Topologies on pseudoinnite paths

Samankaltaiset tiedostot
Bounds on non-surjective cellular automata

The CCR Model and Production Correspondence

Returns to Scale II. S ysteemianalyysin. Laboratorio. Esitelmä 8 Timo Salminen. Teknillinen korkeakoulu

The Viking Battle - Part Version: Finnish

Capacity Utilization

Efficiency change over time

16. Allocation Models

Strict singularity of a Volterra-type integral operator on H p

On instrument costs in decentralized macroeconomic decision making (Helsingin Kauppakorkeakoulun julkaisuja ; D-31)

Kvanttilaskenta - 2. tehtävät

On instrument costs in decentralized macroeconomic decision making (Helsingin Kauppakorkeakoulun julkaisuja ; D-31)

On instrument costs in decentralized macroeconomic decision making (Helsingin Kauppakorkeakoulun julkaisuja ; D-31)

Effective Domains and Admissible Domain Representations

800323A KUNTALAAJENNUKSET OSA II FIELD EXTENSIONS PART II

Other approaches to restrict multipliers

Uusi Ajatus Löytyy Luonnosta 4 (käsikirja) (Finnish Edition)

Expression of interest

Alternative DEA Models

National Building Code of Finland, Part D1, Building Water Supply and Sewerage Systems, Regulations and guidelines 2007

Salasanan vaihto uuteen / How to change password

LYTH-CONS CONSISTENCY TRANSMITTER

Operatioanalyysi 2011, Harjoitus 4, viikko 40

Kvanttilaskenta - 1. tehtävät

anna minun kertoa let me tell you

Houston Journal of Mathematics. University of Houston Volume, No.,

Choose Finland-Helsinki Valitse Finland-Helsinki

Results on the new polydrug use questions in the Finnish TDI data

FinFamily Installation and importing data ( ) FinFamily Asennus / Installation

Topics on Hyperbolic Function Theory in Cl_{n+1,0}

Ohjelmointikielet ja -paradigmat 5op. Markus Norrena

Travel Getting Around

S SÄHKÖTEKNIIKKA JA ELEKTRONIIKKA

2 1/ /2 ; (a) Todista, että deg P (x)q(x) = deg P (x) + deg Q(x). (b) Osoita, että jos nolla-polynomille pätisi. deg 0(x) Z, Z 10 ; Z 10 [x];

Constructive Alignment in Specialisation Studies in Industrial Pharmacy in Finland

SELL Student Games kansainvälinen opiskelijaurheilutapahtuma

x = y x i = y i i = 1, 2; x + y = (x 1 + y 1, x 2 + y 2 ); x y = (x 1 y 1, x 2 + y 2 );

MUSEOT KULTTUURIPALVELUINA

Valuation of Asian Quanto- Basket Options

Toppila/Kivistö Vastaa kaikkin neljään tehtävään, jotka kukin arvostellaan asteikolla 0-6 pistettä.

Alternatives to the DFT

Uusia kokeellisia töitä opiskelijoiden tutkimustaitojen kehittämiseen

Mat Seminar on Optimization. Data Envelopment Analysis. Economies of Scope S ysteemianalyysin. Laboratorio. Teknillinen korkeakoulu

A DEA Game II. Juha Saloheimo S ysteemianalyysin. Laboratorio. Teknillinen korkeakoulu

Capacity utilization

Voice Over LTE (VoLTE) By Miikka Poikselkä;Harri Holma;Jukka Hongisto

1. Liikkuvat määreet

Returns to Scale Chapters

AYYE 9/ HOUSING POLICY

Information on Finnish Language Courses Spring Semester 2017 Jenni Laine

Teacher's Professional Role in the Finnish Education System Katriina Maaranen Ph.D. Faculty of Educational Sciences University of Helsinki, Finland

Alueellinen yhteistoiminta

Green Growth Sessio - Millaisilla kansainvälistymismalleilla kasvumarkkinoille?

FinFamily PostgreSQL installation ( ) FinFamily PostgreSQL

1.3 Lohkorakenne muodostetaan käyttämällä a) puolipistettä b) aaltosulkeita c) BEGIN ja END lausekkeita d) sisennystä

Counting quantities 1-3

C++11 seminaari, kevät Johannes Koskinen

1.3Lohkorakenne muodostetaan käyttämällä a) puolipistettä b) aaltosulkeita c) BEGIN ja END lausekkeita d) sisennystä

11. Models With Restricted Multipliers Assurance Region Method

Counting quantities 1-3

You can check above like this: Start->Control Panel->Programs->find if Microsoft Lync or Microsoft Lync Attendeed is listed

Ajettavat luokat: SM: S1 (25 aika-ajon nopeinta)

812336A C++ -kielen perusteet,

Convex analysis and dual problems

S SÄHKÖTEKNIIKKA JA ELEKTRONIIKKA

OP1. PreDP StudyPlan

Nuku hyvin, pieni susi -????????????,?????????????????. Kaksikielinen satukirja (suomi - venäjä) ( (Finnish Edition)

Huom. tämä kulma on yhtä suuri kuin ohjauskulman muutos. lasketaan ajoneuvon keskipisteen ympyräkaaren jänteen pituus

7.4 Variability management

Vertaispalaute. Vertaispalaute, /9

Tilausvahvistus. Anttolan Urheilijat HENNA-RIIKKA HAIKONEN KUMMANNIEMENTIE 5 B RAHULA. Anttolan Urheilijat

Gap-filling methods for CH 4 data

Network to Get Work. Tehtäviä opiskelijoille Assignments for students.

S SÄHKÖTEKNIIKKA JA ELEKTRONIIKKA

Information on preparing Presentation

S SÄHKÖTEKNIIKKA JA ELEKTRONIIKKA

Operatioanalyysi 2011, Harjoitus 2, viikko 38

HARJOITUS- PAKETTI A

Operatioanalyysi 2011, Harjoitus 3, viikko 39

Sisällysluettelo Table of contents

Security server v6 installation requirements

Oma sininen meresi (Finnish Edition)

Tietorakenteet ja algoritmit

Käytön avoimuus ja datanhallintasuunnitelma. Open access and data policy. Teppo Häyrynen Tiedeasiantuntija / Science Adviser

TOOLS. Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO TOOLS 1 / 28

make and make and make ThinkMath 2017

1. SIT. The handler and dog stop with the dog sitting at heel. When the dog is sitting, the handler cues the dog to heel forward.

Security server v6 installation requirements

FIS IMATRAN KYLPYLÄHIIHDOT Team captains meeting

TIETEEN PÄIVÄT OULUSSA

Kaivostoiminnan eri vaiheiden kumulatiivisten vaikutusten huomioimisen kehittäminen suomalaisessa luonnonsuojelulainsäädännössä

Statistical design. Tuomas Selander

Information on Finnish Language Courses Spring Semester 2018 Päivi Paukku & Jenni Laine Centre for Language and Communication Studies

KONEISTUSKOKOONPANON TEKEMINEN NX10-YMPÄRISTÖSSÄ

Infrastruktuurin asemoituminen kansalliseen ja kansainväliseen kenttään Outi Ala-Honkola Tiedeasiantuntija

MEETING PEOPLE COMMUNICATIVE QUESTIONS

Särmäystyökalut kuvasto Press brake tools catalogue

MRI-sovellukset. Ryhmän 6 LH:t (8.22 & 9.25)

OFFICE 365 OPISKELIJOILLE

VAASAN YLIOPISTO Humanististen tieteiden kandidaatin tutkinto / Filosofian maisterin tutkinto

Telecommunication Software

Transkriptio:

Topologies on pseudoinnite paths Andrey Kudinov Institute for Information Transmission Problems, Moscow National Research University Higher School of Economics, Moscow Moscow Institute of Physics and Technology June 14, 216

PLAN 1. Language 2. Topological semantics 3. Products of logics 4. Neighborhood frames 5. Without seriality 6. Dense topological spaces 7. Logic S5 8. Ideas of the proof

Language and logics φ ::= p φ φ φ iφ, i = 1, 2., and i are expressible in the usual way. Normal modal logic. K n denotes the minimal normal modal logic with n modalities and K = K 1. L 1 and L 2 two modal logics with one modality then the fusion of these logics is dened as L 1 L 2 = K 2 + L 1 + L 2 ; where L i is the set of all formulas from L i where in all formulas is replaced by i.

Topological semantics We can dene topology on set X by specifying a closure operator C : 2 X 2 X, satisfying the Kuratowski axioms: 1. C( ) =, 2. A C(A), for A X, p p 3. C(A B) = C(A) C(B), for A, B X, (p q) p q 4. C ( C(A) ) C(A). A X, p p Logic S4 In topological semantics for modal logic closure operator correspond to. Topological model (X, θ), where X = (X, C) topological space: p θ(p) X θ(φ ψ) = θ(φ) θ(ψ) θ( φ) = X \ θ(φ) θ( φ) = C(θ(φ)). X = φ θ(θ(φ) = X), Log(X) = {φ X = φ}.

Topological semantics We can dene topology on set X by specifying a closure operator C : 2 X 2 X, satisfying the Kuratowski axioms: 1. C( ) =, 2. A C(A), for A X, p p 3. C(A B) = C(A) C(B), for A, B X, (p q) p q 4. C ( C(A) ) C(A). A X, p p Logic S4 In topological semantics for modal logic closure operator correspond to. Topological model (X, θ), where X = (X, C) topological space: p θ(p) X θ(φ ψ) = θ(φ) θ(ψ) θ( φ) = X \ θ(φ) θ( φ) = C(θ(φ)). X = φ θ(θ(φ) = X), Log(X) = {φ X = φ}.

Alexandro topology On a transitive reexive Kripke frame F = (W, R) we can dene topology, i.e. closure operator: C F (A) = R 1 (A). It will be an Alexandro topology (any intersection of open sets is open, all points have minimal neighborhood). Lemma F = φ (W, C F ) = φ. We dene T op(f ) = (W, C F ) Completeness of S4 w.r.t. all Alexandro spaces. Many topologies are not Alexandro: R n, Cantor space, Q or any metric space.

Alexandro topology On a transitive reexive Kripke frame F = (W, R) we can dene topology, i.e. closure operator: C F (A) = R 1 (A). It will be an Alexandro topology (any intersection of open sets is open, all points have minimal neighborhood). Lemma F = φ (W, C F ) = φ. We dene T op(f ) = (W, C F ) Completeness of S4 w.r.t. all Alexandro spaces. Many topologies are not Alexandro: R n, Cantor space, Q or any metric space.

Alexandro topology On a transitive reexive Kripke frame F = (W, R) we can dene topology, i.e. closure operator: C F (A) = R 1 (A). It will be an Alexandro topology (any intersection of open sets is open, all points have minimal neighborhood). Lemma F = φ (W, C F ) = φ. We dene T op(f ) = (W, C F ) Completeness of S4 w.r.t. all Alexandro spaces. Many topologies are not Alexandro: R n, Cantor space, Q or any metric space.

Derivational semantics We can dene topological space using derivative operator d : 2 X 2 X, where d(a) is the set of all limit points of A. In a similar way we dene derivational semantics: θ( φ) = d(θ(φ)) The logic of all topological space is wk4 = K + p p p (Esakia'1981). The logic of Q, Cantor space (or any dense-in-itself zero-dimensional metric space) is D4 = K + p p + (Shehtman'199).

The product of Kripke frames For two frames F 1 = (W 1, R 1) and F 2 = (W 2, R 2) F 1 F 2 = (W 1 W 2, R 1, R 2), where (a 1, a 2)R 1(b 1, b 2) a 1R 1b 1 & a 2 = b 2 (a 1, a 2)R 2(b 1, b 2) a 1 = b 1 & a 2R 2b 2 For two logics L 1 and L 2 L 1 L 2 = Log({F 1 F 2 F 1 = L 1 & F 2 = L 2}) (Shehtman, 1978) For two classes of frames F 1 and F 2 Log({F 1 F 2 F 1 F 1 & F 2 F 2}) Log(F 1) Log(F 2)+ + 1 2p 1 2p + 1 2p 2 1p. K K = K K + 1 2p 1 2p + 1 2p 2 1p S4 S4 = S4 S4 + 1 2p 1 2p + 1 2p 2 1p.

The product of topological spaces (van Benthem et al, 25) For two topological space X 1 = (X 1, τ 1) and X 2 = (X 2, τ 2) X 1 X 2 = (X 1 X 2, τ 1, τ 2 ), where τ 1 has base {U 1 x 2 U 1 τ 1 & x 2 X 2} τ 2 has base {x 1 U 2 x 1 X 1 & U 2 τ 2}

The product of topological spaces (van Benthem et al, 25) For two topological space X 1 = (X 1, τ 1) and X 2 = (X 2, τ 2) X 1 X 2 = (X 1 X 2, τ 1, τ 2 ), where τ 1 has base {U 1 x 2 U 1 τ 1 & x 2 X 2} y τ 2 has base {x 1 U 2 x 1 X 1 & U 2 τ 2} x

The product of topological spaces (van Benthem et al, 25) For two topological space X 1 = (X 1, τ 1) and X 2 = (X 2, τ 2) X 1 X 2 = (X 1 X 2, τ 1, τ 2 ), where τ 1 has base {U 1 x 2 U 1 τ 1 & x 2 X 2} For two logics L 1 and L 2 τ 2 has base {x 1 U 2 x 1 X 1 & U 2 τ 2} L 1 t L 2 = Log({X 1 X 2 X 1 = L 1 & X 2 = L 2} S4 t S4 = Log(Q Q) = S4 S4 (van Benthem et al, 25) Log(R R) S4 S4 (Kremer, 21?) Log(Cantor Cantor) S4 S4 d-logic of product of topological spaces was considered by L. Uridia (211). Log d (Q Q) = D4 D4 Generalization to neighborhood frames was done by K. Sano (211).

Known results Theorem (212) Let L 1 and L 2 be from the set {D, T, D4, S4} then L 1 n L 2 = L 1 L 2. Not straightforward but still a Corollary In derivational semantics 1. D4 d D4 = D4 D4. 2. [Uridia'211] Log d (Q Q) = D4 D4

Topological semantics based on closure operator or derivative operator can be generalized in the neighborhood semantics. We can consider neighborhood function τ : X 2 2X. For x X τ(x) is a set of neighborhoods of x. It connected with C is the following way: A τ(x) x I(A), where I(A) = X \ C(X \ A). And for derivational semantics A τ(x) x d(a), where d(a) = X \ d(x \ A).

Neighborhood frames A (normal) neighborhood frame (or an n-frame) is a pair X = (X, τ), where X ; τ : X 2 2X, such that τ(x) is a lter on X; τ neighborhood function of X, τ(x) neighborhoods of x. Filter on X: nonempty F 2 X such that 1) U F & U V V F 2) U, V F U V F (lter base) The neighborhood model (n-model) is a pair (X, V ), where X = (X, τ) is a n-frame and V : P V 2 X is a valuation. Similar: neighborhood 2-frame (n-2-frame) is (X, τ 1, τ 2) such that τ i is a neighborhood function on X for each i. Validity in model: M, x = iψ V τ i(x) y V (M, y = ψ). M = ϕ X = ϕ X = L Log(C) = {ϕ X = ϕ for some X C} nv (L) = {X X is an n-frame and X = L}

Connection with Kripke frames Denition Let F = (W, R) be a Kripke frame. We dene neighborhood frame N (F ) = (W, τ) as follows. For any w W τ(w) = {U R(w) U W }. Lemma Let F = (W, R) be a Kripke frame. Then Log(N (F )) = Log(F ).

Bounded morphism for n-frames Denition Let X = (X, τ 1,...) and Y = (Y, σ 1,...) be n-frames. Then function f : X Y is a bounded morphism if 1. f is surjective; 2. for any x X and U τ i(x) f(u) σ i(f(x)); 3. for any x X and V σ i(f(x)) there exists U τ i(x), such that f(u) V. In notation f : X Y. Lemma If f : X Y then Log(Y) Log(X).

Not always fusion It is not the case for logic K! Lemma For any two n-frames X 1 and X 2 X 1 X 2 = 1 2 1. And even more, for any closed 1-free formula φ and any closed 2-free formula ψ X 1 X 2 = φ 1φ, X 1 X 2 = ψ 2ψ. Proof. X 1 X 2, (x, y) = 1 τ 1(x, y) τ 1(x) y X 2 ( τ 1(x, y )) y X 2 (X 1 X 2, (x, y ) = 1 ) = X 1 X 2, (x, y) = 2 1. Hence, X 1 X 2 = 1 2 1.

Not always fusion It is not the case for logic K! Lemma For any two n-frames X 1 and X 2 X 1 X 2 = 1 2 1. And even more, for any closed 1-free formula φ and any closed 2-free formula ψ X 1 X 2 = φ 1φ, X 1 X 2 = ψ 2ψ. Proof. Since ψ does not contain neither 2, nor variables, its value does not depend on the second coordinate. Let F = X 1 X 2. So F, (x, y) = ψ, then y (F, (x, y ) = ψ), hence, F, (x, y) = 2ψ.

Not always fusion Lemma For any two n-frames X 1 and X 2 X 1 X 2 = 1 2 1. And even more, for any closed 1-free formula φ and any closed 2-free formula ψ X 1 X 2 = φ 1φ, X 1 X 2 = ψ 2ψ. Denition For two unimodal logics L 1 and L 2, we dene L 1, L 2 = L 1 L 2 +, where = {φ 2φ φ is closed and 2-free} {ψ 1ψ ψ is closed and 1-free}. Lemma For any two normal modal logics L 1 and L 2 L 1, L 2 L 1 n L 2. Note that if L 1 L 2 then L 1 L 2 =.

Cantor space and innite paths Standart construction: Cantor space as the set on innite paths on innite binary tree T 2. The base of topology is the sets of the following type: where α and β are two innite paths: U m(α) = {β a 1 = b 1,... a m = b m}. α = a 1a 2a 3..., β = b 1b 2b 3.... In order to proof completeness of S4 w.r.t. Cantor space we need to construct p-morphism from Cantor space to arbitrary nite S4-frame. [Mints, 1998]

Cantor space and innite paths Standart construction: Cantor space as the set on innite paths on innite binary tree T 2. The base of topology is the sets of the following type: where α and β are two innite paths: U m(α) = {β a 1 = b 1,... a m = b m}. α = a 1a 2a 3..., β = b 1b 2b 3.... In order to proof completeness of S4 w.r.t. Cantor space we need to construct p-morphism from Cantor space to arbitrary nite S4-frame. [Mints, 1998]

Cantor space and innite paths Standart construction: Cantor space as the set on innite paths on innite binary tree T 2. The base of topology is the sets of the following type: where α and β are two innite paths: U m(α) = {β a 1 = b 1,... a m = b m}. α = a 1a 2a 3..., β = b 1b 2b 3.... In order to proof completeness of S4 w.r.t. Cantor space we need to construct p-morphism from Cantor space to arbitrary nite S4-frame. [Mints, 1998]

Constructing dense topologies from Kripke frames We need to construct a dense topological space based on a Kripke frame. This becomes important in studying of products of topological spaces.

Example r q 111 222 h i j k l m n p d e f g b c a

Example r q 111 222 h i j k l m n p d e f g b c a a bej ω

Example r q 111 222 h i j k l m n p d e f g b c b a a bej ω

Example r q 111 222 h i j k l m n p d e f g e b c b a a bej ω

Example r q 111 222 h i j k l m n p j d e f g e b c b a a bej ω

Example r q 111 222 h i j k l m n p j d e f g e b c b a a bej ω a bej ω

Example r q 111 222 h i j k l m n p j d e f g e b c b a a bej ω a bej ω

Example r q 111 222 h i j k l m n p j d e f g e b c b a a bej ω a bej

Example r q 111 222 h i j k l m n p j d e f g e b c b a α = a bej ω f F (α) = j

N ω (F ) Denition Sets U n(α) form a lter base. So we can dene τ(α) the lter with base {U n(α) n N} ; N ω(f ) = (W ω, τ) is a dense n-frame based on F. Frame N ω(f ) is dense in a sense that the intersection of all neighborhoods of a point is empty. So, there are no minimal neighborhoods unlike in T op(f ). Lemma Let F = (W, R) be a Kripke frame with root a, then f F : N ω(f ) N (F ). Corollary For any frame F Log(N ω(f )) Log(N (F )) = Log(F ).

N ω (F ) Denition Sets U n(α) form a lter base. So we can dene τ(α) the lter with base {U n(α) n N} ; N ω(f ) = (W ω, τ) is a dense n-frame based on F. Frame N ω(f ) is dense in a sense that the intersection of all neighborhoods of a point is empty. So, there are no minimal neighborhoods unlike in T op(f ). Lemma Let F = (W, R) be a Kripke frame with root a, then f F : N ω(f ) N (F ). Corollary For any frame F Log(N ω(f )) Log(N (F )) = Log(F ).

N ω (F ) Denition Sets U n(α) form a lter base. So we can dene τ(α) the lter with base {U n(α) n N} ; N ω(f ) = (W ω, τ) is a dense n-frame based on F. Frame N ω(f ) is dense in a sense that the intersection of all neighborhoods of a point is empty. So, there are no minimal neighborhoods unlike in T op(f ). Lemma Let F = (W, R) be a Kripke frame with root a, then f F : N ω(f ) N (F ). Corollary For any frame F Log(N ω(f )) Log(N (F )) = Log(F ).

N ω (F ) Denition Sets U n(α) form a lter base. So we can dene τ(α) the lter with base {U n(α) n N} ; N ω(f ) = (W ω, τ) is a dense n-frame based on F. Frame N ω(f ) is dense in a sense that the intersection of all neighborhoods of a point is empty. So, there are no minimal neighborhoods unlike in T op(f ). Lemma Let F = (W, R) be a Kripke frame with root a, then f F : N ω(f ) N (F ). Corollary For any frame F Log(N ω(f )) Log(N (F )) = Log(F ).

Counterexample It possible that Log(N ω(f )) Log(F ). Consider: Obviously G = p p. Lemma N ω(g) p p G = ({1}, S), 1 n S1 m m = n + 1. Proof. Consider valuation θ(p) = { 2n 1 ω n N }. Then in any neighbourhood of point ω there are points where p is true and there are points where p is false. Hence, N ω(g) = p p.

Completeness results Theorem (214) K n K = K, K. Theorem If logics L 1 and L 2 are axiomatizable by closed formulas and by axioms like k p p then L 1 n L 2 = L 1, L 2. Corollary K4 d K4 = K4, K4.

Logic S5 We put 1 = {φ 2φ φ is closed and 2-free}, com 12 = 1 2p 2 1p, com 21 = 2 1p 1 2p, chr = 1 2p 2 1p. Theorem If logic L is axiomatizable by closed formulas and by axioms like k p p then L n S5 = L S5 + 1 + com 12 + chr.

How to prove PLAN We have two loogic L 1 and L 2 Canonicity of the logic L 1, L 2. Construct F 1 = L 1 and F 2 = L 2 and F 1, F 2 F L1,L 2. Construct N ω Γ 1 (F 1) N ω Γ 2 (F 2) N ( F 1, F 2 Γ 1 Γ 2 ). Check that N ω Γ 1 (F 1) = L 1 and N ω Γ 2 (F 2) = L 2

11 12 1a 1b 21 22 2a 2b a1 a2 aa ab b1 b2 ba bb 1 2 a b

1b 11 12 1a 1b 21 22 2a 2b a1 a2 aa ab b1 b2 ba bb 1 1 2 a b Λ (α, β) α = 1... β = b...

11 12 1a 1b 21 22 2a 2b a1 a2 aa ab b1 b2 ba bb 1 2 a b (α, β) α = 1... β = b...

11 12 1a 1b 21 22 2a 2b a1 a2 aa ab b1 b2 ba bb 1 2 a b 1 (α, β) α = 1... β = b...

11 12 1a 1b 21 22 2a 2b a1 a2 aa ab b1 b2 ba bb b 1 2 a b 1 (α, β) α = 1... β = b...

11 12 1a 1b 21 1b 22 2a 2b a1 a2 aa ab b1 b2 ba bb b 1 2 a b 1 (α, β) α = 1... β = b...

How to prove for S5 PLAN We have two loogic L and S5 Canonicity of the logic L, S5]. Construct F 1 = L and F 2 = (R, R 2 ) and F 1, F 2 F L,S5]. ( Construct N Γ ω (F 1) N ω(f 2) N F 1, F 2] Γ). Check that N Γ ω (F 1) = L

We dene C 12 = {ab ba a W 1, b W 2} We also dene three Kripke frames: F 1, F 2 = (F 1 F 2, R < 1, R < 2 ) F 1, F 2] = (F 1 F 2, R < 1, R 2) ar < 1 b u W 1( b = au) ar < 2 b v W 2( b = av) ar 2 b b ( ar < 2 b & b == C12 b) Lemma For F 1 and F 2 dened above F 1, F 2] = com 12, chr 1.

THANK YOU!