01. Erityisesti näköalueiden ja motoristen alueiden solut aktivoituvat REMunivaiheessa.
|
|
- Miina Virtanen
- 9 vuotta sitten
- Katselukertoja:
Transkriptio
1 TURUN YLIOPISTO VALINTAKOE Yhteiskuntatieteellinen tiedekunta Psykologia KYSYMYSLOMAKE Valintakoekirjat: Helkama, Myllyniemi, Liebkind: Johdatus sosiaalipsykologiaan, 2. painos, Oy Edita Ab, 1998; Revonsuo, Lang, Aaltonen (toim.): Mieli ja Aivot, Kognitiivinen neurotiede, luvut 1, ja Kognitiivisen neurotieteen tutkimusyksikkö, 1996 tai uudempi painos; Holopainen, Pulkkinen: Tilastolliset menetelmät, luvut 1-8, sivut 1-207, painos, Weilin & Göös, Porvoo, 1994 tai uudempi painos. Kokeessa ei saa käyttää laskinta. Tehtävänäsi on arvioida, onko esitetty väite valintakoekirjan perusteella oikein vai väärin. Vastaa kirjoittamalla rasti valitsemaasi kohtaan vastauslomakkeelle. Vastausvaihtoehdot ovat: varmasti oikein oikein en tiedä väärin varmasti väärin Pisteitä saat seuraavasti Väittämä on valintakoekirjan mukaan oikein väärin Sinun valintasi pisteet varmasti oikein +2-2 oikein +1-1 en tiedä 0 0 väärin varmasti väärin Erityisesti näköalueiden ja motoristen alueiden solut aktivoituvat REMunivaiheessa. 02. Kädellisellä on neljänlaisia verkkokalvon gangliosoluja: P, M, V ja W. 03. Aivosähköiset hidasaallot kuuluvat tilannesidonnaisiin potentiaaleihin, mutta ovat ajallisesti sidoksissa tapahtumaan joka niitä seuraa. 04. Ideationaalisessa apraksiassa potilaalla on praksioiden tuottamisen häiriö.
2 2 05. Parietaalialueiden etuosien toiminnat liittyvät liikkeiden ohjelmointiin tarvittavan proprioseptiivisen palautteen vastaanottoon ja taaemmat osat liikkeiden hahmottamiseen suhteessa koko kehoon. 06. MMN tarkoittaa prosessointinegatiivisuutta ja PN poikkeavuusnegatiivisuutta. 07. Toistuvassa ääniärsykkeessä tapahtuva muutos synnyttää MMN:n myös silloin kun ääniin kohdistuu tahaton tarkkaavaisuus mutta ei silloin kun tahaton tarkkaavaisuus kohdistuu näköärsykkeisiin. 08. Tahattomissa ääniärsykkeissä tapahtuvat muutokset synnyttävät MMN:n lisäksi ajoittain nk. orientoitumisreaktiota osoittavia autonomisia ilmiöitä ja usein myös P3a-komponentin. 09. Proseduraalisen muistin toimintaa tutkitaan priming-menetelmällä. 10. Työmuistin kolme osajärjestelmää ovat: keskusyksikkö, fonologinen silmukka ja fonologinen samankaltaisuuden varasto. 11. Vanhenemisen myötä tiedot ja taidot karttuvat koulutuksen ja kokemuksen tukena. 12. Kognitiivisen prosessoinnin eri vaiheet mitataan ARMD (Age-Related Memory Decline) testin avulla. 13. Noin 50%:ssa kaikista dementioista on kyseessä Alzheimerin tauti. 14. N400-komponentti on paljon pienempi semanttisesti sopimattomille kuin sopiville sanoille. 15. N400 on negatiivinen aalto, joka ilmenee noin millisekunnin aikaikkunassa stimuluksen alkamishetken jälkeen ja saavuttaa huippukohtansa yleensä millisekunnin jälkeen. 16. Jo vastasyntyneen kuulojärjestelmä on niin kehittynyt, että lapsi erottaa helposti äänteille tyypillisiä akustisia piirteitä. 17. Psykolingvistisiä tutkimusmenetelmiä ovat pääasiallisesti olleet dyslektikkojen kielellisen suorituksen arviointi erilaisten vastaanotto- ja tuottotestien avulla sekä normaalipuhujien leksikaalisen päätöksenteon kokeet ja silmänliikekokeet.
3 3 18. Stem Allomorph/Inflectional Decomposition- eli SAID-mallin kokeet vastaavat kysymykseen miten suomenkielinen tuottaa ja vastaanottaa kielensä monimorfeemisia muotoja. 19. Fiksaation kohdistaminen sanan loppuosaan on optimaalista sanan tunnistamisen kannalta. 20. Mielen filosofia tutkii mm. sitä onko ihmisen tahto edeltävien tekijöiden määrämä vai onko se vapaa. 21. Popperin mukaan koe voi falsifioida hypoteesin ja lisäksi osoittaa sen oikeaksi. 22. Riippumaton muuttuja kokeellisessa tutkimuksessa tarkoittaa kokeenjohtajasta riippumatonta muuttujaa. 23. Kvasikokeellinen on esimerkiksi tutkimus, jossa on verrattu kotiopetuksen ja autokouluopetuksen valinneiden turvallisuutta ajokortin saannin jälkeisenä aikana. 24. Tilannevihjeet ja tulkinta vaikuttavat skeeman viriämiseen Brewerin & Cranon (1994) informaationkäsittelyn mallissa. 25. Attribuution peruserhe on länsimaissa lapsilla harvinainen, mutta lisääntyy iän myötä. 26. Implisiittisen persoonallisuudenteorian keskeinen merkitys yksilölle on siinä, että se helpottaa toisten henkilöiden havaitsemista johdonmukaisina kokonaisuuksina. 27. Rotterin kontrolliodotusta kartoittava mittari mittaa yksilön yleisiä odotuksia sen suhteen, missä määrin tapahtumat aiheutuvat hänen omista teoistaan tai ulkoisista tekijöistä. 28. Yliperusteluefektiksi kutsutaan ilmiötä, jossa henkilö pyrkii perustelemaan toimintaansa runsaasti ja toistuvasti. 29. Dissonanssiteoria korostaa ihmistä olentona, joka pyrkii löytämään perustelun toiminnalleen ja valinnoilleen.
4 30. Asenteenmuutoksen informaationkäsittelyn todennäköisyyden mallin mukaan pysyvä bumerangiefekti syntyy, kun viestin argumentit koetaan heikoiksi ja viestin kanta on aikaisemmin vallinneen asenteen vastainen Rosenbergin (1979) mukaan minäkäsitys sisältää kaikki ihmisen itseensä kohdistamat ajatukset ja tunteet. 32. Gibbonsin (1990) mukaan minätietoisuuden lisääntyminen aktivoi minäskeeman. 33. Julkisesti minätietoiset ihmiset ovat johdonmukaisempia asenteissaan ja käyttäytymisessään kuin henkilökohtaisesti minätietoiset ihmiset. 34. Sosiaalinen konstruktionismi katsoo, että maailma rakennetaan mielessä. Siten sosiaalisuuden muotoja ei johdetakaan yksilön motiiveista. 35. Ns. vierastilanteessa tutkitaan lapsen kiintymistä hänelle ennestään outoon ihmiseen. 36. Salmivallin (1995) tutkimuksessa todettiin, että koulukiusaajien lukumäärä on noin puolet uhrien puolustajien lukumäärästä. 37. Keskusteluanalyysi ja diskurssianalyysi tarkoittavat samaa asiaa. 38. Ryhmäajattelulle on ominaista konformisuus ja omaksutun linjan vastaisten käsitysten hyljeksintä. 39. Ns. symbolisessa rasismissa halutaan kieltää etnisten vähemmistöjen omien tunnusten kuten heidän kulttuurilleen ominaisen vaatetuksen käyttö. 40. Fyysisissä suorituksissa ryhmän tulos on huomattavasti heikompi kuin yksilöiden suoritusten summa. 41. Luokitteluasteikolliselle muuttujalle laskutoimitukset eivät ole mielekkäitä. 42. Jos ikämuuttuja on luokitettu ja luokan vuotta prosenttinen kertymäfrekvenssi on 66 %, on havaintomatriisissa enintään 29-vuotiaita henkilöitä 66 %. 43. Keskiarvo sopii hyvin vinojen jakaumien sijaintiluvuksi.
5 5 44. Pearsonin korrelaatiokerrointa voidaan käyttää, kun tutkitaan sukupuolen yhteyttä sosiaalisen kyvykkyyden mittariin (arvoalue 0-50, 0 täysin negatiivinen ja 50 täysin positiivinen ääripää). 45. Tehdään yksinkertainen regressiomalli, jossa selittävänä muuttujana on ikä (arvoalue 18-65) ja selitettävä muuttuja sosiaalinen kyvykkyys (arvoalue 0-50). Regressiosuoran yhtälö on seuraava: sosiaalinen kyvykkyys= *ikä. Yksi ikävuosi lisää 1.3 yksikköä arvoa regressiomallin mukaan. sosiaalisen kyvykkyyden 46. Jos edellä olevan regressiomallin selityskerroin on 44 %, sosiaalisen kyvykkyyden vaihtelusta 44 % johtuu muista syistä ja 56 % liittyy ikään. 47. Ennen regressiomallin tekemistä on järkevää piirtää hajontakuvio, josta nähdään mahdollisen yhteyden voimakkuus, muoto ja suunta. 48. Regressiosuoran kulmakertoimen perusteella iän ja sosiaalisen kyvykkyyden välillä on negatiivinen korrelaatio. 49. Edellä olleeseen regressiomalliin tuodaan mukaan kaksi muuta selittäjää: bruttopalkka (arvoalue ) sekä työvuodet (arvoalue 0-50). Jos työvuosien t-arvo on 2.9, bruttopalkan t-arvo on 1.00 ja iän t-arvo 3.7, ainoastaan bruttopalkka ei ole tilastollisesti merkitsevä selittäjä. 50. Jos havaintoaineistosta on laskettu sosiaaliselle kyvykkyydelle otoskeskiarvo 35.0 ja 95 % luottamusväli on [32.0,38.0], on havaintoaineisto sopusoinnussa seuraavan väitteen kanssa: sosiaalisen kyvykkyyden keskiarvo populaatiossa on Jos miesten sosiaalisen kyvykkyyden otoskeskiarvo on 31.5 ja naisten otoskeskiarvo on 39 ja kahden riippumattoman otoksen t-testin t-arvo on 2.7 (95 % kriittinen arvo 2.11), aineiston perusteella voi väittää naisten sosiaalisen kyvykkyyden keskiarvon olevan korkeampi kuin miesten keskiarvo. 52. Kahden riippumattoman otoksen t-testi ei oleta, että sosiaalisen kyvykkyyden jakauma olisi normaalijakauma miesten ja naisten populaatioissa. 53. Jos kysymyksen 51 tilanteessa testataan vaihtoehtoista hypoteesia: naiset ovat sosiaalisesti kyvykkäämpiä kuin miehet, käytetään yksisuuntaista testiä. 54. Jos naisten ja miesten otoskeskiarvojen ero on 7.5 ja 95 % luottamusväli erolle [5.0,10.0], voidaan todeta, että ryhmien keskiarvojen ero suurella todennäköisyydellä on alle Jos pylväsdiagrammia käytetään kuvaamaan aikasarjaa, ei pylväitä yleensä eroteta toisistaan. 56. Jos sosiaalisen kyvykkyyden variaatiokerroin on 0.35 ja iän variaatiokerroin on 0.30, on iän suhteellinen hajonta suurempaa kuin sosiaalisen kyvykkyyden.
6 6 57. Klassisessa todennäköisyydessä varman tapahtuman todennäköisyys on Tasaisessa kiintiöinnissä jokaisesta ositteesta poimitaan yhtä monta tilastoyksikköä. 59. Normaalijakauma on tyypillinen diskreetin satunnaismuuttujan todennäköisyysjakauma. 60. Diskreetti satunnaismuuttuja voi tietyllä välillä saada minkä arvon tahansa.
1. Kvantitatiivisen muuttujan arvot mitataan tarkastelemalla tilastoyksiköiden laatua.
TURUN YLIOPISTO VALINTAKOE Yhteiskuntatieteellinen tiedekunta 7.6.2004 Psykologia KYSYMYSLOMAKE Valintakoekirjat: Niemi P., Keskinen E. (toim.): Taitavan toiminnan psykologia, Psykologian laitos, 2002.
Yhteiskuntatieteellinen tiedekunta 6.6.2002 Psykologia KYSYMYSLOMAKE
TURUN YLIOPISTO VALINTAKOE Yhteiskuntatieteellinen tiedekunta 6.6.2002 Psykologia KYSYMYSLOMAKE Valintakoekirjat: Helkama, Myllyniemi, Liebkind: Johdatus sosiaalipsykologiaan, 2. Painos, Oy Edita Ab, 1998
1. Laadulliset eli kvalitatiiviset muuttujat voidaan jakaa edelleen jatkuviin ja epäjatkuviin muuttujiin.
TURUN YLIOPISTO VALINTAKOE Yhteiskuntatieteellinen tiedekunta 5.6.2003 Psykologia KYSYMYSLOMAKE Valintakoekirjat: Niemi, Keskinen (toim.): Taitavan toiminnan psykologia, Psykologian laitos, 2002. Revonsuo,
TURUN YLIOPISTO VALINTAKOE 14.6.2001 Yhteiskuntatieteellinen klo 10-14 tiedekunta
TURUN YLIOPISTO VALINTAKOE 14.6.001 Yhteiskuntatieteellinen klo 10-14 tiedekunta FILOSOFIA (Räikkä, toim.: Filosofia. Käsitteellisen ajattelun perusteita) 1. Psykofyysisen kausaliteetin ongelma (6 pistettä).
1. Kaksoissokkokokeen oleellinen piirre on, etteivät lääkkeen antaja ja lääkkeen saaja tiedä, minkä lääkkeen vaikutusta tutkitaan.
TURUN YLIOPISTO VALINTAKOE Yhteiskuntatieteellinen tiedekunta 6.6.2006 Psykologia KYSYMYSLOMAKE Valintakoekirjat: Niemi P. & Keskinen E. (toim.): Taitavan toiminnan psykologia, Psykologian laitos, 2002.
TUTKIMUSAINEISTON ANALYYSI. LTKY012 Timo Törmäkangas
TUTKIMUSAINEISTON ANALYYSI LTKY012 Timo Törmäkangas JAKAUMAN MUOTO Vinous, skew (g 1, γ 1 ) Kertoo jakauman symmetrisyydestä Vertailuarvona on nolla, joka vastaa symmetristä jakaumaa (mm. normaalijakauma)
VALTIOTIETEELLINEN TIEDEKUNTA TILASTOTIETEEN VALINTAKOE Ratkaisut ja arvostelu < X 170
VALTIOTIETEELLINEN TIEDEKUNTA TILASTOTIETEEN VALINTAKOE 4.6.2013 Ratkaisut ja arvostelu 1.1 Satunnaismuuttuja X noudattaa normaalijakaumaa a) b) c) d) N(170, 10 2 ). Tällöin P (165 < X < 175) on likimain
4. Seuraavaan ristiintaulukkoon on kerätty tehtaassa valmistettujen toimivien ja ei-toimivien leikkijunien lukumäärät eri työvuoroissa:
Lisätehtäviä (siis vanhoja tenttikysymyksiä) 1. Erään yrityksen satunnaisesti valittujen työntekijöiden poissaolopäivien määrät olivat vuonna 003: 5, 3, 16, 9, 0, 1, 3,, 19, 5, 19, 11,, 0, 4, 6, 1, 15,
Sisällys PSYKOLOGIA AUTTAA YMMÄRTÄMÄÄN IHMISIÄ. Psykologia tutkii ihmisen toimintaa. Psykologiassa on lukuisia osa-alueita ja sovelluskohteita
Sisällys I 1 PSYKOLOGIA AUTTAA YMMÄRTÄMÄÄN IHMISIÄ 10 Psykologia tutkii ihmisen toimintaa 12 Mielen tapahtumat ja käyttäytyminen muodostavat ihmisen toiminnan Psykologian suuntaukset lähestyvät ihmistä
1. Työpaikan työntekijöistä laaditussa taulukossa oli mm. seuraavat rivit ja sarakkeet
VAASAN YLIOPISTO/AVOIN YLIOPISTO TILASTOTIETEEN PERUSTEET Harjoituksia 1 KURSSIKYSELYAINEISTO: 1. Työpaikan työntekijöistä laaditussa taulukossa oli mm. seuraavat rivit ja sarakkeet Nimi Ikä v. Asema Palkka
pisteet Frekvenssi frekvenssi Yhteensä
806118P JOHDATUS TILASTOTIETEESEEN Loppukoe 15.3.2018 (Jari Päkkilä) 1. Kevään -17 Johdaus tilastotieteeseen -kurssin opiskelijoiden harjoitusaktiivisuudesta saatujen pisteiden frekvenssijakauma: Harjoitus-
/1. MTTTP1, luento Normaalijakauma (kertausta) Olkoon Z ~ N(0, 1). Määritellään z siten, että P(Z > z ) =, graafisesti:
2.10.2018/1 MTTTP1, luento 2.10.2018 7.4 Normaalijakauma (kertausta) Olkoon Z ~ N(0, 1). Määritellään z siten, että P(Z > z ) =, graafisesti: Samoin z /2 siten, että P(Z > z /2 ) = /2, graafisesti: 2.10.2018/2
/1. MTTTP1, luento Normaalijakauma (jatkoa) Olkoon Z ~ N(0, 1). Määritellään z siten, että P(Z > z ) =, graafisesti:
4.10.2016/1 MTTTP1, luento 4.10.2016 7.4 Normaalijakauma (jatkoa) Olkoon Z ~ N(0, 1). Määritellään z siten, että P(Z > z ) =, graafisesti: Samoin z /2 siten, että P(Z > z /2 ) = /2, graafisesti: 4.10.2016/2
1.Työpaikan työntekijöistä laaditussa taulukossa oli mm. seuraavat rivit ja sarakkeet
VAASAN YLIOPISTO/KESÄYLIOPISTO TILASTOTIETEEN PERUSTEET Harjoituksia A KURSSIKYSELYAINEISTO: 1.Työpaikan työntekijöistä laaditussa taulukossa oli mm. seuraavat rivit ja sarakkeet Nimi Ikä v. Asema Palkka
MTTTP5, luento Otossuureita ja niiden jakaumia (jatkuu)
21.11.2017/1 MTTTP5, luento 21.11.2017 Otossuureita ja niiden jakaumia (jatkuu) 4) Olkoot X 1, X 2,..., X n satunnaisotos (, ):sta ja Y 1, Y 2,..., Y m satunnaisotos (, ):sta sekä otokset riippumattomia.
Väliestimointi (jatkoa) Heliövaara 1
Väliestimointi (jatkoa) Heliövaara 1 Bernoulli-jakauman odotusarvon luottamusväli 1/2 Olkoon havainnot X 1,..., X n yksinkertainen satunnaisotos Bernoulli-jakaumasta parametrilla p. Eli X Bernoulli(p).
Otoskeskiarvo on otossuure, jonka todennäköisyysjakauma tiedetään. Se on normaalijakauma, havainnollistaminen simuloiden
1 KERTAUSTA JA TÄYDENNYSTÄ Luento 30.9.2014 Olkoon satunnaisotos X 1, X 2,, X n normaalijakaumasta N(µ, σ 2 ), tällöin ~ N(µ, σ 2 /n), kaava (6). Otoskeskiarvo on otossuure, jonka todennäköisyysjakauma
7.4 Normaalijakauma (kertausta ja täydennystä) Taulukosta P(Z 1,6449) = 0,05, P(Z -1,6449) = 0,05 P(Z 1,96) = 0,025, P(Z -1,96) = 0,025
26.3.2019/1 MTTTP1, luento 26.3.2019 7.4 Normaalijakauma (kertausta ja täydennystä) Z ~ N(0, 1), tiheysfunktion kuvaaja 0,5 0,4 0,3 0,2 0,1 Taulukosta P(Z 1,6449) = 0,05, P(Z -1,6449) = 0,05 P(Z 1,96)
Kaavakokoelma, testikaaviot ja jakaumataulukot liitteinä. Ei omia taulukoita! Laskin sallittu.
Ka6710000 TILASTOLLISEN ANALYYSIN PERUSTEET 2. VÄLIKOE 9.5.2007 / Anssi Tarkiainen Kaavakokoelma, testikaaviot ja jakaumataulukot liitteinä. Ei omia taulukoita! Laskin sallittu. Tehtävä 1. a) Gallupissa
TESTINVALINTATEHTÄVIEN VASTAUKSET
TESTINVALINTATEHTÄVIEN VASTAUKSET Vastaukset on merkitty keltaisella, muuttujien mittaustasot muuttujan kuvauksen perässä ja muu osa vastauksesta kysymyksen perässä. Tehtävä 1. Talousmatematiikan kurssin
HAVAITUT JA ODOTETUT FREKVENSSIT
HAVAITUT JA ODOTETUT FREKVENSSIT F: E: Usein Harvoin Ei tupakoi Yhteensä (1) (2) (3) Mies (1) 59 28 4 91 Nainen (2) 5 14 174 193 Yhteensä 64 42 178 284 Usein Harvoin Ei tupakoi Yhteensä (1) (2) (3) Mies
Tilastotieteen kertaus. Vilkkumaa / Kuusinen 1
Tilastotieteen kertaus Vilkkumaa / Kuusinen 1 Motivointi Reaalimaailman ilmiöihin liittyy tyypillisesti satunnaisuutta ja epävarmuutta Ilmiöihin liittyvien havaintojen ajatellaan usein olevan peräisin
Til.yks. x y z
Tehtävien ratkaisuja. a) Tilastoyksiköitä ovat työntekijät: Vatanen, Virtanen, Virtanen ja Voutilainen; muuttujina: ikä, asema, palkka, lasten lkm (ja nimikin voidaan tulkita muuttujaksi, jos niin halutaan)
https://www10.uta.fi/opas/opintojakso.htm?rid=6909&i dx=5&uilang=fi&lang=fi&lvv=2014
1 MTTTP3 Tilastollisen päättelyn perusteet 2 Luennot 8.1.2015 ja 13.1.2015 1 Kokonaisuudet johon opintojakso kuuluu https://www10.uta.fi/opas/opintojakso.htm?rid=6909&i dx=5&uilang=fi&lang=fi&lvv=2014
Luottamusvälit. Normaalijakauma johnkin kohtaan
Luottamusvälit Normaalijakauma johnkin kohtaan Perusjoukko ja otanta Jos halutaan tutkia esimerkiksi Suomessa elävien naarashirvien painoa, se voidaan (periaatteessa) tehdä kahdella tavalla: 1. tutkimalla
Tilastollinen aineisto Luottamusväli
Tilastollinen aineisto Luottamusväli Keijo Ruotsalainen Oulun yliopisto, Teknillinen tiedekunta Matematiikan jaos Tilastollinen aineisto p.1/20 Johdanto Kokeellisessa tutkimuksessa tutkittavien suureiden
r = 0.221 n = 121 Tilastollista testausta varten määritetään aluksi hypoteesit.
A. r = 0. n = Tilastollista testausta varten määritetään aluksi hypoteesit. H 0 : Korrelaatiokerroin on nolla. H : Korrelaatiokerroin on nollasta poikkeava. Tarkastetaan oletukset: - Kirjoittavat väittävät
Mat Tilastollisen analyysin perusteet, kevät 2007
Mat-2.2104 Tilastollisen analyysin perusteet, kevät 2007 4. luento: Jakaumaoletuksien testaaminen Kai Virtanen 1 Jakaumaoletuksien testaamiseen soveltuvat testit χ 2 -yhteensopivuustesti yksi otos otoksen
/1. MTTTP5, luento Normaalijakauma (jatkuu) Binomijakaumaa voidaan approksimoida normaalijakaumalla
16.11.2017/1 MTTTP5, luento 16.11.2017 3.5.5 Normaalijakauma (jatkuu) Binomijakaumaa voidaan approksimoida normaalijakaumalla ~,, ~,,. 16.11.2017/2 Esim. Tutkittiin uuden menetelmän käyttökelpoisuutta
Tilastollinen testaus. Vilkkumaa / Kuusinen 1
Tilastollinen testaus Vilkkumaa / Kuusinen 1 Motivointi Viime luennolla: havainnot generoineen jakauman muoto on usein tunnettu, mutta parametrit tulee estimoida Joskus parametreista on perusteltua esittää
Mat Tilastollisen analyysin perusteet, kevät 2007
Mat-.04 Tilastollisen analyysin perusteet, kevät 007 4. luento: Jakaumaoletuksien testaaminen Kai Virtanen Jakaumaoletuksien testaamiseen soveltuvat testit χ -yhteensopivuustesti yksi otos otoksen vertaaminen
KURSSIKYSELYAINEISTO: HUOM! Aineiston tilastoyksikkömäärä 11 on kovin pieni oikean tilastotieteen tekemiseen, mutta Harjoitteluun se kelpaa kyllä!
VAASAN YLIOPISTO/KESÄYLIOPISTO TILASTOTIETEEN PERUSTEET Harjoituksia A KURSSIKYSELYAINEISTO: HUOM! Aineiston tilastoyksikkömäärä 11 on kovin pieni oikean tilastotieteen tekemiseen, mutta Harjoitteluun
Motiivi-sarjan kurssien 2-5 alustavat sisältösuunnitelmat Luvuilla työnimet
Motiivi-sarjan kurssien 2-5 alustavat sisältösuunnitelmat Luvuilla työnimet Motiivi 2 Kehittyvä ihminen I Johdatus kehityspsykologiaan 1. Kehityspsykologian perusteet Mitä kehityspsykologia on? Kehitys
TUTKIMUSAINEISTON KVANTITATIIVINEN ANALYYSI LTKY012. Timo Törmäkangas
TUTKIMUSAINEISTON KVANTITATIIVINEN ANALYYSI LTKY012 Timo Törmäkangas KURSSIN SISÄLTÖ Johdanto Mittaaminen ja aineiston hankinta Mitta-asteikot Otanta Aineiston esittäminen ja data-analyysi Havaintomatriisi
Sovellettu todennäköisyyslaskenta B
Sovellettu todennäköisyyslaskenta B Antti Rasila 8. marraskuuta 2007 Antti Rasila () TodB 8. marraskuuta 2007 1 / 15 1 Tilastollisia testejä Z-testi Normaalijakauman odotusarvon testaus, keskihajonta tunnetaan
/1. MTTTP5, luento Normaalijakauma (jatkuu) Binomijakaumaa voidaan approksimoida normaalijakaumalla
17.11.2016/1 MTTTP5, luento 17.11.2016 3.5.5 Normaalijakauma (jatkuu) Binomijakaumaa voidaan approksimoida normaalijakaumalla likimain Jos X ~ Bin(n, p), niin X ~ N(np, np(1 p)), kun n suuri. 17.11.2016/2
Johdatus todennäköisyyslaskentaan Kertymäfunktio. TKK (c) Ilkka Mellin (2005) 1
Johdatus todennäköisyyslaskentaan Kertymäfunktio TKK (c) Ilkka Mellin (2005) 1 Kertymäfunktio Kertymäfunktio: Määritelmä Diskreettien jakaumien kertymäfunktiot Jatkuvien jakaumien kertymäfunktiot TKK (c)
Leikkijunan kunto toimiva ei-toimiva Työvuoro aamuvuoro päivävuoro iltavuoro
Lisätehtäviä 1. Erään yrityksen satunnaisesti valittujen työntekijöiden poissaolopäivien määrät olivat vuonna 003: 5, 3, 16, 9, 0, 1, 3,, 19, 5, 19, 11,, 0, 4, 6, 1, 15, 4, 0,, 4, 3, 3, 8, 3, 9, 11, 19,
FoA5 Tilastollisen analyysin perusteet puheentutkimuksessa. 9. luento. Pertti Palo
FoA5 Tilastollisen analyysin perusteet puheentutkimuksessa 9. luento Pertti Palo 22.11.2012 Käytännön asioita Eihän kukaan paikallaolijoista tee 3 op kurssia? 2. seminaarin ilmoittautuminen. 2. harjoitustyön
riippumattomia ja noudattavat samaa jakaumaa.
12.11.2015/1 MTTTP5, luento 12.11.2015 Luku 4 Satunnaisotos, otossuure ja otosjakauma 4.1. Satunnaisotos X 1, X 2,, X n on satunnaisotos, jos X i :t ovat riippumattomia ja noudattavat samaa jakaumaa. Sanonta
FoA5 Tilastollisen analyysin perusteet puheentutkimuksessa. 6. luento. Pertti Palo
FoA5 Tilastollisen analyysin perusteet puheentutkimuksessa 6. luento Pertti Palo 1.11.2012 Käytännön asioita Harjoitustöiden palautus sittenkin sähköpostilla. PalautusDL:n jälkeen tiistaina netistä löytyy
Regressioanalyysi. Vilkkumaa / Kuusinen 1
Regressioanalyysi Vilkkumaa / Kuusinen 1 Regressioanalyysin idea ja tavoitteet Regressioanalyysin idea: Halutaan selittää selitettävän muuttujan havaittujen arvojen vaihtelua selittävien muuttujien havaittujen
Tilastollisia peruskäsitteitä ja Monte Carlo
Tilastollisia peruskäsitteitä ja Monte Carlo Hannu Toivonen, Marko Salmenkivi, Inkeri Verkamo Tutkimustiedonhallinnan peruskurssi Tilastollisia peruskäsitteitä ja Monte Carlo 1/13 Kevät 2003 Tilastollisia
ABHELSINKI UNIVERSITY OF TECHNOLOGY
Tilastollinen testaus Tilastollinen testaus Tilastollisessa testauksessa tutkitaan tutkimuskohteita koskevien oletusten tai väitteiden paikkansapitävyyttä havaintojen avulla. Testattavat oletukset tai
Aki Taanila YHDEN SELITTÄJÄN REGRESSIO
Aki Taanila YHDEN SELITTÄJÄN REGRESSIO 26.4.2011 SISÄLLYS JOHDANTO... 1 LINEAARINEN MALLI... 1 Selityskerroin... 3 Excelin funktioita... 4 EKSPONENTIAALINEN MALLI... 4 MALLIN KÄYTTÄMINEN ENNUSTAMISEEN...
Sovellettu todennäköisyyslaskenta B
Sovellettu todennäköisyyslaskenta B Antti Rasila 22. marraskuuta 2007 Antti Rasila () TodB 22. marraskuuta 2007 1 / 17 1 Epäparametrisia testejä (jatkoa) χ 2 -riippumattomuustesti 2 Johdatus regressioanalyysiin
Yhteiskuntatieteellinen tiedekunta Psykologia KYSYMYSLOMAKE
TURUN YLIOPISTO VALINTAKOE Yhteiskuntatieteellinen tiedekunta 6.6.2005 Psykologia KYSYMYSLOMAKE Valintakoekirjat: Niemi P., Keskinen E. (toim.): Taitavan toiminnan psykologia, Psykologian laitos, 2002.
Testejä suhdeasteikollisille muuttujille
Ilkka Mellin Tilastolliset menetelmät Osa 3: Tilastolliset testit Testejä suhdeasteikollisille muuttujille TKK (c) Ilkka Mellin (007) 1 Testejä suhdeasteikollisille muuttujille >> Testit normaalijakauman
Harjoitukset 3 : Monimuuttujaregressio 2 (Palautus )
31C99904, Capstone: Ekonometria ja data-analyysi TA : markku.siikanen(a)aalto.fi & tuuli.vanhapelto(a)aalto.fi Harjoitukset 3 : Monimuuttujaregressio 2 (Palautus 7.2.2017) Tämän harjoituskerran tehtävät
Ilkka Mellin Todennäköisyyslaskenta. Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat. Kertymäfunktio. TKK (c) Ilkka Mellin (2007) 1
Ilkka Mellin Todennäköisyyslaskenta Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat Kertymäfunktio TKK (c) Ilkka Mellin (2007) 1 Kertymäfunktio >> Kertymäfunktio: Määritelmä Diskreettien jakaumien
Sisällysluettelo ESIPUHE 1. PAINOKSEEN... 3 ESIPUHE 2. PAINOKSEEN... 3 SISÄLLYSLUETTELO... 4
Sisällysluettelo ESIPUHE 1. PAINOKSEEN... 3 ESIPUHE 2. PAINOKSEEN... 3 SISÄLLYSLUETTELO... 4 1. METODOLOGIAN PERUSTEIDEN KERTAUSTA... 6 1.1 KESKEISTEN KÄSITTEIDEN KERTAUSTA... 7 1.2 AIHEESEEN PEREHTYMINEN...
MTTTP5, luento Kahden jakauman sijainnin vertailu (jatkoa) Tutkimustilanteita y = neliöhinta x = sijainti (2 aluetta)
MTTTP5, luento 7.12.2017 7.12.2017/1 6.1.3 Kahden jakauman sijainnin vertailu (jatkoa) Tutkimustilanteita y = neliöhinta x = sijainti (2 aluetta) y = lepopulssi x = sukupuoli y = musikaalisuus x = sukupuoli
TUTKIMUSAINEISTON ANALYYSI. LTKY012 Timo Törmäkangas
TUTKIMUSAINEISTON ANALYYSI LTKY012 Timo Törmäkangas KAKSIULOTTEISEN EMPIIRISEN JAKAUMAN TARKASTELU Jatkuvat muuttujat: hajontakuvio Koehenkilöiden pituus 75- ja 80-vuotiaana ID Pituus 75 Pituus 80 1 156
Sovellettu todennäköisyyslaskenta B
Sovellettu todennäköisyyslaskenta B Antti Rasila 30. lokakuuta 2007 Antti Rasila () TodB 30. lokakuuta 2007 1 / 23 1 Otos ja otosjakaumat (jatkoa) Frekvenssi ja suhteellinen frekvenssi Frekvenssien odotusarvo
Tilastotieteen kertaus. Kuusinen/Heliövaara 1
Tilastotieteen kertaus Kuusinen/Heliövaara 1 Mitä tilastotiede on? Tilastotiede kehittää ja soveltaa menetelmiä, joiden avulla reaalimaailman ilmiöistä voidaan tehdä johtopäätöksiä tilanteissa, joissa
tilastotieteen kertaus
tilastotieteen kertaus Keskiviikon 24.1. harjoitukset pidetään poikkeuksellisesti klo 14-16 luokassa Y228. Heliövaara 1 Mitä tilastotiede on? Tilastotiede kehittää ja soveltaa menetelmiä, joiden avulla
Sovellettu todennäköisyyslaskenta B
Sovellettu todennäköisyyslaskenta B Antti Rasila 16. marraskuuta 2007 Antti Rasila () TodB 16. marraskuuta 2007 1 / 15 1 Epäparametrisia testejä χ 2 -yhteensopivuustesti Homogeenisuuden testaaminen Antti
Luento KERTAUSTA Kaksiulotteinen jakauma Pisteparvi, Toyota Avensis -farmariautoja
1 Luento 23.9.2014 KERTAUSTA Kaksiulotteinen jakauma Pisteparvi, Toyota Avensis -farmariautoja 2 Ristiintaulukko Esim. Toyota Avensis farmariautoja, nelikenttä (2x2-taulukko) 3 Esim. 5.2.6. Markkinointisuunnitelma
MTTTP1, luento KERTAUSTA
25.9.2018/1 MTTTP1, luento 25.9.2018 KERTAUSTA Varianssi, kaava (2) http://www.sis.uta.fi/tilasto/mtttp1/syksy2018/kaavat.pdf n i i n i i x x n x n x x n s 1 2 2 1 2 2 1 1 ) ( 1 1 Mittaa muuttujan arvojen
TUTKIMUSAINEISTON ANALYYSI. LTKY012 Timo Törmäkangas
TUTKIMUSAINEISTON ANALYYSI LTKY012 Timo Törmäkangas f 332 = 3 Kvartiilit(302, 365, 413) Kvartiilit: missä sijaitsee keskimmäinen 50 % aineistosta? Kvartiilit(302, 365, 413) Keskiarvo (362.2) Keskiarvo
Harjoitus 7: NCSS - Tilastollinen analyysi
Harjoitus 7: NCSS - Tilastollinen analyysi Mat-2.2107 Sovelletun matematiikan tietokonetyöt Syksy 2006 Mat-2.2107 Sovelletun matematiikan tietokonetyöt 1 Harjoituksen aiheita Tilastollinen testaus Testaukseen
TUTKIMUSAINEISTON KVANTITATIIVINEN ANALYYSI LTKY012. Timo Törmäkangas
TUTKIMUSAINEISTON KVANTITATIIVINEN ANALYYSI LTKY012 Timo Törmäkangas MUITA HAJONNAN TUNNUSLUKUJA Varianssi, variance (s 2, σ 2 ) Keskihajonnan neliö Käyttöä enemmän osana erilaisia menetelmiä (mm. varianssianalyysi),
Valitaan testisuure, jonka jakauma tunnetaan H 0 :n ollessa tosi.
9.10.2018/1 MTTTP1, luento 9.10.2018 KERTAUSTA TESTAUKSESTA, p-arvo Asetetaan H 0 H 1 Valitaan testisuure, jonka jakauma tunnetaan H 0 :n ollessa tosi. Lasketaan otoksesta testisuureelle arvo. 9.10.2018/2
OHJ-7600 Ihminen ja tekniikka -seminaari, 4 op Käyttäjäkokemuksen kvantitatiivinen analyysi. Luento 3
OHJ-7600 Ihminen ja tekniikka -seminaari, 4 op Käyttäjäkokemuksen kvantitatiivinen analyysi Luento 3 Tutkimussuunnitelman rakenne-ehdotus Otsikko 1. Motivaatio/tausta 2. Tutkimusaihe/ -tavoitteet ja kysymykset
Psyykkinen toimintakyky
Psyykkinen toimintakyky Toimintakyky = ihmisen ominaisuuksien ja ympäristön suhde : kun ympäristö vastaa yksilön ominaisuuksia, ihminen kykenee toimimaan jos ihmisellä ei ole fyysisiä tai psykososiaalisia
TUTKIMUSAINEISTON ANALYYSI. LTKY012 Timo Törmäkangas
TUTKIMUSAINEISTON ANALYYSI LTKY012 Timo Törmäkangas KURSSIN SISÄLTÖ Johdanto Mittaaminen ja aineiston hankinta Mitta-asteikot Otanta Aineiston esittäminen ja data-analyysi Havaintomatriisi Yksiulotteisen
Tutkimustiedonhallinnan peruskurssi
Tutkimustiedonhallinnan peruskurssi Hannu Toivonen, Marko Salmenkivi, Inkeri Verkamo hannu.toivonen, marko.salmenkivi, inkeri.verkamo@cs.helsinki.fi Helsingin yliopisto Hannu Toivonen, Marko Salmenkivi,
Koska ovat negatiiviset. Keskihajontoja ei pystytä laskemaan mutta pätee ¾.
24.11.2006 1. Oletetaan, että kaksiulotteinen satunnaismuuttuja µ noudattaa kaksiulotteista normaalijakaumaa. Oletetaan lisäksi, että satunnaismuuttujan regressiofunktio satunnaismuuttujan suhteen on ݵ
MTTTA1 Tilastomenetelmien perusteet 5 op Luento Kokonaisuudet johon opintojakso kuuluu
10.1.2019/1 MTTTA1 Tilastomenetelmien perusteet 5 op Luento 10.1.2019 1 Kokonaisuudet johon opintojakso kuuluu https://www10.uta.fi/opas/opintojakso.htm?rid=14600 &idx=1&uilang=fi&lang=fi&lvv=2018 10.1.2019/2
Estimointi. Estimointi. Estimointi: Mitä opimme? 2/4. Estimointi: Mitä opimme? 1/4. Estimointi: Mitä opimme? 3/4. Estimointi: Mitä opimme?
TKK (c) Ilkka Mellin (2004) 1 Johdatus tilastotieteeseen TKK (c) Ilkka Mellin (2004) 2 Mitä opimme? 1/4 Tilastollisen tutkimuksen tavoitteena on tehdä johtopäätöksiä prosesseista, jotka generoivat reaalimaailman
Harjoitus 2: Matlab - Statistical Toolbox
Harjoitus 2: Matlab - Statistical Toolbox Mat-2.2107 Sovelletun matematiikan tietokonetyöt Syksy 2006 Mat-2.2107 Sovelletun matematiikan tietokonetyöt 1 Harjoituksen tavoitteet Satunnaismuuttujat ja todennäköisyysjakaumat
Harjoitukset 2 : Monimuuttujaregressio (Palautus )
31C99904, Capstone: Ekonometria ja data-analyysi TA : markku.siikanen(a)aalto.fi & tuuli.vanhapelto(a)aalto.fi Harjoitukset 2 : Monimuuttujaregressio (Palautus 24.1.2017) Tämän harjoituskerran tarkoitus
1. Tilastollinen malli??
1. Tilastollinen malli?? https://fi.wikipedia.org/wiki/tilastollinen_malli https://en.wikipedia.org/wiki/statistical_model http://projecteuclid.org/euclid.aos/1035844977 Tilastollinen malli?? Numeerinen
FoA5 Tilastollisen analyysin perusteet puheentutkimuksessa. Luentokuulustelujen esimerkkivastauksia. Pertti Palo. 30.
FoA5 Tilastollisen analyysin perusteet puheentutkimuksessa Luentokuulustelujen esimerkkivastauksia Pertti Palo 30. marraskuuta 2012 Saatteeksi Näiden vastausten ei ole tarkoitus olla malleja vaan esimerkkejä.
Harjoituksessa tarkastellaan miten vapaa-ajan liikunta on yhteydessä..
Harjoituksessa tarkastellaan miten vapaa-ajan liikunta on yhteydessä.. TEHTÄVÄ 1 Taulukko 1 Kuvailevat tunnusluvut pääkaupunkiseudun terveystutkimuksesta vuonna 2007 (n=941) Keskiarvo (keskihajonta) Ikä
Johdatus todennäköisyyslaskentaan Normaalijakaumasta johdettuja jakaumia. TKK (c) Ilkka Mellin (2005) 1
Johdatus todennäköisyyslaskentaan Normaalijakaumasta johdettuja jakaumia TKK (c) Ilkka Mellin (2005) 1 Normaalijakaumasta johdettuja jakaumia Johdanto χ 2 -jakauma F-jakauma t-jakauma TKK (c) Ilkka Mellin
Todennäköisyysjakaumia
8.9.26 Kimmo Vattulainen Todennäköisyysjakaumia Seuraavassa esitellään kurssilla MAT-25 Todennäköisyyslaskenta esille tulleita diskreettejä todennäköisyysjakaumia Diskreetti tasajakauma Bernoullijakauma
Lisätehtäviä ratkaisuineen luentomonisteen lukuun 6 liittyen., jos otoskeskiarvo on suurempi kuin 13,96. Mikä on testissä käytetty α:n arvo?
MTTTP5, kevät 2016 15.2.2016/RL Lisätehtäviä ratkaisuineen luentomonisteen lukuun 6 liittyen 1. Valitaan 25 alkion satunnaisotos jakaumasta N(µ, 25). Olkoon H 0 : µ = 12. Hylätään H 0, jos otoskeskiarvo
MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi
MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 5B Tilastollisen merkitsevyyden testaus Osa II Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto
Teema 8: Parametrien estimointi ja luottamusvälit
Teema 8: Parametrien estimointi ja luottamusvälit Todennäköisyyslaskennan perusteet (Teemat 6 ja 7) antavat hyvän pohjan siirtyä kurssin viimeiseen laajempaan kokonaisuuteen, nimittäin tilastolliseen päättelyyn.
Tilastollisen analyysin perusteet Luento 8: Lineaarinen regressio, testejä ja luottamusvälejä
Tilastollisen analyysin perusteet Luento 8: Lineaarinen regressio, testejä ja luottamusvälejä arvon Sisältö arvon Bootstrap-luottamusvälit arvon arvon Oletetaan, että meillä on n kappaletta (x 1, y 1 ),
5 Lisa materiaali. 5.1 Ristiintaulukointi
5 Lisa materiaali 5.1 Ristiintaulukointi 270. a) Aineiston koko nähdään frekvenssitaulukon oikeasta alakulmasta: N = 559. Tilastotieteen johdantokurssille osallistui yhteensä 559 opiskelijaa. Huomaa: Opiskelijoiden
Johdatus tilastotieteeseen Testit suhdeasteikollisille muuttujille. TKK (c) Ilkka Mellin (2005) 1
Johdatus tilastotieteeseen Testit suhdeasteikollisille muuttujille TKK (c) Ilkka Mellin (005) 1 Testit suhdeasteikollisille muuttujille Testit normaalijakauman parametreille Yhden otoksen t-testi Kahden
Tehtävät. 1. Ratkaistava epäyhtälöt. a) 2(4 x) < 12, b) 5(x 2 4x + 3) < 0, c) 3 2x 4 > 6. 1/10. Sukunimi (painokirjaimin)
1/10 Tehtävä 1 2 3 4 5 6 7 8 9 10 Yhteensä Pisteet (tarkastaja merkitsee) Kokeessa on kymmenen tehtävää, joista jokainen on erillisellä paperilla. Jokaisen tehtävän maksimipistemäärä on 6 pistettä. Ratkaise
MTTTP1, luento KERTAUSTA
26.9.2017/1 MTTTP1, luento 26.9.2017 KERTAUSTA Varianssi, kaava (2) http://www.sis.uta.fi/tilasto/mtttp1/syksy2017/kaavat.pdf n i i n i i x x n x n x x n s 1 2 2 1 2 2 1 1 ) ( 1 1 Mittaa muuttujan arvojen
10. laskuharjoituskierros, vko 14, ratkaisut
10. laskuharjoituskierros, vko 14, ratkaisut D1. Eräässä kokeessa verrattiin kahta sademäärän mittaukseen käytettävää laitetta. Kummallakin laitteella mitattiin sademäärät 10 sadepäivän aikana. Mittaustulokset
Johdatus tilastotieteeseen Estimointi. TKK (c) Ilkka Mellin (2005) 1
Johdatus tilastotieteeseen Estimointi TKK (c) Ilkka Mellin (2005) 1 Estimointi Todennäköisyysjakaumien parametrit ja niiden estimointi Hyvän estimaattorin ominaisuudet TKK (c) Ilkka Mellin (2005) 2 Estimointi:
Tilastollisen analyysin perusteet Luento 1: Lokaatio ja hajonta
Tilastollisen analyysin perusteet Luento 1: ja hajonta Sisältö Havaittujen arvojen jakauma Havaittujen arvojen jakaumaa voidaan kuvailla ja esitellä tiivistämällä havaintoarvot sopivaan muotoon. Jakauman
Sovellettu todennäköisyyslaskenta B
Sovellettu todennäköisyyslaskenta B Antti Rasila 18. lokakuuta 2007 Antti Rasila () TodB 18. lokakuuta 2007 1 / 19 1 Tilastollinen aineisto 2 Tilastollinen malli Yksinkertainen satunnaisotos 3 Otostunnusluvut
Sovellettu todennäköisyyslaskenta B
Sovellettu todennäköisyyslaskenta B Antti Rasila 11. lokakuuta 2007 Antti Rasila () TodB 11. lokakuuta 2007 1 / 15 1 Johdantoa tilastotieteeseen Peruskäsitteitä Tilastollisen kuvailun ja päättelyn menetelmiä
Johdatus tilastotieteeseen Testit laatueroasteikollisille muuttujille. TKK (c) Ilkka Mellin (2004) 1
Johdatus tilastotieteeseen Testit laatueroasteikollisille muuttujille TKK (c) Ilkka Mellin (2004) 1 Testit laatueroasteikollisille muuttujille Laatueroasteikollisten muuttujien testit Testi suhteelliselle
Usean selittävän muuttujan regressioanalyysi
Tarja Heikkilä Usean selittävän muuttujan regressioanalyysi Yhden selittävän muuttujan regressioanalyysia on selvitetty kirjan luvussa 11, jonka esimerkissä18 muodostettiin lapsen syntymäpainolle lineaarinen
Normaalijakaumasta johdettuja jakaumia
Ilkka Mellin Todennäköisyyslaskenta Osa 3: Todennäköisyysjakaumia Normaalijakaumasta johdettuja jakaumia TKK (c) Ilkka Mellin (2007) 1 Normaalijakaumasta johdettuja jakaumia >> Johdanto χ 2 -jakauma F-jakauma
Segregaation eri ilmenemismuodot ja sukupuolten palkkaerot
Segregaation eri ilmenemismuodot ja sukupuolten palkkaerot Segregaatio ja sukupuolten väliset palkkaerot tutkimushankkeen päätösseminaari Valkoinen Sali, 25.04.2008 Reija Lilja (yhteistyössä Rita Asplundin,
806109P TILASTOTIETEEN PERUSMENETELMÄT I Hanna Heikkinen Esimerkkejä estimoinnista ja merkitsevyystestauksesta, syksy (1 α) = 99 1 α = 0.
806109P TILASTOTIETEEN PERUSMENETELMÄT I Hanna Heikkinen Esimerkkejä estimoinnista ja merkitsevyystestauksesta, syksy 2012 1. Olkoon (X 1,X 2,...,X 25 ) satunnaisotos normaalijakaumasta N(µ,3 2 ) eli µ
Estimointi. Vilkkumaa / Kuusinen 1
Estimointi Vilkkumaa / Kuusinen 1 Motivointi Tilastollisessa tutkimuksessa oletetaan jonkin jakauman generoineen tutkimuksen kohteena olevaa ilmiötä koskevat havainnot Tämän mallina käytettävän todennäköisyysjakauman
30A02000 Tilastotieteen perusteet
30A02000 Tilastotieteen perusteet Kertaus 1. välikokeeseen Lauri Viitasaari Tieto- ja palvelujohtamisen laitos Kauppatieteiden korkeakoulu Aalto-yliopisto Syksy 2019 Periodi I-II Sisältö Välikokeesta Joukko-oppi
Regressioanalyysi. Kuusinen/Heliövaara 1
Regressioanalyysi Kuusinen/Heliövaara 1 Regressioanalyysin idea ja tavoitteet Regressioanalyysin idea: Oletetaan, että haluamme selittää jonkin selitettävän muuttujan havaittujen arvojen vaihtelun joidenkin
(b) Vedonlyöntikertoimet syytetyn ihonvärin eri luokissa
Oulun yliopiston matemaattisten tieteiden tutkimusyksikkö/tilastotiede 805306A JOHDATUS MONIMUUTTUJAMENETELMIIN, sl 2017 (Jari Päkkilä) Harjoitus 3, viikko 47 (19.20.11.): kotitehtävät Ratkaisuja 1. Floridan
3. a) Mitkä ovat tilastolliset mitta-asteikot? b) Millä tavalla nominaaliasteikollisen muuttujan jakauman voi esittää?
Seuraavassa muutamia lisätehtäviä 1. Erään yrityksen satunnaisesti valittujen työntekijöiden poissaolopäivien määrät olivat vuonna 003: 5, 3, 16, 9, 0, 1, 3,, 19, 5, 19, 11,, 0, 4, 6, 1, 15, 4, 0,, 4,