiona. o z + o 2 -l ò o