2. a) Lähellä maan pintaa massaan m kohdistuva gravitaatiovoima kirjoitetaan muodossa
|
|
- Ari-Pekka Mäkinen
- 7 vuotta sitten
- Katselukertoja:
Transkriptio
1 763101P Fysiikan matematiikkaa sl 2012 Harjoitus 13 Viimeinen näyttpäivä pe Kappale liikkuu voimakentässä 2 3 ˆ ˆ 2 F ( y cos x z ) i (2 y sin x 4) j (3xz 2) k ˆ. a) Osoita, että kenttä on konservatiivinen. b) Etsi kenttää vastaava skalaaripotentiaali. c) Laske ty, joka tehdään siirrettäessä kappaletta voimakentässä pisteestä (0, 1, 1) pisteeseen ( / 2, 1, 2). 2. a) Lähellä maan pintaa massaan m kohdistuva gravitaatiovoima kirjoitetaan muodossa F mg k. ˆ Osoita, että voima on konservatiivinen ja laske vastaava skalaaripotentiaali eli ns. gravitaatiopotentiaali, joka antaa kentän muodossa F. b) Kaukana maan pinnasta massaan m kohdistuva gravitaatiovoima kirjoitetaan muodossa F e ˆ 2 r, r missä on vakio ja r etäisyys maan keskipisteestä. Osoita, että voima on konservatiivinen ja laske gravitaatiopotentiaali, joka antaa kentän muodossa F. 3. lue on rajattu xy-tasoon y-akselin ja suorien y1 2x 4ja y2 x 2 väliin. lueen pintaala saadaan laskemalla integraali d dxdy. a) Hahmottele alue ja perustele integroimisrajat x :0 6 ja y: (2x 4) ( x 2). b) Laske alueen pinta-ala. c) Laske alueen massakeskipisteen koordinaatit 1 1 xm xd ja ym yd 4. Tarkastellaan R-säteistä origokeskistä palloa. Käytetään pallokoordinaatistoa. a) Osoita, että pallon pinnalla infinitesimaalinen pinta-alkio on d R 2 sin d d ja laske pallon pinta-ala. b) Osoita, että pallon sisällä tilavuusalkio on dv r 2 sin drd d ja laske pallon tilavuus Käyttäen vektorikenttä F 2xˆi 2yˆj 3z k ˆ testaa Gaussin lausetta laskemalla tilavuusintegraali F dv ja pintaintegraali d V kun tilavuutena on särmin muotoinen tilavuus x [0,1], y [0,1] ja z [0,2] On annettu vektorikenttä F ( x y ) ˆi 2xy ˆj ja tarkastellaan xy-tasossa suorakaidetta, jota rajoittavat suorat x 0, x a, y 0 ja y b. Vahvista laskemalla F F d ja että tässä tapauksessa Stokesin lause toteutuu. F d r,
2 ll naj o r rus l3 /. ed F = (b z6osx +zs) i n(zts tnx -Y ) i + 6rz'*ilt,,o qj V*F = I /(' 3/tx.La X cosx + z' a J )/r\ l( 3/c e )XSrur -Lt 3x z?+ z )t.',.r\ -.<. \" Vtr,<trrÅ -i(: z''3 z') + å (tr co s x - 27cos x) = Ö N v: t'ttå R vrl I vr,tt ',t't (v"i = o) ->) /') F:v+ x=, JÖST tt@ sx +23 f,x 2: srn'-,x - L{ 1>r z L+ L I JTE G QO I O/]N : ($'s,n, Y+Yz7 + {(v'tl \ =i!'sturx-yl + X(x'z) Itz3v:-z + h(x'r) op vlr n-v,({(:,2)= 2z-tt1 +cr' 4Z(r, e) =,rf + Lz n c' [6 x rr = 1'st'x -Yt loll-crtru,, ou ult<) +c\ 1",' = qtsrrux+yzs +2z -Yl * O- / o':vlt o Y *#-^-,'^.-.-tu
3 J w= 4f+,-1,t)-(o,r, -7 ) ) a. = (t +yn+yry+q) - (o :3*Yn + : l{+r'(n fo OJ?,\ l- = -fi?v 4.^^ r?=ltjv. v xf = l7t^ '/rt %z lc o -rmft O,rt Lc>PSe 2vT7 tv tttett -_;(o) -it"t *il(o; : o csavrrtto',po TENTI L ', Q : ---i -VQ=F -) T.- o,ä= e,':== ilnr IPrz c z 1!T-1 ({q..,nt l/ Ö= 1?U,7) t Mxt+h(rx) :) 4) = r^72 + o-, a' o*s vv-to # k1 F= -qå. (fult= n?z vt-tr*:\ Z(/'z)= wxz (hk,i=a ;F"=-fr,Fo=o 'Fo=Q I å. nå rlsruoåp 1 +a- +Q v*f = l%" %" "Ä+ { yzstxsol-tfr, o I r1/1 o I \ä"(o) -\tå(") * Y-sru6% (o)l = o ('sual o! Lor<ts E QwTI I v tne'\)
4 -+ F : v1) =- 16,. (#). å (* HJ '_å*(å, %)1 losnr QY= c" - Y- / l,<:fe(,r.tdn 1,1) [= 9 + {@,ot r Tft,a) L-, (r, e ) I e:/ r ce zo tc3 ' rs*a oq (@,e)= a VI-ITN?(r,4) = r Å(r,o)= -- +q r -9 +e Y- (vnutol 3 / ( VL Ö 1e,*) SucrQn!r= 7r-\ LEILL Y^r- Sett,<.t prsrressä (o,-\) J suo4/l 1"= K+L?tsrr.lssi (o,z)' SucrBar L-trlVVVT TotSE/rS / ku^j ),*-\ =X+? =) K=( ) 1=B ELt etsretrssä (<,4) /r) Qtt'ra -L o^j $a* = Kno.,ELt Quura -L sa.qo,j "v-6 rvt" ' l{o N) /.: o-',6 \: Lr-Y -> x+l (srrs YraYr,Luva)
5 = 6 ) Y= ( e =frll x+2- ( \z (,\,:;)nr )* /: Ll, c) X..., ( xtz = -\)^*'' L((xea:1 (l(*e r?)\ )' 1...,= j $r (. X=o l. (n G' *c)jx ls J O L(-U rirs) ls\ 3 / IB J \ ^ (. = I l(-xt 3 :\ =U=Z 16 / Strs \X,,, Y=I* =l l8 )? 6 y+r ra=å!((: {r z)'- + loxl Y.- ) X=O tl-,t I -Y ( \ /-x J\ 3,)a. = -l 18 / Y=0 '?-\^ +(r)do = 4 : Y+z!t (,.), 2*-v,+!(Å' o.)u.=,*!(,kr)r. ){u-")')j-* =!, -t2r) =J (xe - = (t, z) K tr t v') i (-t" L p)ox - t z) &* lro -+r)
6 @.1 r;l-a =_) {v i ul I Sstpo &Q Q&"o :> c/ = Rde Rsrn, e &. = R 1s, *s e &e J.?ttcst'S PrruTÄ ".TETN "' / k u^j Ö z O ->lj- Ö: 2TT Jcr.fep Pt,t:I* - L LS ( t l:t 6Ö I 0'qno\) 11I,l =!!oo = f ((f-''"r4e"r.'8e "=f Q=a zt- = in t"""( P- )e": InR"$'"" '!e ;n = ln ' f-oso = unr'( 1il) = 1L{ o lrj 4r SUJO)!4 (V''rcn ront-å ) r&o ( ruz'er.r Eoeuta J &V, &-&e)(rswejö) (3-r\ = 'rlstr.lo &r&ö&e QnruoP TILVuuJ "Vvr 'ra^n)' ' Lu*t Q: -=il- Q: o-å'?7 f : o-->r I ot?ru Ttunvuv a E vs I (Nr Ba t o'a'ln/ v= _$5a"
7 1ir rt' R (. v= t(\( 5"'s,^,e&)*") & 4=o o=o y-=o F 2tr T lrt' = { tf + u', r,re eo)a+ )o rt = 5ry (1*r)& tt/- =?8'\do ='t nr' T''! l-* Lxi - 2r i n3z't,it or Tt trqvuus I ^/ Tä Q-Z- t s s v.f = w) * tfr'u '#' = 2*?+62 = \ + e I Jo Tg,t'!II'Fe 1, 11 v= t I Irr+Z 7=O 1-o K=O g =l-l,if'.,t+62\&z )J*J1&z I lqn*32' o = f+-lt- =P 9 t pfa t,u T,,,,, \i\ Ttr &LI 14uusl PINT : 1.?eos,+ rt 11 &1, = Y c*{d\ F-ei = 3z"J*&l J z=t' tjy:yi p s6vr r?u, rt Å P;r:raELEnPltrT-t - VfVr>f:tT o sö lfivt ulospätru PtNp/-) $ut-u- n ITn T1 LV uu oe st
8 lofe,tl 1 t O 5!f,G = 5l t.&*r' ^ '=: t;" 6) -liaäa= Z=o tl=o 2. n;a s.å = -t 4"&t i.di = -7 z'&*j3 J^ z= o 3. Yt:gnry4LLE Jt = -i &'az F..rÄ= -t1 &to(z J Y:o \. otv-elle &i =!a"a* F.aä= 21J-r&z Ja Y= 1 5 ETEEN r--\ a ^ JÄ = z'&u&z --\ F-4/'= Lx&x&z J/+ x =? 6, r"a"s: et = -)&t'lr -\ -5 F'J.i= -2xå-1"/a J x : + \)" oolrq K'-. +ll ; -5(1,!r&z z--a /=o.-@ +(; = lx*y+\ =L9 JJ h,t^ r55stlst-ttt+vuuslruteclllqtsartn*l TULO LSEP LUT T.I QII'IT INTE 6 (LLI' JO T a]n) GrSS/,tl 2arsSl T0tHlt!!
9 @ F: (x1r' ); 5k r 2,21 i '1\"tr)4-x* 2,ry 4$l 3" 1" l=o,j!=o lox=q,1-x=o j'\=/,-'j!=o Y' K=, J-x=o,/Å Joreru \f-.(f = aa -å )7.F sils -5 'c!-å -\l/- v*f : ltrr, \r'-r QttrT * LVI () fr --\ \w Y '.! =.= qf rf o /-v o6 =.) I aaxj-1 = io3' -- al' oo o o + (t, \r:)&n = I +'"-'&'r : eto a- -=) j"jv : o le f"r2o*3o*yo = Tq/t" /\^ j K [ ^r^ ^ ^ )/"t Vrr\= r(er+xt) ='{: k '?xl o I N &i = Qe1, tjrf"r,g.3 -ra -" +L"' $t \r : S f F.r")*, = \ta1rr Y=o )1zo o /r o I n ^..,?ol' //af = t** =. SiOF /z* ELt Sr" Y'ESt,.s LvsP 7-r:t n t,!!
-lllii;i i Eiää: Iiiii:; ä;äiäeiäi
I z v x 'uz1zz?z., d!?.,rtz l t! r zx x tru tl Ifl Ag, lp llg l!q?6 ff -lll I 'g l 1 II giigur gtl,l9 t grliffglgi ggrygtgg , ur?.1,ä.r 'r,!,tzlt "z'.1 {r,? yr,! rz fl. r F g g!fi z,. g! q I?!?+ t f g
Lisätiedot3 *ä;r ä:e 5ä ä{ :i. c oo) S g+;!qg *r; Er ; l[$ E ;;iä F:ä ä :E ä: a bo. =. * gäf$iery g! Eä. a is äg*!=."fl: ä; E!, \ ins:" qgg ;._ EE üg.
t AJ 1., t4 t4 \J : h J \) (.) \ ( J r ) tḡr (u (1) m * t *h& r( t{ L.C g :LA( g9; p ö m. gr iop ö O t : U 0J (U.p JJ! ä; >
LisätiedotNEN PAINOVOIMAMITTAUS N:o OU 10/7b
I RAUTARUUKKI Oy I RAUTUVAARAN YlVlPÄ.RISTi-)N ALUEELLI- MALMINETSINTÄ NEN PAINOVOIMAMITTAUS N:o OU 0/7b I 3.2. - 30.4.976 osa II -- TUTKIMUSALUE LAATIJA I JAKELU KUNTA LAAT.PVM HYV. SlVlOY OU ma KARTTALEHTI
Lisätiedot1i; i S;Ji'l i. ?::Z+i?; i i räf. i:ä;äi +;la=;iilsi*t li +t ' ?1*1i+;s iii:e: riile s:: : ri;-r2=" ii1js:?i_?7-i17;i i
,.24 1,? V ) J.,, q " < ^ ; > ). p. Ä I +, 1. ) d. + 1 \ d ; t l r Y ^ L j. 1 > \ 7. r 7 5 r r E,^.. l, 2 9 ; r t 9 j J l 2 1 ; Y,7, ) r 4.. ; G / ) ^ ^ ^ 7 ^ t. r P l t L ) 2 4 P? D 9 ; F I*, 1.. ) /
LisätiedotPUTKIKAKSOISNIPPA MUSTA
Takorauta Tuote LVI-numero Pikakoodi 0753007 RU33 KESKIRASKAS KESKIRASKAS KESKIRASKAS KESKIRASKAS KESKIRASKAS KESKIRASKAS KESKIRASKAS KESKIRASKAS DN 65 KESKIRASKAS 0 KESKIRASKAS 0 KESKIRASKAS SK/UK SK/UK
Lisätiedotääexgäl*ääääe ääg I ä*fre3 I äee iäa ää-äälgü il leääö ää; i ääs äei:ä ä+ i* äfä g u ;; + EF'Hi: 2 ä ; s i r E:;g 8ää-i iää: Ffärg',
!P9) (?trtrr('l rl 9< l ( r,r^iüfl.l ltrt ;ä r!! (r, t 6 t, rti 'le )( ö O RRZöF;ä x öö 1 74ö 9 jii\rtr lrl l jipäp. ldrrr_.^!. 9r. i P.^vä P. t!! v 7 ' '.ä e.q i >6l( t (p C ] ä il; ', +t n l ( e iei
Lisätiedotl, ; i.'s ä E.ä E o gäästaefiiä,ggäeäeää;äggtää EI ;äe E H * eaä* E E 8EP.E .e= äe eääege F EEE;säääg lee sa 8NY ExE öe äec E= : ;H ä a(ü
,. 8\ ( P ;! l, ;.'s ä.ä >. u.a ä q x ö ä : ; ä ;äe * eä* 8P. ee s $e ää ä F äsä ff ääsfä,ääää;äää ä eääe F ;säää le sa r T e q ( r "j (,{,!. r JJ fl *r ( + T r {rl J Y '( S YC T 8Y C0 ( (f J, r, C,9 l
Lisätiedott P1 `UT. Kaupparek. nro Y-tunnus Hämeenlinnan. hallinto- oikeudelle. Muutoksenhakijat. 1( UiH S<
1(0 1 4 1 1 4 UiH 0 0 0 1 S< A S I A N A J O T O I M I S T O O S S I G U S T A F S S O N P L 2 9, Ra u h a n k a t u 2 0, 1 5 1 1 1 L a h t i P u h e l i n 0 3 / 7 8 1 8 9 6 0, G S M 0 5 0 0 / 8 4 0 5
LisätiedotDifferentiaali- ja integraalilaskenta 3 Harjoitus 4/ Syksy 2017
MS-A35 Differentiaali- ja integraalilaskenta 3 Differentiaali- ja integraalilaskenta 3 Harjoitus 4/ Syksy 217 Alkuviikon harjoituksissa ratkaistaan kolme tehtävää assistentin avustuksella (läsnäololaskarit).
LisätiedotK Ä Y T T Ö S U U N N I T E L M A Y H D Y S K U N T A L A U T A K U N T A
K Ä Y T T Ö S U U N N I T E L M A 2 0 1 7 Y H D Y S K U N T A L A U T A K U N T A Forssan kaupunki Talousarvio ja -suunnitelma 2017-2019 / T O I M I A L A P A L V E L U 50 YHDYSKUNTAPALVELUT 5 0 0 T E
LisätiedotMS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 3: Vektorikentät
MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 3: Vektorikentät Antti Rasila Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Syksy 2016 Antti Rasila (Aalto-yliopisto) MS-A0305 Syksy 2016
LisätiedotVOLKER BECK P. =H. o:_ie!r n^: =:l - dö5i6 = '1 arcii - a; +; s*. P <,R< qe 5 +ä a. c g-;i-(d1. ::qp io > iädaa :; 3fE,:E A. Ö!\lo: Y.
-Tl (D 'f.g) = (,g L! (D =5.T 0) \ (:) ( P. =H ''. @ 5q 9
LisätiedotPakkauksen sisältö: Sire e ni
S t e e l m a t e p u h u v a n v a r a s h ä l y t ti m e n a s e n n u s: Pakkauksen sisältö: K e s k u s y k sikk ö I s k u n t u n n i s ti n Sire e ni P i u h a s a rj a aj o n e st or el e Ste el
Lisätiedot1, MITÄ TARKOITETAAN SEURAAVILLA TERMEILLÄ:
KRANPDON TNTT 14.4.2014 LAY/OTK OT: Vst jkseen kysymykseen erllselle pperlle (must merktä nm myös krjnptu"t.u"ppern). ös et vst jhnkn kysymykseen, jätä nmetty vstuspper myös kysesen tehtävän slt' rrävär:
Lisätiedotw%i rf* meccanoindex.co.uk
&, w% r* lr,ryd* kro g ; - C +gä!! r -. ä.;'! dg+s Zt t0, y < 9 -! 8 tü;r" lun.'-y; ',ä lrl;!tä u l - 9 9! - ä 6 ^ 9 b - q - cz * ; *'a! a = ;6 f
LisätiedotRIIHIMÄEN MELUSELVITYS 2008
S rj v Pljärv Pä väylly Rj Rjr R T Päväv v Oj Lä öyälä äää j Prj Sr rä v rj I vä Vh Sj U Rääyää hh rj P J Pl rä Ar rvj Al-A Pr löyrä l Th Plr Pä Plä h Uh Tv Tl Oj Slä Rj Al v Prä-r Tl Ojrä Rää Läj Vjh
Lisätiedotäiäää?l älägcläälii äisrä lää äää
E m vf z ln7 r vr ll n U d \r .Tl vr r E0.Tl : N. ' 6 J n n 5 EF g m : ' ".E q ' v { m i. 'n 9. E!. G r'.n ff ge re E'l n,. q (f,,r L : n 6 :. G N. +.:, lrf s 'T ^ x vr L : @ : L 5 T g G H liäiiiiii$ä1läl
LisätiedotSU01\1JEL\I MAINJ[ OY
KAIRAREIÄN NO 44 SIVUSUUNAMIAUS HYVELÄSSÄ MARRASKUUSSA 98 SU0\JEL\I MAINJ[ OY FlNNEXPLORAlON & ESPOO 27..98 HANNU SILVENNOINEN,. Dl 2 KAIRAREIÄN NO 44 SIVUSUUNAMIAUS HYVELÄSSÄ MARRASKUUSSA 98. s I s Ä
LisätiedotEo C)sl. oarl. d to E= J. o-= o cy) =uo. f,e. ic v. .o6. .9o. äji. :ir. ijo 96. {c o o. ';i _o. :fe. C=?i. t-l +) (- c rt, u0 C.
C C C)l A\ d Y) L P C v J J rl, ( 0 C.6 +) ( j 96.9 :r : C (Db]? d '; _ äj r, { . 3 k l: d d 6 60QOO:ddO 96.l ä.c p _ : 6 äp l P C..86 p r5 r!l (, ō J. J rl r O 6!6 (5 ) ä dl r l { ::: :: :: 6e g r : ;
LisätiedotELEC C4140 Kenttäteoria (syksy 2016)
ELEC C4140 Kenttäteoria (syksy 2016) Henrik Wallén / versio 15. syyskuuta 2016 Vektorianalyysi (Ulaby, luku 3) Viiva-, pinta- ja tilavuusalkiot Nablaoperaatiot Gaussin ja Stokesin lauseet Nabla on ystävä
LisätiedotMat Matematiikan peruskurssi S2
Mat-1.122 Matematiikan peruskurssi S2 Ratkaisuehdotuksia Harjoitus 12 alkuviikko Tehtävä 1 Hahmottele annetut vektorikentät sekä niiden kenttäviivat tapauksissa. a)f(x, y) xi + yj b)f(x, y) e x i + e -x
LisätiedotMat Matematiikan peruskurssi K2
Mat-.3 Matematiikan peruskurssi K Heikkinen/Tikanmäki Kolmas välikoe 6.5. Kokeessa saa käyttää ylioppilaskirjoituksiin hyväksyttyä laskinta. Sivun kääntöpuolelta löytyy integrointikaavoja.. Olkoon F(x,
LisätiedotL. Maan ia Auringon vetovoiman yhtäsuuruus
GRAVTAATOKENTT EN TASAPA NOKOHTA: Tehtävä RATKASU L. Maan a Aurngon vetovoman yhtäsuuruus Kunka kauas Maasta avaruusluotan on vetävä, otta Aurngon jaa Maan vetovomat tasapanottasvat tosensa el avaruusalukseen
LisätiedotMS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 8: Divergenssi ja roottori. Gaussin divergenssilause.
MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 8: Divergenssi ja roottori. Gaussin divergenssilause. Antti Rasila Aalto-yliopisto Syksy 2015 Antti Rasila (Aalto-yliopisto) MS-A0305 Syksy 2015
LisätiedotMS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 7: Pintaintegraali ja vuointegraali
MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 7: Pintaintegraali ja vuointegraali Antti Rasila Aalto-yliopisto Syksy 2015 Antti Rasila (Aalto-yliopisto) MS-A0305 Syksy 2015 1 / 24 Mikä on pinta?
LisätiedotAluevarausmerkinnät: T/kem Maakuntakaava
kk mk mv se jl ma ge pv nat luo un kp me va sv rr rr A AA C P TP T TT T/kem V R RA RM L LM LL LS E ET EN EJ EO EK EP S SL SM SR M MT MU MY W c ca km at p t t/ kem mo vt/kt/st vt/kt st yt tv /k /v ab/12
LisätiedotGaussin lause eli divergenssilause 1
80 VEKTOIANALYYI Luento 1 8. Gaussin lause eli divergenssilause 1 A 16.4 Kurssin jäljellä olevassa osassa käymme läpi joukon fysiikan kannalta tärkeitä vektorikenttien integrointia koskevia tuloksia, nimittäin
LisätiedotS-ZSOTOOP DZDATA !SWIA 0 \ S-ISOTOOPPIDATA GTL-78 S AVZA. M19/3314/=78/14/10 M,IkeI ä, A.J.Laitakari Pielavesi, Säviä
M19/3314/=78/14/10 M,IkeI ä, A.J.Laitakari Pielavesi, Säviä!SWIA 0 \ S-ZSOTOOP DZDATA S-ISOTOOPPIDATA GTL-78 S AVZA SÄVIÄN S-ISOTOOPPIDATA ANALYYSITULOSTEN SELITYKSET VASEMMALTA OIKEALLE LABORATORIOKOODI
LisätiedotELEC C4140 Kenttäteoria (syksy 2015)
ELEC C4140 Kenttäteoria (syksy 2015) Henrik Wallén Luentoviiko 3 / versio 23. syyskuuta 2015 Vektorianalyysi (Ulaby, luku 3) Koordinaatistot Viiva-, pinta- ja tilavuusalkiot Koordinaattimuunnokset Nablaoperaatiot
LisätiedotDifferentiaali- ja integraalilaskenta 3 Mallit 2 (alkuviikko) / Syksy 2016
MS-A35 Differentiaali- ja integraalilaskenta 3 Differentiaali- ja integraalilaskenta 3 Mallit 2 (alkuviikko) / Syksy 216 Tuntitehtävä 1: Laske sylinterikoordinaatteja käyttämällä sen kappaleen tilavuus,
LisätiedotDifferentiaali- ja integraalilaskenta 3 Mallit laskuharjoitusviikkoon 5 /
M-A5 ifferentiaali- ja integraalilaskenta, I/17 ifferentiaali- ja integraalilaskenta Mallit laskuharjoitusviikkoon 5 / 9. 1.1. Alkuviikon tehtävät Tehtävä 1: Määritä (ilman Gaussin lausetta) vektorikentän
LisätiedotArvio metsdmaan arvosta
Arv metsmaan arvsta Omstaja Kuusam, Nskajrv Kunta Kyll Tla Rn: Ala, ha 35 477 Nskajrv 31. : 77,5 SPOO LO.6.2L7 Lstetja Teemu Saarnen KTM, LKV Arv phjautuu 14.1,23 pvtyn metssuunntelman kuvtethn ja Kuusamn
Lisätiedot3x + y + 2z = 5 e) 2x + 3y 2z = 3 x 2y + 4z = 1. x + y 2z + u + 3v = 1 b) 2x y + 2z + 2u + 6v = 2 3x + 2y 4z 3u 9v = 3. { 2x y = k 4x + 2y = h
HARJOITUSTEHTÄVIÄ 1. Anna seuraavien yhtälöryhmien kerroinmatriisit ja täydennetyt kerroinmatriisit sekä ratkaise yhtälöryhmät Gaussin eliminointimenetelmällä. { 2x + y = 11 2x y = 5 2x y + z = 2 a) b)
LisätiedotMS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 10: Napa-, sylinteri- ja pallokoordinaatistot. Pintaintegraali.
MS-A25/MS-A26 Differentiaali- ja integraalilaskenta 2 Luento 1: Napa-, sylinteri- ja pallokoordinaatistot. Pintaintegraali. Jarmo Malinen Matematiikan ja systeemianalyysin laitos 1 Aalto-yliopisto Kevät
LisätiedotTodista suoraan integraalin määritelmään perustuen tasointegraalin ominaisuus. λ f = λ f,
7. Taso- ja avaruusintegraali 7.1. Tasointegraalin määrittely 205. Tarkastellaan funktiota f (x,y) = x+y neliössä {(x,y) 0 x 1, 0 y 1}. Neliö jaetaan suorilla x = a ja y = b neljään osasuorakulmioon; 0
Lisätiedot6. KOKOUKSEN LAILLISUUSEN JA PÄÄTÖSVALTAISUUDEN TOTEAMINEN
(3) PÖYTÄKIRJA 5..203 SÄÄNTÖMÄÄRÄISEN SYYSKOKOUKSEN PÖYTÄKIRJA Aika Paikka 5..203 klo 9.20 alkaen Ideapark, Kokoustila Kotka. Lempäälä Läsnä Osallistujalista liitteenä (liite ). KOKOUKSEN AVAUS TaLVIn
Lisätiedot=*' igäiäigä$jii,äägääggägääfä. E'EEEEiäs*'ääääEäggägäiiläägäääägäää. i;giggggäggg äg;gfggäiggis. E Ei. ä jggä;fäfäää. e;egelgäf EEE : !
l d=. ö^ 3k 4rcna lc ' *O\ J * '\ tia.2 t :q(cblz c i;iä ä;fäis il 6! iää; iäiäää 9 S # öt == cf) \n.vdtd &= e;läf ;:c cj '5 'tr=lz ä jä;fäfäää c5 FrO! =*' ":rf : 6 Ä'^üi= iu l n. :S Xn.!.< V,; :;,^?'=.!.=Na'tY
LisätiedotTällaisessa tapauksessa on usein luontevaa samaistaa (u,v)-taso (x,y)-tason kanssa, jolloin tason parametriesitys on *** VEKTORIANALYYSI.
39 VEKTORIANALYYI Luento 6 5. Pinnat ja pintaintegraalit Pintojen parametriesitys. Aikaisemmin käsittelimme käyrän esittämistä parametrimuodossa. iihen riitti yksi reaalinen parametri (t), joka sai aroja
Lisätiedotr\rvio metsd maa n a rvosta
r\rv metsd maa n a rvsta Omstaja Skalatva 8B,B3ha Kunta l(yl Tla Rn: Ala, ha 791 t\32. Rahkla B:2 88,8 Laatjan allekrjtus TSPOO 25.8.219 Teemu Saarnen KTM,LKV Pertt Saarnen Lsdtetja MTT-I I(V Arv phjautuu
Lisätiedotx (t) = 2t ja y (t) = 3t 2 x (t) + + y (t) Lasketaan pari käyrän arvoa ja hahmotellaan kuvaaja: A 2 A 1
BM2A582 Integraalilaskenta ja sovellukset Harjoitus 6, Kevät 26 Kaikissa tehtävissä tärkeintä ja riittävää on saada oikea lauseke aikaiseksi. Useissa tehtävissä integraalit eivät tosin ole niin vaikeita
LisätiedotDifferentiaali- ja integraalilaskenta 3 Ratkaisut viikko 3
MS-A35 Differentiaali- ja integraalilaskenta 3, I/27 Differentiaali- ja integraalilaskenta 3 Ratkaisut viikko 3 Tehtävä : Hahmottele seuraavat vektorikentät ja piirrä niiden kenttäviivat. a) F(x, y) =
LisätiedotMATEMATIIKAN PERUSKURSSI I Harjoitustehtäviä syksy Millä reaaliluvun x arvoilla. 3 4 x 2,
MATEMATIIKAN PERUSKURSSI I Harjoitustehtäviä syksy 6. Millä reaaliluvun arvoilla a) 9 =, b) + + + 4, e) 5?. Kirjoita Σ-merkkiä käyttäen summat 4, a) + 4 + 6 + +, b) 8 + 4 6 + + n n, c) + + +
Lisätiedot-d;'$ d{ee lr a ;{*.v. ii{:i; rtl i} dr r/ r ) i a 4 a I p ;,.r.1 il s, Karttatuloste. Maanmittauslaitos. Page 1 of 1. Tulostettu 22.08.
Maanmttauslats Page 1 f 1 -d;'$ d{ee lr a ;{*.v {:; rtl } dr r/ r ) a 4 a p ;,.r.1 l s, Karttatulste Tulstettu 22.08.2014 Tulsteen keskpsteen krdnaatt (ETRS-TM3SFlN): N: 6998249 E: 379849 Tulse e le mttatarkka.
Lisätiedotomakotitontit omakotitontit Saaristokaupungin Pirttiniemessä
KUOPON KAUPUNK Maaoaisuuden hallintapalvelut Tarjousten Tarjousten perusteella perusteella yytävät yytävät oakotitontit oakotitontit Saaristokaupungin Pirttinieessä Tarjousten Tarjousten jättöaika jättöaika
Lisätiedotl 1 2l + 1, c) 100 l=0
MATEMATIIKAN PERUSKURSSI I Harjoitustehtäviä syksy 5. Millä reaaliluvun arvoilla a) 9 =, b) 5 + 5 +, e) 5?. Kirjoita Σ-merkkiä käyttäen summat 4, a) + + 5 + + 99, b) 5 + 4 65 + + n 5 n, c)
LisätiedotFr ( ) Fxyz (,, ), täytyy integroida:
15 VEKTORIANALYYSI Luento Vektorikentän käyräintegraali Voiman tekemä työ on matka (d) kertaa voiman (F) projektio liikkeen suunnassa, yksinkertaisimmillaan W Fd. Jos liike tapahtuu käyrää pitkin ja voima
LisätiedotTuote LVI-numero Pikakoodi POHJAISTUKAN TIIVISTE GBG LA37 HUUHTELUVENTT. TIIVISTE GBG NORDIC 2300/2200 T II/ T I/ K
WC-varaosat Tuote LVI-numero Pikakoodi POHJAISTUKAN TIIVISTE GBG 5652536 LA37 NORDIC 2300/2200 HUUHTELUVENTT. TIIVISTE GBG NORDIC 2300/2200 T II/ T I/ K HUUHTELUPUTKI GBG HUUHTELUVENTTIILI GBG 1-H JA 2-H
LisätiedotArvio metsd maa n a rvosta
Arvi metsd maa n a rvsta Omistaja Lpr Klmenharju Kunta Kylli Tila Rn: Ala, ha 405 572 Klmenharju :l:89 24,9 ESPOO L6.5.20L7 Laatijan allekirjitus Teemu Saarinen Lisdtietja Arvi phjautuu Teemu Saarinen
Lisätiedot(ks. kuva) ja sen jälkeen x:n ja y:n suhteen yli xy-tasossa olevan alueen projektion G:
7 VEKTORIANALYYSI Luento 11 7. Tilavuusintegraalit A 14.5 Funktion f( xyz,, ) tilavuusintegraali yli kolmiulotteisen alueen V on raja-arvo summasta V f( xyz,, ) V kun tilavuusalkiot V =. Tarkastellaan
LisätiedotNÄKYMÄ TURVESUONKADUN JA LIELAHDENKADUN RISTEYKSESTÄ MAANKÄYTTÖSUUNNITELMA TEIVAALANTIELLE LIELAHTEEN LUONNOS ARKKITEHDIT A3 OY
NÄKYMÄ TURVESUNKADUN JA LELAHDENKADUN RSTEYKSESTÄ MAANKÄYTTÖSUUNNTELMA TEVAALANTELLE LELAHTEEN LUNNS.. ARKKTEHDT A Y ,,,,,, :,, Pelv o,,,,,,,,,,,,,,,,,,,, :,,,,,,,, :,,,,,,, Pol Pl,,,, K,, :,,, :,,,,,,,
LisätiedotDifferentiaali- ja integraalilaskenta 3 Laskuharjoitus 7 /
M-A3x Differentiaali- ja integraalilaskenta 3, IV/216 Differentiaali- ja integraalilaskenta 3 Laskuharjoitus 7 / 14.-16.3. Harjoitustehtävät 37-4 lasketaan alkuviikon harjoituksissa. Kotitehtävät 41-43
Lisätiedotf x da, kun A on tason origokeskinen yksikköympyrä, jonka kehällä funktion f arvot saadaan lausekkeesta f (x, y) = 2x 3y 2.
13. Erityyppisten integraalien väliset yhteydet 13.1. Gaussin lause 364. Laske A f x da, kun A on tason origokeskinen yksikköympyrä, jonka kehällä funktion f arvot saadaan lausekkeesta f (x, y) = 2x 3y
Lisätiedot)x -)! ^i, + lu" x---',!^,y+je+ov. z'?+t' -t e +v A,ft1 = ffi*- my. Am= ft1x- fhy. A R-*t+AJa^HtNeN. lla.f J^ YA r e. LAtTE^l,NeN YDtMFffi
Yl ast.qvaj lv zrn Ja Re/4Frto M pg,4f{_g LAtTE^l,NeN YDtMFffi lla.f J^ YA r e Ä^W: frtxhrä- Yrr;rer rn Tulo 6- Y7' r, T' t? Atcrr o,vg R CIA a elt H^J o*>1r M n AÅ = R
LisätiedotMS-A0003/A0005 Matriisilaskenta Laskuharjoitus 2 / vko 45
MS-A0003/A0005 Matriisilaskenta Laskuharjoitus / vko 5 Tehtävä 1 (L): Hahmottele kompleksitasoon ne pisteet, jotka toteuttavat a) z 3 =, b) z + 3 i < 3, c) 1/z >. Yleisesti: ehto z = R, z C muodostaa kompleksitasoon
Lisätiedotb) '5555z-?:lo -1:7 ' 5 ',r+i (i-å) n- r*or i+i- sl4-4 s-5-''- (å) 2:+ 2 r t I 3-3 a)23+42 Ð'+., (, -:), u)j++ b)2-1 "i
Tampereen kesäyliopisto, kevät 20 1 5 Thlousmatematiikan perusteet, orrr s ro30 L. harjoitus, (la 12.11.2015) 1. Laske seuraavat laskut. Laske kukin lasku ensin käsin þnää ja paperia käyttäen. Anna vastaukset
LisätiedotMS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 10: Stokesin lause
MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 10: Stokesin lause Antti Rasila Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Syksy 2016 Antti Rasila (Aalto-yliopisto) MS-A0305 Syksy
LisätiedotRatkaisut vuosien tehtäviin
Ratkaisut vuosien 1978 1987 tehtäviin Kaikki tehtävät ovat pitkän matematiikan kokeista. Eräissä tehtävissä on kaksi alakohtaa; ne olivat kokelaalle vaihtoehtoisia. 1978 Osoita, ettei mikään käyrän y 2
LisätiedotTuote LVI-numero Pikakoodi POHJAISTUKAN TIIVISTE GBG LA37 HUUHTELUVENTT. TIIVISTE GBG NORDIC 2300/2200 T II/ T I/ K
WC-varaosat Tuote LVI-numero Pikakoodi POHJAISTUKAN TIIVISTE GBG 5652536 LA37 NORDIC 2300/2200 HUUHTELUVENTT. TIIVISTE GBG NORDIC 2300/2200 T II/ T I/ K SÄILIÖN TIIVISTE GBG HUUHTELUPUTKI GBG HUUHTELUVENTTIILI
LisätiedotJuuri 4 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty Kertaus. b) B = (3, 0, 5) K2. 8 ( 1)
Kertaus K1. a) OA i k b) B = (, 0, 5) K. K. a) AB (6 ( )) i () ( ( 7)) k 8i 4k AB 8 ( 1) 4 64116 819 b) 1 1 AB( ( 1)) i 1 i 4 AB ( ) ( 4) 416 0 45 5 K4. a) AB AO OB OA OB ( i ) i i i 5i b) Pisteen A paikkavektori
Lisätiedotl 1 2l + 1, c) 100 l=0 AB 3AC ja AB AC sekä vektoreiden AB ja
MATEMATIIKAN PERUSKURSSI I Harjoitustehtäviä syksy 7. Millä reaaliluvun arvoilla a) 9 =, b) + 5 + +, e) 5?. Kirjoita Σ-merkkiä käyttäen summat 4, a) + + 5 + + 99, b) 5 + 4 65 + + n 5 n, c) +
LisätiedotMS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 11: Taso- ja tilavuusintegraalien sovellutuksia
MS-A25/MS-A26 ifferentiaali- ja integraalilaskenta 2 Luento 11: Taso- ja tilavuusintegraalien sovellutuksia Jarmo Malinen Matematiikan ja systeemianalyysin laitos 1 Aalto-yliopisto Kevät 216 1 Perustuu
LisätiedotMääräys STUK SY/1/ (34)
Määräys SY/1/2018 4 (34) LIITE 1 Taulukko 1. Vapaarajat ja vapauttamisrajat, joita voidaan soveltaa kiinteiden materiaalien vapauttamiseen määrästä riippumatta. Osa1. Keinotekoiset radionuklidit Radionuklidi
LisätiedotMS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 10: Moninkertaisten integraalien sovelluksia
MS-A22 ifferentiaali- ja integraalilaskenta 2 (SCI) Luento 1: Moninkertaisten integraalien sovelluksia Antti Rasila Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Syksy 217 Antti Rasila (Aalto-yliopisto)
LisätiedotPS. Jos vastaanotit Sinulle kuulumattoman viestin, pyydän ilmoittamaan siitä viipymättä allekirjoittaneelle ja tuhoamaan viestin, kiitos.
Teamware Office' Posti Saapunut posti : Olavi Heikkisen lausunto Lähettäjä : Karjalainen Mikko Vastaanottaja : Leinonen Raija Lähetetty: 18.1.2013 10:29 He i! Korjasin nyt tämän spostiliitteenä olevaan
LisätiedotYHDYSKUNTALAUTAKUNTA TALOUSARVIOEHDOTUS 2018 TALOUSSUUNNITELMA
YHDYSKUNTALAUTAKUNTA TALOUSARVIOEHDOTUS 2018 TALOUSSUUNNITELMA 2018-2020 TOIMIALA 50 YHDYSKUNTAPALVELUT P A L V E L U 5 0 0 T E K N I S E N J A Y M P Ä R I S T Ö T O I M E N H A L L I N T O J A M A A S
LisätiedotMATEMATIIKKA 5 VIIKKOTUNTIA
EB-TUTKINTO 2010 MATEMATIIKKA 5 VIIKKOTUNTIA PÄIVÄMÄÄRÄ: 4. kesäkuuta 2010 KOKEEN KESTO: 4 tuntia (240 minuuttia) SALLITUT APUVÄLINEET: Eurooppa-koulun antama taulukkovihkonen Funktiolaskin, joka ei saa
LisätiedotNIKKILÄN SYDÄMEN LAAJENTAMINEN VAIHE 2 MAANTASOKERROS 1/ / ARK - house
tk, J e, hu p rr, Ä, 9,,, Ä Ä Ä 9,, 9 h vut tk k D uk, C lut, kpk C tr, rv tr C9, y e yv tt t rv lkr tl lut e pll t-k-hu kek u v pt + C C tr C9 tr lut C, C C, yp + phu te kt kpl bet uur rv gr ttpe t +
LisätiedotJakotukit / tarvikkeet
Jakotukit / tarvikkeet Tuote LVI-numero Pikakoodi 2022115 BF71 VM 2X3/4 EURO VM 3X3/4 EURO VM 4X3/4 EURO VM 5X3/4 EURO VM 6X3/4 EURO VM 7X3/4 EURO VM 8X3/4 EURO VM 9X3/4 EURO VM 10X3/4 EURO VM 11X3/4 EURO
LisätiedotForssan kaupunki Osavuosikatsaus YHDYSKUNTAPALVELUT. Arviointik r iteeri tr mittarit ja tavoitetaso ja t a v o i t e t a s o
Forssan kaupunki Osavuosikatsaus 2017-08 TOIMIALA 50 YHDYSKUNTAPALVELUT P A L V E L U 5 0 0 T E K N I S E N J A Y M P Ä R I S T Ö T O I M E N H A L L I N T O J A M A A S E U T U P A L V E L U T T I L I
LisätiedotPreliminäärikoe Pitkä Matematiikka 3.2.2009
Preliminäärikoe Pitkä Matematiikka..9 x x a) Ratkaise yhtälö =. 4 b) Ratkaise epäyhtälö x > x. c) Sievennä lauseke ( a b) (a b)(a+ b).. a) Osakkeen kurssi laski aamupäivällä,4 % ja keskipäivällä 5,6 %.
LisätiedotMATEMATIIKAN PERUSKURSSI II
MTEMTIIKN PERUKURI II Harjoitustehtäviä kevät 17 1. Tutki, suppenevatko seuraavat lukujonot: a) d) ( k ) + 5 k, b) k 1 x 5 dx, e) ( ln(k + 1) k ), c) k 1 cos(πx) dx, f) k e x dx, 1 k e k k kx dx.. Olkoon
LisätiedotDifferentiaalilaskennan tehtäviä
Differentiaalilaskennan tehtäviä DIFFERENTIAALILASKENTA 1. Raja-arvon käsite, derivaatta raja-arvona 1.1 Raja-arvo pisteessä 1.2 Derivaatan määritelmä 1.3 Derivaatta raja-arvona 2. Derivoimiskaavat 2.1
LisätiedotMS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 10: Moninkertaisten integraalien sovelluksia
MS-A22 ifferentiaali- ja integraalilaskenta 2 (SCI) Luento 1: Moninkertaisten integraalien sovelluksia Antti Rasila Aalto-yliopisto Syksy 215 Antti Rasila (Aalto-yliopisto) MS-A22 Syksy 215 1 / 2 Moninkertaisten
Lisätiedotx n e x dx = n( e x ) nx n 1 ( e x ) = x n e x + ni n 1 x 4 e x dx = x 4 e x +4( x 3 e x +3( x 2 e x +2( xe x e x ))) = e x
Osittaisintegrointia käyttäen osoita integraalille I n x n e x dx oikeaksi reduktiokaava I n x n e x + ni n ja laske sen avulla mitä on I 4 kun x. x n e x dx n( e x ) nx n ( e x ) x n e x + ni n x 4 e
LisätiedotMS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 9: Greenin lause
MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 9: Greenin lause Antti Rasila Aalto-yliopisto Syksy 2015 Antti Rasila (Aalto-yliopisto) MS-A0305 Syksy 2015 1 / 19 Esimerkki Olkoon F : R 3 R 3 vakiofunktio
Lisätiedot& # # w. œ œ œ œ # œ œ œ œ œ # œ w. # w nœ. # œ œ œ œ œ # œ w œ # œ œ œ Œ. œ œ œ œ œ œ œ œ # œ w. œ # œ œ œ w œ œ w w w w. W # w
Epainn muis (1.1., 6.12.) # œ œ œ œ œ # œ w i nun Kris lis sä py hää muis tus Tofia (6.1.) jo Jo pai a, y lis n [Ba li nu a, os,] kun ni, l nä ru k, i dän Ju ma lis, y lis ka i dän h tm h nk sl nu a, o
LisätiedotKertausosa. 5. Merkitään sädettä kirjaimella r. Kaaren pituus on tällöin r a) sin = 0, , c) tan = 0,
Kertausosa. a),6 60 576 Peruuttaessa pyörähdyssuunta on vastapäivään. Kulma on siis,4 60 864 a) 576 864 0,88m. a) α b 0,6769... 0,68 (rad) r,m 8cm β,90...,9 (rad) 4cm a) α 0,68 (rad) β,9 (rad). a) 5,0
LisätiedotPäätöspöytäkirja 20/2018
Päätöspöytäkirj 2/218 Päätöspvm 7.6.218 Yleishllinto Porin kupunki Sivistystoimil Dnro PORI/182/12.4.1/218 Yhteiset plvelut -yksikön päällikkö Otsikko Krhuhllin tlvikuden 1.1.218-.4.219 tphtumt, konsertit,
Lisätiedot1. Olkoot vektorit a, b ja c seuraavasti määritelty: a) Määritä vektori. sekä laske sen pituus.
Matematiikan kurssikoe, Maa4 Vektorit RATKAISUT Sievin lukio Keskiviikko 12.4.2017 VASTAA YHTEENSÄ VIITEEN TEHTÄVÄÄN! MAOL JA LASKIN/LAS- KINOHJELMAT OVAT SALLITTUJA! 1. Olkoot vektorit a, b ja c seuraavasti
Lisätiedotää*r: rfrtlqäe'räs rr[; äsüä FäF r."f F'*üe ;=v* tr, $rr;gt :r1 älfese li ä; äepö* l4:e x1;'.äö l--g! li r: ; ;;*; ssü ntirs E,pä ;;qi?
j X \: c : 1:8" : Z : : ) ) c 1 T [ b[ ]4 ) < c 1 ü ]T G \\ e p > : [ : e L [? p 2 9 Z S: c? [:? " : e :: [ : >9 Y :[ p e ß < 1 9 1 \ c 4 > ) 1 :91$ :e h b 1 6 " ö:p:?e S9e R ü e $ :1 ee \ eö 4:e 1ö X
Lisätiedot- Zj + +i, virittämän suunnikkaan pinta-ala. 2x + Y: 4. 3x 2y:2 -x+y:-1. 3x + y:5. -x +2y:2. 4x + Y: 4. voitto : qr Aq+ rr q. : -!A_'r.
Vaasan yliopisto, syksy 2014 Lineaarialgebra, MAH. lo4o 7. harjoitus, (viikko 2, 5.1.-9.1.2015 R01: ma 12-14 Dl15, R02: ke 14-16 D115, R03: to 10-12 F651 Viimeisellä luennolla käsiteltiin opetusmonisteen
Lisätiedot= ( F dx F dy F dz).
17 VEKTORIANALYYSI Luento 2 3.4 Vektorikentän käyräintegraali Voiman tekemä työ on matka (d) kertaa voiman (F) projektio liikkeen suunnassa, yksinkertaisimmillaan W Fd. Jos liike tapahtuu käyrää pitkin
LisätiedotKokeile ilmaiseksi mafyvalmennus.fi/mafynetti. Valmistaudu täydellisesti lääkiksen pääsykokeeseen! Miten opit parhaiten?
Miten opit parhaiten? Valmistaudu täydellisesti lääkiksen pääsykokeeseen! n Voit harjoitella kotoa käsin huippusuositulla Mafynetti-ohjelmalla. Mukaan kuuluu 4 täysimittaista harjoituskoetta!! n Harjoittelu
LisätiedotPeitelevy ja peitelaippa
Peitelevy ja peitelaippa Tuote LVI-numero Pikakoodi PEITELAATTA MERIKA 5688050 JF92 50-75-110/VALKOINEN 510 PEITELEVY ORAS D70/G1/2 167051 PEITELEVY KAULUKSELLA 50 MM-130 MM PEITELEVY KAULUKSELLA 75 MM-150
LisätiedotSAMMONKATU SAMMONKATU JAAKON- SARVI- KATU SARVIJAAKONKATU 1: Kalevanrinteen katujen yleissuunnitelma, Liite 3 Asemapiirros 1/4
KTOS L:\PROJEKTT_2012\1510001046 KLEVRTEE KTUJE YS\14_TULOKSET\3.KTUJE YLESSUUTELM\DWG\KLEVRE YS.DWG Tulostettu: 26.6.2013 n- JO KELLR- SR- JKO- KTU SMMOKTU PYSÄKÖT KORTTEL 4 +100,60 KSPHT 1/2 BUS (varaus)
LisätiedotMS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 9: Muuttujanvaihto taso- ja avaruusintegraaleissa
MS-A24 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 9: Muuttujanvaihto taso- ja avaruusintegraaleissa Antti Rasila Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Kevät 216 Antti Rasila
LisätiedotTekijä Pitkä matematiikka Suoran pisteitä ovat esimerkiksi ( 5, 2), ( 2,1), (1, 0), (4, 1) ja ( 11, 4).
Tekijä Pitkä matematiikka 4 9.12.2016 212 Suoran pisteitä ovat esimerkiksi ( 5, 2), ( 2,1), (1, 0), (4, 1) ja ( 11, 4). Vastaus esimerkiksi ( 5, 2), ( 2,1), (1, 0), (4, 1) ja ( 11, 4) 213 Merkitään pistettä
LisätiedotHarjoitus 2 ( )
Harjoitus 2 (24.3.2015) Tehtävä 1 Figure 1: Tehtävän 1 graafi. Aikaisimmat aloitushetket selvitetään kaavoilla v[0] = 0 v[p] max 0 i p 1 {v[i]+a i (i,p) E} = v[l]+a l d[p] l. Muodostetaan taulukko, jossa
LisätiedotKUNNALLISTEKNINEN SELVITYS. Asemakaava nro Särkänniemen alueen asemakaavan muutoksen aiheuttamat johto- ja putkisiirrot 1 (3) 7.6.
Särä l v h jh- j rr () UALLST SLTYS Särä l v h jh- j rr Av r J Sv,., A-öör Sl O A-öör O., www..f Y- - Särä l v h jh- j rr () Rr lj Rr ällää Särä l v h läö, vjhj j jävvärd l j v v lj ljj ll lj. Lj v jl
LisätiedotHarjoitus 2 ( )
Harjoitus 2 (27.3.214) Tehtävä 1 7 4 8 1 1 3 1 2 3 3 2 4 1 1 6 9 1 Kuva 1: Tehtävän 1 graafi. Aikaisimmat aloitushetket selvitetään kaavoilla v[] = v[p] d[p] l. max i p 1 {v[i] + a i (i, p) E} = v[l] +
Lisätiedoty (0) = 0 y h (x) = C 1 e 2x +C 2 e x e10x e 3 e8x dx + e x 1 3 e9x dx = e 2x 1 3 e8x 1 8 = 1 24 e10x 1 27 e10x = e 10x e10x
BM0A5830 Differentiaaliyhtälöiden peruskurssi Harjoitus 4, Kevät 017 Päivityksiä: 1. Ratkaise differentiaaliyhtälöt 3y + 4y = 0 ja 3y + 4y = e x.. Ratkaise DY (a) 3y 9y + 6y = e 10x (b) Mikä on edellisen
LisätiedotMS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 1: Parametrisoidut käyrät ja kaarenpituus
MS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 1: Parametrisoidut käyrät ja kaarenpituus Antti Rasila Aalto-yliopisto Syksy 2015 Antti Rasila (Aalto-yliopisto) MS-A0202 Syksy 2015 1 / 18
Lisätiedotg - s Eä;t;i;s!itää# EiäErE ii:ääg Eä E *läeäfiäeräsil* E sis $ä äce:;!ääfät ;1*iEs ;tää:gi g;ää*f ;ij !äef ä:e'geä;:ä Elä tä Efiäilii: ; g E
H!äf ä'gä;ä lä tä fäl ; $ä äc;!ääfät ;1* ;tääg ä;t;;!tää# är ääg ä *läääeräl* tä*äätäääägtätg B g - ü ;;*ä9äää g;ää*f ' g ;j ä u e *; t t ;; t ü t p ä; u ä; e r * g t g U ).l t r A ä O.* 6) l- C ) t n
LisätiedotKJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme
KJR-C1001 Statiikka ja dynamiikka Luento 15.3.2016 Susanna Hurme Päivän aihe: Translaatioliikkeen kinematiikka: asema, nopeus ja kiihtyvyys (Kirjan luvut 12.1-12.5, 16.1 ja 16.2) Osaamistavoitteet Ymmärtää
LisätiedotRuskon Laakeritie 22
äi äättä Rs Lri lvsitrstl.... g Sittll sijitt rär rl vl-lll (), issä dll sj vl-l (.) ltvll. lvdt lsvt Rsj yyösjärv j sjärv tt rär. sj vl-l it-l ~ l-l äi äättä.. g Lri vl-lt äi äättä Al läisyydssä lss lv
LisätiedotPOHJAISTUKAN TIIVISTE GBG
WC-varaosat Tuote LVI-numero Pikakoodi POHJAISTUKAN TIIVISTE GBG 5652536 LA37 NORDIC 2300/2200 HUUHTELUVENTT. TIIVISTE GBG NORDIC 2300/2200 T II/ T I/ K KIMSET 6405400001 TREVI/VIVA 9159200001 SEVEN D
LisätiedotDDD. g;, lt/' l-1ä. tv~ :J-/?t--q-.-,~)- --,L:: / o D E D F D G D. ~tto f ja k;n[js. tä~ttoet ) tj} J-d-LtJ;tJf'-tt.// p.
".E f /,,, f:r. :ro 7-. "l"z / f 2. 2 4 CJ ~- /t-f ARKEOLOGISEN KOHTEEN TARKASTUS DDD Tunnistetiedot / j Kunta:!:flal'/i Pr e.vi_ Inventointinumero: - -------- Alue: t)t-,-7 ' Luokka:---=/=/=----:-------
Lisätiedot> 40 db > 45 db > 50 db > 55 db > 60 db > 65 db > 70 db > 75 db
Pet jr t Kvm Kr Hyyr yl Sr m Hm Ko e o LIITE.. Mtede melelvty 0 Yömelto (etore: m) Ortmp Petmo Immo Kop Rto Tehr Rö Voe Lepelto Pr Ptlh Rm Kymht Netytem Vroj Prorp Sem Rto Tlllo Vtter Sotmp It-Sto M Korvet
LisätiedotKUIVANIEMI JOKIKYLÄ VESKANKANGAS (KUIVANIEMI 3 VESKANKANKANGAS)
KUIVANIEMI JOKIKYLÄ VESKANKANGAS (KUIVANIEMI 3 VESKANKANKANGAS) Selvitys V. Luhon vuonna 958 suorittamasta kaivauksesta kivikautisella asuinpaikalla Tuija Wallenius 989 Vuonna 958 Ville Luho suoritti tutkimuksia
Lisätiedot