2. a) Lähellä maan pintaa massaan m kohdistuva gravitaatiovoima kirjoitetaan muodossa

Koko: px
Aloita esitys sivulta:

Download "2. a) Lähellä maan pintaa massaan m kohdistuva gravitaatiovoima kirjoitetaan muodossa"

Transkriptio

1 763101P Fysiikan matematiikkaa sl 2012 Harjoitus 13 Viimeinen näyttpäivä pe Kappale liikkuu voimakentässä 2 3 ˆ ˆ 2 F ( y cos x z ) i (2 y sin x 4) j (3xz 2) k ˆ. a) Osoita, että kenttä on konservatiivinen. b) Etsi kenttää vastaava skalaaripotentiaali. c) Laske ty, joka tehdään siirrettäessä kappaletta voimakentässä pisteestä (0, 1, 1) pisteeseen ( / 2, 1, 2). 2. a) Lähellä maan pintaa massaan m kohdistuva gravitaatiovoima kirjoitetaan muodossa F mg k. ˆ Osoita, että voima on konservatiivinen ja laske vastaava skalaaripotentiaali eli ns. gravitaatiopotentiaali, joka antaa kentän muodossa F. b) Kaukana maan pinnasta massaan m kohdistuva gravitaatiovoima kirjoitetaan muodossa F e ˆ 2 r, r missä on vakio ja r etäisyys maan keskipisteestä. Osoita, että voima on konservatiivinen ja laske gravitaatiopotentiaali, joka antaa kentän muodossa F. 3. lue on rajattu xy-tasoon y-akselin ja suorien y1 2x 4ja y2 x 2 väliin. lueen pintaala saadaan laskemalla integraali d dxdy. a) Hahmottele alue ja perustele integroimisrajat x :0 6 ja y: (2x 4) ( x 2). b) Laske alueen pinta-ala. c) Laske alueen massakeskipisteen koordinaatit 1 1 xm xd ja ym yd 4. Tarkastellaan R-säteistä origokeskistä palloa. Käytetään pallokoordinaatistoa. a) Osoita, että pallon pinnalla infinitesimaalinen pinta-alkio on d R 2 sin d d ja laske pallon pinta-ala. b) Osoita, että pallon sisällä tilavuusalkio on dv r 2 sin drd d ja laske pallon tilavuus Käyttäen vektorikenttä F 2xˆi 2yˆj 3z k ˆ testaa Gaussin lausetta laskemalla tilavuusintegraali F dv ja pintaintegraali d V kun tilavuutena on särmin muotoinen tilavuus x [0,1], y [0,1] ja z [0,2] On annettu vektorikenttä F ( x y ) ˆi 2xy ˆj ja tarkastellaan xy-tasossa suorakaidetta, jota rajoittavat suorat x 0, x a, y 0 ja y b. Vahvista laskemalla F F d ja että tässä tapauksessa Stokesin lause toteutuu. F d r,

2 ll naj o r rus l3 /. ed F = (b z6osx +zs) i n(zts tnx -Y ) i + 6rz'*ilt,,o qj V*F = I /(' 3/tx.La X cosx + z' a J )/r\ l( 3/c e )XSrur -Lt 3x z?+ z )t.',.r\ -.<. \" Vtr,<trrÅ -i(: z''3 z') + å (tr co s x - 27cos x) = Ö N v: t'ttå R vrl I vr,tt ',t't (v"i = o) ->) /') F:v+ x=, JÖST tt@ sx +23 f,x 2: srn'-,x - L{ 1>r z L+ L I JTE G QO I O/]N : ($'s,n, Y+Yz7 + {(v'tl \ =i!'sturx-yl + X(x'z) Itz3v:-z + h(x'r) op vlr n-v,({(:,2)= 2z-tt1 +cr' 4Z(r, e) =,rf + Lz n c' [6 x rr = 1'st'x -Yt loll-crtru,, ou ult<) +c\ 1",' = qtsrrux+yzs +2z -Yl * O- / o':vlt o Y *#-^-,'^.-.-tu

3 J w= 4f+,-1,t)-(o,r, -7 ) ) a. = (t +yn+yry+q) - (o :3*Yn + : l{+r'(n fo OJ?,\ l- = -fi?v 4.^^ r?=ltjv. v xf = l7t^ '/rt %z lc o -rmft O,rt Lc>PSe 2vT7 tv tttett -_;(o) -it"t *il(o; : o csavrrtto',po TENTI L ', Q : ---i -VQ=F -) T.- o,ä= e,':== ilnr IPrz c z 1!T-1 ({q..,nt l/ Ö= 1?U,7) t Mxt+h(rx) :) 4) = r^72 + o-, a' o*s vv-to # k1 F= -qå. (fult= n?z vt-tr*:\ Z(/'z)= wxz (hk,i=a ;F"=-fr,Fo=o 'Fo=Q I å. nå rlsruoåp 1 +a- +Q v*f = l%" %" "Ä+ { yzstxsol-tfr, o I r1/1 o I \ä"(o) -\tå(") * Y-sru6% (o)l = o ('sual o! Lor<ts E QwTI I v tne'\)

4 -+ F : v1) =- 16,. (#). å (* HJ '_å*(å, %)1 losnr QY= c" - Y- / l,<:fe(,r.tdn 1,1) [= 9 + {@,ot r Tft,a) L-, (r, e ) I e:/ r ce zo tc3 ' rs*a oq (@,e)= a VI-ITN?(r,4) = r Å(r,o)= -- +q r -9 +e Y- (vnutol 3 / ( VL Ö 1e,*) SucrQn!r= 7r-\ LEILL Y^r- Sett,<.t prsrressä (o,-\) J suo4/l 1"= K+L?tsrr.lssi (o,z)' SucrBar L-trlVVVT TotSE/rS / ku^j ),*-\ =X+? =) K=( ) 1=B ELt etsretrssä (<,4) /r) Qtt'ra -L o^j $a* = Kno.,ELt Quura -L sa.qo,j "v-6 rvt" ' l{o N) /.: o-',6 \: Lr-Y -> x+l (srrs YraYr,Luva)

5 = 6 ) Y= ( e =frll x+2- ( \z (,\,:;)nr )* /: Ll, c) X..., ( xtz = -\)^*'' L((xea:1 (l(*e r?)\ )' 1...,= j $r (. X=o l. (n G' *c)jx ls J O L(-U rirs) ls\ 3 / IB J \ ^ (. = I l(-xt 3 :\ =U=Z 16 / Strs \X,,, Y=I* =l l8 )? 6 y+r ra=å!((: {r z)'- + loxl Y.- ) X=O tl-,t I -Y ( \ /-x J\ 3,)a. = -l 18 / Y=0 '?-\^ +(r)do = 4 : Y+z!t (,.), 2*-v,+!(Å' o.)u.=,*!(,kr)r. ){u-")')j-* =!, -t2r) =J (xe - = (t, z) K tr t v') i (-t" L p)ox - t z) &* lro -+r)

6 @.1 r;l-a =_) {v i ul I Sstpo &Q Q&"o :> c/ = Rde Rsrn, e &. = R 1s, *s e &e J.?ttcst'S PrruTÄ ".TETN "' / k u^j Ö z O ->lj- Ö: 2TT Jcr.fep Pt,t:I* - L LS ( t l:t 6Ö I 0'qno\) 11I,l =!!oo = f ((f-''"r4e"r.'8e "=f Q=a zt- = in t"""( P- )e": InR"$'"" '!e ;n = ln ' f-oso = unr'( 1il) = 1L{ o lrj 4r SUJO)!4 (V''rcn ront-å ) r&o ( ruz'er.r Eoeuta J &V, &-&e)(rswejö) (3-r\ = 'rlstr.lo &r&ö&e QnruoP TILVuuJ "Vvr 'ra^n)' ' Lu*t Q: -=il- Q: o-å'?7 f : o-->r I ot?ru Ttunvuv a E vs I (Nr Ba t o'a'ln/ v= _$5a"

7 1ir rt' R (. v= t(\( 5"'s,^,e&)*") & 4=o o=o y-=o F 2tr T lrt' = { tf + u', r,re eo)a+ )o rt = 5ry (1*r)& tt/- =?8'\do ='t nr' T''! l-* Lxi - 2r i n3z't,it or Tt trqvuus I ^/ Tä Q-Z- t s s v.f = w) * tfr'u '#' = 2*?+62 = \ + e I Jo Tg,t'!II'Fe 1, 11 v= t I Irr+Z 7=O 1-o K=O g =l-l,if'.,t+62\&z )J*J1&z I lqn*32' o = f+-lt- =P 9 t pfa t,u T,,,,, \i\ Ttr &LI 14uusl PINT : 1.?eos,+ rt 11 &1, = Y c*{d\ F-ei = 3z"J*&l J z=t' tjy:yi p s6vr r?u, rt Å P;r:raELEnPltrT-t - VfVr>f:tT o sö lfivt ulospätru PtNp/-) $ut-u- n ITn T1 LV uu oe st

8 lofe,tl 1 t O 5!f,G = 5l t.&*r' ^ '=: t;" 6) -liaäa= Z=o tl=o 2. n;a s.å = -t 4"&t i.di = -7 z'&*j3 J^ z= o 3. Yt:gnry4LLE Jt = -i &'az F..rÄ= -t1 &to(z J Y:o \. otv-elle &i =!a"a* F.aä= 21J-r&z Ja Y= 1 5 ETEEN r--\ a ^ JÄ = z'&u&z --\ F-4/'= Lx&x&z J/+ x =? 6, r"a"s: et = -)&t'lr -\ -5 F'J.i= -2xå-1"/a J x : + \)" oolrq K'-. +ll ; -5(1,!r&z z--a /=o.-@ +(; = lx*y+\ =L9 JJ h,t^ r55stlst-ttt+vuuslruteclllqtsartn*l TULO LSEP LUT T.I QII'IT INTE 6 (LLI' JO T a]n) GrSS/,tl 2arsSl T0tHlt!!

9 @ F: (x1r' ); 5k r 2,21 i '1\"tr)4-x* 2,ry 4$l 3" 1" l=o,j!=o lox=q,1-x=o j'\=/,-'j!=o Y' K=, J-x=o,/Å Joreru \f-.(f = aa -å )7.F sils -5 'c!-å -\l/- v*f : ltrr, \r'-r QttrT * LVI () fr --\ \w Y '.! =.= qf rf o /-v o6 =.) I aaxj-1 = io3' -- al' oo o o + (t, \r:)&n = I +'"-'&'r : eto a- -=) j"jv : o le f"r2o*3o*yo = Tq/t" /\^ j K [ ^r^ ^ ^ )/"t Vrr\= r(er+xt) ='{: k '?xl o I N &i = Qe1, tjrf"r,g.3 -ra -" +L"' $t \r : S f F.r")*, = \ta1rr Y=o )1zo o /r o I n ^..,?ol' //af = t** =. SiOF /z* ELt Sr" Y'ESt,.s LvsP 7-r:t n t,!!

-lllii;i i Eiää: Iiiii:; ä;äiäeiäi

-lllii;i i Eiää: Iiiii:; ä;äiäeiäi I z v x 'uz1zz?z., d!?.,rtz l t! r zx x tru tl Ifl Ag, lp llg l!q?6 ff -lll I 'g l 1 II giigur gtl,l9 t grliffglgi ggrygtgg , ur?.1,ä.r 'r,!,tzlt "z'.1 {r,? yr,! rz fl. r F g g!fi z,. g! q I?!?+ t f g

Lisätiedot

3 *ä;r ä:e 5ä ä{ :i. c oo) S g+;!qg *r; Er ; l[$ E ;;iä F:ä ä :E ä: a bo. =. * gäf$iery g! Eä. a is äg*!=."fl: ä; E!, \ ins:" qgg ;._ EE üg.

3 *ä;r ä:e 5ä ä{ :i. c oo) S g+;!qg *r; Er ; l[$ E ;;iä F:ä ä :E ä: a bo. =. * gäf$iery g! Eä. a is äg*!=.fl: ä; E!, \ ins: qgg ;._ EE üg. t AJ 1., t4 t4 \J : h J \) (.) \ ( J r ) tḡr (u (1) m * t *h& r( t{ L.C g :LA( g9; p ö m. gr iop ö O t : U 0J (U.p JJ! ä; >

Lisätiedot

NEN PAINOVOIMAMITTAUS N:o OU 10/7b

NEN PAINOVOIMAMITTAUS N:o OU 10/7b I RAUTARUUKKI Oy I RAUTUVAARAN YlVlPÄ.RISTi-)N ALUEELLI- MALMINETSINTÄ NEN PAINOVOIMAMITTAUS N:o OU 0/7b I 3.2. - 30.4.976 osa II -- TUTKIMUSALUE LAATIJA I JAKELU KUNTA LAAT.PVM HYV. SlVlOY OU ma KARTTALEHTI

Lisätiedot

1i; i S;Ji'l i. ?::Z+i?; i i räf. i:ä;äi +;la=;iilsi*t li +t ' ?1*1i+;s iii:e: riile s:: : ri;-r2=" ii1js:?i_?7-i17;i i

1i; i S;Ji'l i. ?::Z+i?; i i räf. i:ä;äi +;la=;iilsi*t li +t ' ?1*1i+;s iii:e: riile s:: : ri;-r2= ii1js:?i_?7-i17;i i ,.24 1,? V ) J.,, q " < ^ ; > ). p. Ä I +, 1. ) d. + 1 \ d ; t l r Y ^ L j. 1 > \ 7. r 7 5 r r E,^.. l, 2 9 ; r t 9 j J l 2 1 ; Y,7, ) r 4.. ; G / ) ^ ^ ^ 7 ^ t. r P l t L ) 2 4 P? D 9 ; F I*, 1.. ) /

Lisätiedot

PUTKIKAKSOISNIPPA MUSTA

PUTKIKAKSOISNIPPA MUSTA Takorauta Tuote LVI-numero Pikakoodi 0753007 RU33 KESKIRASKAS KESKIRASKAS KESKIRASKAS KESKIRASKAS KESKIRASKAS KESKIRASKAS KESKIRASKAS KESKIRASKAS DN 65 KESKIRASKAS 0 KESKIRASKAS 0 KESKIRASKAS SK/UK SK/UK

Lisätiedot

ääexgäl*ääääe ääg I ä*fre3 I äee iäa ää-äälgü il leääö ää; i ääs äei:ä ä+ i* äfä g u ;; + EF'Hi: 2 ä ; s i r E:;g 8ää-i iää: Ffärg',

ääexgäl*ääääe ääg I ä*fre3 I äee iäa ää-äälgü il leääö ää; i ääs äei:ä ä+ i* äfä g u ;; + EF'Hi: 2 ä ; s i r E:;g 8ää-i iää: Ffärg', !P9) (?trtrr('l rl 9< l ( r,r^iüfl.l ltrt ;ä r!! (r, t 6 t, rti 'le )( ö O RRZöF;ä x öö 1 74ö 9 jii\rtr lrl l jipäp. ldrrr_.^!. 9r. i P.^vä P. t!! v 7 ' '.ä e.q i >6l( t (p C ] ä il; ', +t n l ( e iei

Lisätiedot

l, ; i.'s ä E.ä E o gäästaefiiä,ggäeäeää;äggtää EI ;äe E H * eaä* E E 8EP.E .e= äe eääege F EEE;säääg lee sa 8NY ExE öe äec E= : ;H ä a(ü

l, ; i.'s ä E.ä E o gäästaefiiä,ggäeäeää;äggtää EI ;äe E H * eaä* E E 8EP.E .e= äe eääege F EEE;säääg lee sa 8NY ExE öe äec E= : ;H ä a(ü ,. 8\ ( P ;! l, ;.'s ä.ä >. u.a ä q x ö ä : ; ä ;äe * eä* 8P. ee s $e ää ä F äsä ff ääsfä,ääää;äää ä eääe F ;säää le sa r T e q ( r "j (,{,!. r JJ fl *r ( + T r {rl J Y '( S YC T 8Y C0 ( (f J, r, C,9 l

Lisätiedot

t P1 `UT. Kaupparek. nro Y-tunnus Hämeenlinnan. hallinto- oikeudelle. Muutoksenhakijat. 1( UiH S<

t P1 `UT. Kaupparek. nro Y-tunnus Hämeenlinnan. hallinto- oikeudelle. Muutoksenhakijat. 1( UiH S< 1(0 1 4 1 1 4 UiH 0 0 0 1 S< A S I A N A J O T O I M I S T O O S S I G U S T A F S S O N P L 2 9, Ra u h a n k a t u 2 0, 1 5 1 1 1 L a h t i P u h e l i n 0 3 / 7 8 1 8 9 6 0, G S M 0 5 0 0 / 8 4 0 5

Lisätiedot

Differentiaali- ja integraalilaskenta 3 Harjoitus 4/ Syksy 2017

Differentiaali- ja integraalilaskenta 3 Harjoitus 4/ Syksy 2017 MS-A35 Differentiaali- ja integraalilaskenta 3 Differentiaali- ja integraalilaskenta 3 Harjoitus 4/ Syksy 217 Alkuviikon harjoituksissa ratkaistaan kolme tehtävää assistentin avustuksella (läsnäololaskarit).

Lisätiedot

K Ä Y T T Ö S U U N N I T E L M A Y H D Y S K U N T A L A U T A K U N T A

K Ä Y T T Ö S U U N N I T E L M A Y H D Y S K U N T A L A U T A K U N T A K Ä Y T T Ö S U U N N I T E L M A 2 0 1 7 Y H D Y S K U N T A L A U T A K U N T A Forssan kaupunki Talousarvio ja -suunnitelma 2017-2019 / T O I M I A L A P A L V E L U 50 YHDYSKUNTAPALVELUT 5 0 0 T E

Lisätiedot

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 3: Vektorikentät

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 3: Vektorikentät MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 3: Vektorikentät Antti Rasila Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Syksy 2016 Antti Rasila (Aalto-yliopisto) MS-A0305 Syksy 2016

Lisätiedot

Pakkauksen sisältö: Sire e ni

Pakkauksen sisältö: Sire e ni S t e e l m a t e p u h u v a n v a r a s h ä l y t ti m e n a s e n n u s: Pakkauksen sisältö: K e s k u s y k sikk ö I s k u n t u n n i s ti n Sire e ni P i u h a s a rj a aj o n e st or el e Ste el

Lisätiedot

1, MITÄ TARKOITETAAN SEURAAVILLA TERMEILLÄ:

1, MITÄ TARKOITETAAN SEURAAVILLA TERMEILLÄ: KRANPDON TNTT 14.4.2014 LAY/OTK OT: Vst jkseen kysymykseen erllselle pperlle (must merktä nm myös krjnptu"t.u"ppern). ös et vst jhnkn kysymykseen, jätä nmetty vstuspper myös kysesen tehtävän slt' rrävär:

Lisätiedot

w%i rf* meccanoindex.co.uk

w%i rf* meccanoindex.co.uk &, w% r* lr,ryd* kro g ; - C +gä!! r -. ä.;'! dg+s Zt t0, y < 9 -! 8 tü;r" lun.'-y; ',ä lrl;!tä u l - 9 9! - ä 6 ^ 9 b - q - cz * ; *'a! a = ;6 f

Lisätiedot

RIIHIMÄEN MELUSELVITYS 2008

RIIHIMÄEN MELUSELVITYS 2008 S rj v Pljärv Pä väylly Rj Rjr R T Päväv v Oj Lä öyälä äää j Prj Sr rä v rj I vä Vh Sj U Rääyää hh rj P J Pl rä Ar rvj Al-A Pr löyrä l Th Plr Pä Plä h Uh Tv Tl Oj Slä Rj Al v Prä-r Tl Ojrä Rää Läj Vjh

Lisätiedot

äiäää?l älägcläälii äisrä lää äää

äiäää?l älägcläälii äisrä lää äää E m vf z ln7 r vr ll n U d \r .Tl vr r E0.Tl : N. ' 6 J n n 5 EF g m : ' ".E q ' v { m i. 'n 9. E!. G r'.n ff ge re E'l n,. q (f,,r L : n 6 :. G N. +.:, lrf s 'T ^ x vr L : @ : L 5 T g G H liäiiiiii$ä1läl

Lisätiedot

SU01\1JEL\I MAINJ[ OY

SU01\1JEL\I MAINJ[ OY KAIRAREIÄN NO 44 SIVUSUUNAMIAUS HYVELÄSSÄ MARRASKUUSSA 98 SU0\JEL\I MAINJ[ OY FlNNEXPLORAlON & ESPOO 27..98 HANNU SILVENNOINEN,. Dl 2 KAIRAREIÄN NO 44 SIVUSUUNAMIAUS HYVELÄSSÄ MARRASKUUSSA 98. s I s Ä

Lisätiedot

Eo C)sl. oarl. d to E= J. o-= o cy) =uo. f,e. ic v. .o6. .9o. äji. :ir. ijo 96. {c o o. ';i _o. :fe. C=?i. t-l +) (- c rt, u0 C.

Eo C)sl. oarl. d to E= J. o-= o cy) =uo. f,e. ic v. .o6. .9o. äji. :ir. ijo 96. {c o o. ';i _o. :fe. C=?i. t-l +) (- c rt, u0 C. C C C)l A\ d Y) L P C v J J rl, ( 0 C.6 +) ( j 96.9 :r : C (Db]? d '; _ äj r, { . 3 k l: d d 6 60QOO:ddO 96.l ä.c p _ : 6 äp l P C..86 p r5 r!l (, ō J. J rl r O 6!6 (5 ) ä dl r l { ::: :: :: 6e g r : ;

Lisätiedot

ELEC C4140 Kenttäteoria (syksy 2016)

ELEC C4140 Kenttäteoria (syksy 2016) ELEC C4140 Kenttäteoria (syksy 2016) Henrik Wallén / versio 15. syyskuuta 2016 Vektorianalyysi (Ulaby, luku 3) Viiva-, pinta- ja tilavuusalkiot Nablaoperaatiot Gaussin ja Stokesin lauseet Nabla on ystävä

Lisätiedot

Mat Matematiikan peruskurssi S2

Mat Matematiikan peruskurssi S2 Mat-1.122 Matematiikan peruskurssi S2 Ratkaisuehdotuksia Harjoitus 12 alkuviikko Tehtävä 1 Hahmottele annetut vektorikentät sekä niiden kenttäviivat tapauksissa. a)f(x, y) xi + yj b)f(x, y) e x i + e -x

Lisätiedot

Mat Matematiikan peruskurssi K2

Mat Matematiikan peruskurssi K2 Mat-.3 Matematiikan peruskurssi K Heikkinen/Tikanmäki Kolmas välikoe 6.5. Kokeessa saa käyttää ylioppilaskirjoituksiin hyväksyttyä laskinta. Sivun kääntöpuolelta löytyy integrointikaavoja.. Olkoon F(x,

Lisätiedot

L. Maan ia Auringon vetovoiman yhtäsuuruus

L. Maan ia Auringon vetovoiman yhtäsuuruus GRAVTAATOKENTT EN TASAPA NOKOHTA: Tehtävä RATKASU L. Maan a Aurngon vetovoman yhtäsuuruus Kunka kauas Maasta avaruusluotan on vetävä, otta Aurngon jaa Maan vetovomat tasapanottasvat tosensa el avaruusalukseen

Lisätiedot

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 8: Divergenssi ja roottori. Gaussin divergenssilause.

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 8: Divergenssi ja roottori. Gaussin divergenssilause. MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 8: Divergenssi ja roottori. Gaussin divergenssilause. Antti Rasila Aalto-yliopisto Syksy 2015 Antti Rasila (Aalto-yliopisto) MS-A0305 Syksy 2015

Lisätiedot

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 7: Pintaintegraali ja vuointegraali

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 7: Pintaintegraali ja vuointegraali MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 7: Pintaintegraali ja vuointegraali Antti Rasila Aalto-yliopisto Syksy 2015 Antti Rasila (Aalto-yliopisto) MS-A0305 Syksy 2015 1 / 24 Mikä on pinta?

Lisätiedot

Aluevarausmerkinnät: T/kem Maakuntakaava

Aluevarausmerkinnät: T/kem Maakuntakaava kk mk mv se jl ma ge pv nat luo un kp me va sv rr rr A AA C P TP T TT T/kem V R RA RM L LM LL LS E ET EN EJ EO EK EP S SL SM SR M MT MU MY W c ca km at p t t/ kem mo vt/kt/st vt/kt st yt tv /k /v ab/12

Lisätiedot

Gaussin lause eli divergenssilause 1

Gaussin lause eli divergenssilause 1 80 VEKTOIANALYYI Luento 1 8. Gaussin lause eli divergenssilause 1 A 16.4 Kurssin jäljellä olevassa osassa käymme läpi joukon fysiikan kannalta tärkeitä vektorikenttien integrointia koskevia tuloksia, nimittäin

Lisätiedot

S-ZSOTOOP DZDATA !SWIA 0 \ S-ISOTOOPPIDATA GTL-78 S AVZA. M19/3314/=78/14/10 M,IkeI ä, A.J.Laitakari Pielavesi, Säviä

S-ZSOTOOP DZDATA !SWIA 0 \ S-ISOTOOPPIDATA GTL-78 S AVZA. M19/3314/=78/14/10 M,IkeI ä, A.J.Laitakari Pielavesi, Säviä M19/3314/=78/14/10 M,IkeI ä, A.J.Laitakari Pielavesi, Säviä!SWIA 0 \ S-ZSOTOOP DZDATA S-ISOTOOPPIDATA GTL-78 S AVZA SÄVIÄN S-ISOTOOPPIDATA ANALYYSITULOSTEN SELITYKSET VASEMMALTA OIKEALLE LABORATORIOKOODI

Lisätiedot

ELEC C4140 Kenttäteoria (syksy 2015)

ELEC C4140 Kenttäteoria (syksy 2015) ELEC C4140 Kenttäteoria (syksy 2015) Henrik Wallén Luentoviiko 3 / versio 23. syyskuuta 2015 Vektorianalyysi (Ulaby, luku 3) Koordinaatistot Viiva-, pinta- ja tilavuusalkiot Koordinaattimuunnokset Nablaoperaatiot

Lisätiedot

Differentiaali- ja integraalilaskenta 3 Mallit 2 (alkuviikko) / Syksy 2016

Differentiaali- ja integraalilaskenta 3 Mallit 2 (alkuviikko) / Syksy 2016 MS-A35 Differentiaali- ja integraalilaskenta 3 Differentiaali- ja integraalilaskenta 3 Mallit 2 (alkuviikko) / Syksy 216 Tuntitehtävä 1: Laske sylinterikoordinaatteja käyttämällä sen kappaleen tilavuus,

Lisätiedot

Differentiaali- ja integraalilaskenta 3 Mallit laskuharjoitusviikkoon 5 /

Differentiaali- ja integraalilaskenta 3 Mallit laskuharjoitusviikkoon 5 / M-A5 ifferentiaali- ja integraalilaskenta, I/17 ifferentiaali- ja integraalilaskenta Mallit laskuharjoitusviikkoon 5 / 9. 1.1. Alkuviikon tehtävät Tehtävä 1: Määritä (ilman Gaussin lausetta) vektorikentän

Lisätiedot

Arvio metsdmaan arvosta

Arvio metsdmaan arvosta Arv metsmaan arvsta Omstaja Kuusam, Nskajrv Kunta Kyll Tla Rn: Ala, ha 35 477 Nskajrv 31. : 77,5 SPOO LO.6.2L7 Lstetja Teemu Saarnen KTM, LKV Arv phjautuu 14.1,23 pvtyn metssuunntelman kuvtethn ja Kuusamn

Lisätiedot

3x + y + 2z = 5 e) 2x + 3y 2z = 3 x 2y + 4z = 1. x + y 2z + u + 3v = 1 b) 2x y + 2z + 2u + 6v = 2 3x + 2y 4z 3u 9v = 3. { 2x y = k 4x + 2y = h

3x + y + 2z = 5 e) 2x + 3y 2z = 3 x 2y + 4z = 1. x + y 2z + u + 3v = 1 b) 2x y + 2z + 2u + 6v = 2 3x + 2y 4z 3u 9v = 3. { 2x y = k 4x + 2y = h HARJOITUSTEHTÄVIÄ 1. Anna seuraavien yhtälöryhmien kerroinmatriisit ja täydennetyt kerroinmatriisit sekä ratkaise yhtälöryhmät Gaussin eliminointimenetelmällä. { 2x + y = 11 2x y = 5 2x y + z = 2 a) b)

Lisätiedot

MS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 10: Napa-, sylinteri- ja pallokoordinaatistot. Pintaintegraali.

MS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 10: Napa-, sylinteri- ja pallokoordinaatistot. Pintaintegraali. MS-A25/MS-A26 Differentiaali- ja integraalilaskenta 2 Luento 1: Napa-, sylinteri- ja pallokoordinaatistot. Pintaintegraali. Jarmo Malinen Matematiikan ja systeemianalyysin laitos 1 Aalto-yliopisto Kevät

Lisätiedot

Todista suoraan integraalin määritelmään perustuen tasointegraalin ominaisuus. λ f = λ f,

Todista suoraan integraalin määritelmään perustuen tasointegraalin ominaisuus. λ f = λ f, 7. Taso- ja avaruusintegraali 7.1. Tasointegraalin määrittely 205. Tarkastellaan funktiota f (x,y) = x+y neliössä {(x,y) 0 x 1, 0 y 1}. Neliö jaetaan suorilla x = a ja y = b neljään osasuorakulmioon; 0

Lisätiedot

6. KOKOUKSEN LAILLISUUSEN JA PÄÄTÖSVALTAISUUDEN TOTEAMINEN

6. KOKOUKSEN LAILLISUUSEN JA PÄÄTÖSVALTAISUUDEN TOTEAMINEN (3) PÖYTÄKIRJA 5..203 SÄÄNTÖMÄÄRÄISEN SYYSKOKOUKSEN PÖYTÄKIRJA Aika Paikka 5..203 klo 9.20 alkaen Ideapark, Kokoustila Kotka. Lempäälä Läsnä Osallistujalista liitteenä (liite ). KOKOUKSEN AVAUS TaLVIn

Lisätiedot

=*' igäiäigä$jii,äägääggägääfä. E'EEEEiäs*'ääääEäggägäiiläägäääägäää. i;giggggäggg äg;gfggäiggis. E Ei. ä jggä;fäfäää. e;egelgäf EEE : !

=*' igäiäigä$jii,äägääggägääfä. E'EEEEiäs*'ääääEäggägäiiläägäääägäää. i;giggggäggg äg;gfggäiggis. E Ei. ä jggä;fäfäää. e;egelgäf EEE : ! l d=. ö^ 3k 4rcna lc ' *O\ J * '\ tia.2 t :q(cblz c i;iä ä;fäis il 6! iää; iäiäää 9 S # öt == cf) \n.vdtd &= e;läf ;:c cj '5 'tr=lz ä jä;fäfäää c5 FrO! =*' ":rf : 6 Ä'^üi= iu l n. :S Xn.!.< V,; :;,^?'=.!.=Na'tY

Lisätiedot

Tällaisessa tapauksessa on usein luontevaa samaistaa (u,v)-taso (x,y)-tason kanssa, jolloin tason parametriesitys on *** VEKTORIANALYYSI.

Tällaisessa tapauksessa on usein luontevaa samaistaa (u,v)-taso (x,y)-tason kanssa, jolloin tason parametriesitys on *** VEKTORIANALYYSI. 39 VEKTORIANALYYI Luento 6 5. Pinnat ja pintaintegraalit Pintojen parametriesitys. Aikaisemmin käsittelimme käyrän esittämistä parametrimuodossa. iihen riitti yksi reaalinen parametri (t), joka sai aroja

Lisätiedot

r\rvio metsd maa n a rvosta

r\rvio metsd maa n a rvosta r\rv metsd maa n a rvsta Omstaja Skalatva 8B,B3ha Kunta l(yl Tla Rn: Ala, ha 791 t\32. Rahkla B:2 88,8 Laatjan allekrjtus TSPOO 25.8.219 Teemu Saarnen KTM,LKV Pertt Saarnen Lsdtetja MTT-I I(V Arv phjautuu

Lisätiedot

x (t) = 2t ja y (t) = 3t 2 x (t) + + y (t) Lasketaan pari käyrän arvoa ja hahmotellaan kuvaaja: A 2 A 1

x (t) = 2t ja y (t) = 3t 2 x (t) + + y (t) Lasketaan pari käyrän arvoa ja hahmotellaan kuvaaja: A 2 A 1 BM2A582 Integraalilaskenta ja sovellukset Harjoitus 6, Kevät 26 Kaikissa tehtävissä tärkeintä ja riittävää on saada oikea lauseke aikaiseksi. Useissa tehtävissä integraalit eivät tosin ole niin vaikeita

Lisätiedot

Differentiaali- ja integraalilaskenta 3 Ratkaisut viikko 3

Differentiaali- ja integraalilaskenta 3 Ratkaisut viikko 3 MS-A35 Differentiaali- ja integraalilaskenta 3, I/27 Differentiaali- ja integraalilaskenta 3 Ratkaisut viikko 3 Tehtävä : Hahmottele seuraavat vektorikentät ja piirrä niiden kenttäviivat. a) F(x, y) =

Lisätiedot

MATEMATIIKAN PERUSKURSSI I Harjoitustehtäviä syksy Millä reaaliluvun x arvoilla. 3 4 x 2,

MATEMATIIKAN PERUSKURSSI I Harjoitustehtäviä syksy Millä reaaliluvun x arvoilla. 3 4 x 2, MATEMATIIKAN PERUSKURSSI I Harjoitustehtäviä syksy 6. Millä reaaliluvun arvoilla a) 9 =, b) + + + 4, e) 5?. Kirjoita Σ-merkkiä käyttäen summat 4, a) + 4 + 6 + +, b) 8 + 4 6 + + n n, c) + + +

Lisätiedot

-d;'$ d{ee lr a ;{*.v. ii{:i; rtl i} dr r/ r ) i a 4 a I p ;,.r.1 il s, Karttatuloste. Maanmittauslaitos. Page 1 of 1. Tulostettu 22.08.

-d;'$ d{ee lr a ;{*.v. ii{:i; rtl i} dr r/ r ) i a 4 a I p ;,.r.1 il s, Karttatuloste. Maanmittauslaitos. Page 1 of 1. Tulostettu 22.08. Maanmttauslats Page 1 f 1 -d;'$ d{ee lr a ;{*.v {:; rtl } dr r/ r ) a 4 a p ;,.r.1 l s, Karttatulste Tulstettu 22.08.2014 Tulsteen keskpsteen krdnaatt (ETRS-TM3SFlN): N: 6998249 E: 379849 Tulse e le mttatarkka.

Lisätiedot

omakotitontit omakotitontit Saaristokaupungin Pirttiniemessä

omakotitontit omakotitontit Saaristokaupungin Pirttiniemessä KUOPON KAUPUNK Maaoaisuuden hallintapalvelut Tarjousten Tarjousten perusteella perusteella yytävät yytävät oakotitontit oakotitontit Saaristokaupungin Pirttinieessä Tarjousten Tarjousten jättöaika jättöaika

Lisätiedot

l 1 2l + 1, c) 100 l=0

l 1 2l + 1, c) 100 l=0 MATEMATIIKAN PERUSKURSSI I Harjoitustehtäviä syksy 5. Millä reaaliluvun arvoilla a) 9 =, b) 5 + 5 +, e) 5?. Kirjoita Σ-merkkiä käyttäen summat 4, a) + + 5 + + 99, b) 5 + 4 65 + + n 5 n, c)

Lisätiedot

Fr ( ) Fxyz (,, ), täytyy integroida:

Fr ( ) Fxyz (,, ), täytyy integroida: 15 VEKTORIANALYYSI Luento Vektorikentän käyräintegraali Voiman tekemä työ on matka (d) kertaa voiman (F) projektio liikkeen suunnassa, yksinkertaisimmillaan W Fd. Jos liike tapahtuu käyrää pitkin ja voima

Lisätiedot

Tuote LVI-numero Pikakoodi POHJAISTUKAN TIIVISTE GBG LA37 HUUHTELUVENTT. TIIVISTE GBG NORDIC 2300/2200 T II/ T I/ K

Tuote LVI-numero Pikakoodi POHJAISTUKAN TIIVISTE GBG LA37 HUUHTELUVENTT. TIIVISTE GBG NORDIC 2300/2200 T II/ T I/ K WC-varaosat Tuote LVI-numero Pikakoodi POHJAISTUKAN TIIVISTE GBG 5652536 LA37 NORDIC 2300/2200 HUUHTELUVENTT. TIIVISTE GBG NORDIC 2300/2200 T II/ T I/ K HUUHTELUPUTKI GBG HUUHTELUVENTTIILI GBG 1-H JA 2-H

Lisätiedot

Arvio metsd maa n a rvosta

Arvio metsd maa n a rvosta Arvi metsd maa n a rvsta Omistaja Lpr Klmenharju Kunta Kylli Tila Rn: Ala, ha 405 572 Klmenharju :l:89 24,9 ESPOO L6.5.20L7 Laatijan allekirjitus Teemu Saarinen Lisdtietja Arvi phjautuu Teemu Saarinen

Lisätiedot

(ks. kuva) ja sen jälkeen x:n ja y:n suhteen yli xy-tasossa olevan alueen projektion G:

(ks. kuva) ja sen jälkeen x:n ja y:n suhteen yli xy-tasossa olevan alueen projektion G: 7 VEKTORIANALYYSI Luento 11 7. Tilavuusintegraalit A 14.5 Funktion f( xyz,, ) tilavuusintegraali yli kolmiulotteisen alueen V on raja-arvo summasta V f( xyz,, ) V kun tilavuusalkiot V =. Tarkastellaan

Lisätiedot

NÄKYMÄ TURVESUONKADUN JA LIELAHDENKADUN RISTEYKSESTÄ MAANKÄYTTÖSUUNNITELMA TEIVAALANTIELLE LIELAHTEEN LUONNOS ARKKITEHDIT A3 OY

NÄKYMÄ TURVESUONKADUN JA LIELAHDENKADUN RISTEYKSESTÄ MAANKÄYTTÖSUUNNITELMA TEIVAALANTIELLE LIELAHTEEN LUONNOS ARKKITEHDIT A3 OY NÄKYMÄ TURVESUNKADUN JA LELAHDENKADUN RSTEYKSESTÄ MAANKÄYTTÖSUUNNTELMA TEVAALANTELLE LELAHTEEN LUNNS.. ARKKTEHDT A Y ,,,,,, :,, Pelv o,,,,,,,,,,,,,,,,,,,, :,,,,,,,, :,,,,,,, Pol Pl,,,, K,, :,,, :,,,,,,,

Lisätiedot

Differentiaali- ja integraalilaskenta 3 Laskuharjoitus 7 /

Differentiaali- ja integraalilaskenta 3 Laskuharjoitus 7 / M-A3x Differentiaali- ja integraalilaskenta 3, IV/216 Differentiaali- ja integraalilaskenta 3 Laskuharjoitus 7 / 14.-16.3. Harjoitustehtävät 37-4 lasketaan alkuviikon harjoituksissa. Kotitehtävät 41-43

Lisätiedot

f x da, kun A on tason origokeskinen yksikköympyrä, jonka kehällä funktion f arvot saadaan lausekkeesta f (x, y) = 2x 3y 2.

f x da, kun A on tason origokeskinen yksikköympyrä, jonka kehällä funktion f arvot saadaan lausekkeesta f (x, y) = 2x 3y 2. 13. Erityyppisten integraalien väliset yhteydet 13.1. Gaussin lause 364. Laske A f x da, kun A on tason origokeskinen yksikköympyrä, jonka kehällä funktion f arvot saadaan lausekkeesta f (x, y) = 2x 3y

Lisätiedot

)x -)! ^i, + lu" x---',!^,y+je+ov. z'?+t' -t e +v A,ft1 = ffi*- my. Am= ft1x- fhy. A R-*t+AJa^HtNeN. lla.f J^ YA r e. LAtTE^l,NeN YDtMFffi

)x -)! ^i, + lu x---',!^,y+je+ov. z'?+t' -t e +v A,ft1 = ffi*- my. Am= ft1x- fhy. A R-*t+AJa^HtNeN. lla.f J^ YA r e. LAtTE^l,NeN YDtMFffi Yl ast.qvaj lv zrn Ja Re/4Frto M pg,4f{_g LAtTE^l,NeN YDtMFffi lla.f J^ YA r e Ä^W: frtxhrä- Yrr;rer rn Tulo 6- Y7' r, T' t? Atcrr o,vg R CIA a elt H^J o*>1r M n AÅ = R

Lisätiedot

MS-A0003/A0005 Matriisilaskenta Laskuharjoitus 2 / vko 45

MS-A0003/A0005 Matriisilaskenta Laskuharjoitus 2 / vko 45 MS-A0003/A0005 Matriisilaskenta Laskuharjoitus / vko 5 Tehtävä 1 (L): Hahmottele kompleksitasoon ne pisteet, jotka toteuttavat a) z 3 =, b) z + 3 i < 3, c) 1/z >. Yleisesti: ehto z = R, z C muodostaa kompleksitasoon

Lisätiedot

b) '5555z-?:lo -1:7 ' 5 ',r+i (i-å) n- r*or i+i- sl4-4 s-5-''- (å) 2:+ 2 r t I 3-3 a)23+42 Ð'+., (, -:), u)j++ b)2-1 "i

b) '5555z-?:lo -1:7 ' 5 ',r+i (i-å) n- r*or i+i- sl4-4 s-5-''- (å) 2:+ 2 r t I 3-3 a)23+42 Ð'+., (, -:), u)j++ b)2-1 i Tampereen kesäyliopisto, kevät 20 1 5 Thlousmatematiikan perusteet, orrr s ro30 L. harjoitus, (la 12.11.2015) 1. Laske seuraavat laskut. Laske kukin lasku ensin käsin þnää ja paperia käyttäen. Anna vastaukset

Lisätiedot

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 10: Stokesin lause

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 10: Stokesin lause MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 10: Stokesin lause Antti Rasila Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Syksy 2016 Antti Rasila (Aalto-yliopisto) MS-A0305 Syksy

Lisätiedot

Ratkaisut vuosien tehtäviin

Ratkaisut vuosien tehtäviin Ratkaisut vuosien 1978 1987 tehtäviin Kaikki tehtävät ovat pitkän matematiikan kokeista. Eräissä tehtävissä on kaksi alakohtaa; ne olivat kokelaalle vaihtoehtoisia. 1978 Osoita, ettei mikään käyrän y 2

Lisätiedot

Tuote LVI-numero Pikakoodi POHJAISTUKAN TIIVISTE GBG LA37 HUUHTELUVENTT. TIIVISTE GBG NORDIC 2300/2200 T II/ T I/ K

Tuote LVI-numero Pikakoodi POHJAISTUKAN TIIVISTE GBG LA37 HUUHTELUVENTT. TIIVISTE GBG NORDIC 2300/2200 T II/ T I/ K WC-varaosat Tuote LVI-numero Pikakoodi POHJAISTUKAN TIIVISTE GBG 5652536 LA37 NORDIC 2300/2200 HUUHTELUVENTT. TIIVISTE GBG NORDIC 2300/2200 T II/ T I/ K SÄILIÖN TIIVISTE GBG HUUHTELUPUTKI GBG HUUHTELUVENTTIILI

Lisätiedot

Juuri 4 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty Kertaus. b) B = (3, 0, 5) K2. 8 ( 1)

Juuri 4 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty Kertaus. b) B = (3, 0, 5) K2. 8 ( 1) Kertaus K1. a) OA i k b) B = (, 0, 5) K. K. a) AB (6 ( )) i () ( ( 7)) k 8i 4k AB 8 ( 1) 4 64116 819 b) 1 1 AB( ( 1)) i 1 i 4 AB ( ) ( 4) 416 0 45 5 K4. a) AB AO OB OA OB ( i ) i i i 5i b) Pisteen A paikkavektori

Lisätiedot

l 1 2l + 1, c) 100 l=0 AB 3AC ja AB AC sekä vektoreiden AB ja

l 1 2l + 1, c) 100 l=0 AB 3AC ja AB AC sekä vektoreiden AB ja MATEMATIIKAN PERUSKURSSI I Harjoitustehtäviä syksy 7. Millä reaaliluvun arvoilla a) 9 =, b) + 5 + +, e) 5?. Kirjoita Σ-merkkiä käyttäen summat 4, a) + + 5 + + 99, b) 5 + 4 65 + + n 5 n, c) +

Lisätiedot

MS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 11: Taso- ja tilavuusintegraalien sovellutuksia

MS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 11: Taso- ja tilavuusintegraalien sovellutuksia MS-A25/MS-A26 ifferentiaali- ja integraalilaskenta 2 Luento 11: Taso- ja tilavuusintegraalien sovellutuksia Jarmo Malinen Matematiikan ja systeemianalyysin laitos 1 Aalto-yliopisto Kevät 216 1 Perustuu

Lisätiedot

Määräys STUK SY/1/ (34)

Määräys STUK SY/1/ (34) Määräys SY/1/2018 4 (34) LIITE 1 Taulukko 1. Vapaarajat ja vapauttamisrajat, joita voidaan soveltaa kiinteiden materiaalien vapauttamiseen määrästä riippumatta. Osa1. Keinotekoiset radionuklidit Radionuklidi

Lisätiedot

MS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 10: Moninkertaisten integraalien sovelluksia

MS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 10: Moninkertaisten integraalien sovelluksia MS-A22 ifferentiaali- ja integraalilaskenta 2 (SCI) Luento 1: Moninkertaisten integraalien sovelluksia Antti Rasila Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Syksy 217 Antti Rasila (Aalto-yliopisto)

Lisätiedot

PS. Jos vastaanotit Sinulle kuulumattoman viestin, pyydän ilmoittamaan siitä viipymättä allekirjoittaneelle ja tuhoamaan viestin, kiitos.

PS. Jos vastaanotit Sinulle kuulumattoman viestin, pyydän ilmoittamaan siitä viipymättä allekirjoittaneelle ja tuhoamaan viestin, kiitos. Teamware Office' Posti Saapunut posti : Olavi Heikkisen lausunto Lähettäjä : Karjalainen Mikko Vastaanottaja : Leinonen Raija Lähetetty: 18.1.2013 10:29 He i! Korjasin nyt tämän spostiliitteenä olevaan

Lisätiedot

YHDYSKUNTALAUTAKUNTA TALOUSARVIOEHDOTUS 2018 TALOUSSUUNNITELMA

YHDYSKUNTALAUTAKUNTA TALOUSARVIOEHDOTUS 2018 TALOUSSUUNNITELMA YHDYSKUNTALAUTAKUNTA TALOUSARVIOEHDOTUS 2018 TALOUSSUUNNITELMA 2018-2020 TOIMIALA 50 YHDYSKUNTAPALVELUT P A L V E L U 5 0 0 T E K N I S E N J A Y M P Ä R I S T Ö T O I M E N H A L L I N T O J A M A A S

Lisätiedot

MATEMATIIKKA 5 VIIKKOTUNTIA

MATEMATIIKKA 5 VIIKKOTUNTIA EB-TUTKINTO 2010 MATEMATIIKKA 5 VIIKKOTUNTIA PÄIVÄMÄÄRÄ: 4. kesäkuuta 2010 KOKEEN KESTO: 4 tuntia (240 minuuttia) SALLITUT APUVÄLINEET: Eurooppa-koulun antama taulukkovihkonen Funktiolaskin, joka ei saa

Lisätiedot

NIKKILÄN SYDÄMEN LAAJENTAMINEN VAIHE 2 MAANTASOKERROS 1/ / ARK - house

NIKKILÄN SYDÄMEN LAAJENTAMINEN VAIHE 2 MAANTASOKERROS 1/ / ARK - house tk, J e, hu p rr, Ä, 9,,, Ä Ä Ä 9,, 9 h vut tk k D uk, C lut, kpk C tr, rv tr C9, y e yv tt t rv lkr tl lut e pll t-k-hu kek u v pt + C C tr C9 tr lut C, C C, yp + phu te kt kpl bet uur rv gr ttpe t +

Lisätiedot

Jakotukit / tarvikkeet

Jakotukit / tarvikkeet Jakotukit / tarvikkeet Tuote LVI-numero Pikakoodi 2022115 BF71 VM 2X3/4 EURO VM 3X3/4 EURO VM 4X3/4 EURO VM 5X3/4 EURO VM 6X3/4 EURO VM 7X3/4 EURO VM 8X3/4 EURO VM 9X3/4 EURO VM 10X3/4 EURO VM 11X3/4 EURO

Lisätiedot

Forssan kaupunki Osavuosikatsaus YHDYSKUNTAPALVELUT. Arviointik r iteeri tr mittarit ja tavoitetaso ja t a v o i t e t a s o

Forssan kaupunki Osavuosikatsaus YHDYSKUNTAPALVELUT. Arviointik r iteeri tr mittarit ja tavoitetaso ja t a v o i t e t a s o Forssan kaupunki Osavuosikatsaus 2017-08 TOIMIALA 50 YHDYSKUNTAPALVELUT P A L V E L U 5 0 0 T E K N I S E N J A Y M P Ä R I S T Ö T O I M E N H A L L I N T O J A M A A S E U T U P A L V E L U T T I L I

Lisätiedot

Preliminäärikoe Pitkä Matematiikka 3.2.2009

Preliminäärikoe Pitkä Matematiikka 3.2.2009 Preliminäärikoe Pitkä Matematiikka..9 x x a) Ratkaise yhtälö =. 4 b) Ratkaise epäyhtälö x > x. c) Sievennä lauseke ( a b) (a b)(a+ b).. a) Osakkeen kurssi laski aamupäivällä,4 % ja keskipäivällä 5,6 %.

Lisätiedot

MATEMATIIKAN PERUSKURSSI II

MATEMATIIKAN PERUSKURSSI II MTEMTIIKN PERUKURI II Harjoitustehtäviä kevät 17 1. Tutki, suppenevatko seuraavat lukujonot: a) d) ( k ) + 5 k, b) k 1 x 5 dx, e) ( ln(k + 1) k ), c) k 1 cos(πx) dx, f) k e x dx, 1 k e k k kx dx.. Olkoon

Lisätiedot

Differentiaalilaskennan tehtäviä

Differentiaalilaskennan tehtäviä Differentiaalilaskennan tehtäviä DIFFERENTIAALILASKENTA 1. Raja-arvon käsite, derivaatta raja-arvona 1.1 Raja-arvo pisteessä 1.2 Derivaatan määritelmä 1.3 Derivaatta raja-arvona 2. Derivoimiskaavat 2.1

Lisätiedot

MS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 10: Moninkertaisten integraalien sovelluksia

MS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 10: Moninkertaisten integraalien sovelluksia MS-A22 ifferentiaali- ja integraalilaskenta 2 (SCI) Luento 1: Moninkertaisten integraalien sovelluksia Antti Rasila Aalto-yliopisto Syksy 215 Antti Rasila (Aalto-yliopisto) MS-A22 Syksy 215 1 / 2 Moninkertaisten

Lisätiedot

x n e x dx = n( e x ) nx n 1 ( e x ) = x n e x + ni n 1 x 4 e x dx = x 4 e x +4( x 3 e x +3( x 2 e x +2( xe x e x ))) = e x

x n e x dx = n( e x ) nx n 1 ( e x ) = x n e x + ni n 1 x 4 e x dx = x 4 e x +4( x 3 e x +3( x 2 e x +2( xe x e x ))) = e x Osittaisintegrointia käyttäen osoita integraalille I n x n e x dx oikeaksi reduktiokaava I n x n e x + ni n ja laske sen avulla mitä on I 4 kun x. x n e x dx n( e x ) nx n ( e x ) x n e x + ni n x 4 e

Lisätiedot

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 9: Greenin lause

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 9: Greenin lause MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 9: Greenin lause Antti Rasila Aalto-yliopisto Syksy 2015 Antti Rasila (Aalto-yliopisto) MS-A0305 Syksy 2015 1 / 19 Esimerkki Olkoon F : R 3 R 3 vakiofunktio

Lisätiedot

& # # w. œ œ œ œ # œ œ œ œ œ # œ w. # w nœ. # œ œ œ œ œ # œ w œ # œ œ œ Œ. œ œ œ œ œ œ œ œ # œ w. œ # œ œ œ w œ œ w w w w. W # w

& # # w. œ œ œ œ # œ œ œ œ œ # œ w. # w nœ. # œ œ œ œ œ # œ w œ # œ œ œ Œ. œ œ œ œ œ œ œ œ # œ w. œ # œ œ œ w œ œ w w w w. W # w Epainn muis (1.1., 6.12.) # œ œ œ œ œ # œ w i nun Kris lis sä py hää muis tus Tofia (6.1.) jo Jo pai a, y lis n [Ba li nu a, os,] kun ni, l nä ru k, i dän Ju ma lis, y lis ka i dän h tm h nk sl nu a, o

Lisätiedot

Kertausosa. 5. Merkitään sädettä kirjaimella r. Kaaren pituus on tällöin r a) sin = 0, , c) tan = 0,

Kertausosa. 5. Merkitään sädettä kirjaimella r. Kaaren pituus on tällöin r a) sin = 0, , c) tan = 0, Kertausosa. a),6 60 576 Peruuttaessa pyörähdyssuunta on vastapäivään. Kulma on siis,4 60 864 a) 576 864 0,88m. a) α b 0,6769... 0,68 (rad) r,m 8cm β,90...,9 (rad) 4cm a) α 0,68 (rad) β,9 (rad). a) 5,0

Lisätiedot

Päätöspöytäkirja 20/2018

Päätöspöytäkirja 20/2018 Päätöspöytäkirj 2/218 Päätöspvm 7.6.218 Yleishllinto Porin kupunki Sivistystoimil Dnro PORI/182/12.4.1/218 Yhteiset plvelut -yksikön päällikkö Otsikko Krhuhllin tlvikuden 1.1.218-.4.219 tphtumt, konsertit,

Lisätiedot

1. Olkoot vektorit a, b ja c seuraavasti määritelty: a) Määritä vektori. sekä laske sen pituus.

1. Olkoot vektorit a, b ja c seuraavasti määritelty: a) Määritä vektori. sekä laske sen pituus. Matematiikan kurssikoe, Maa4 Vektorit RATKAISUT Sievin lukio Keskiviikko 12.4.2017 VASTAA YHTEENSÄ VIITEEN TEHTÄVÄÄN! MAOL JA LASKIN/LAS- KINOHJELMAT OVAT SALLITTUJA! 1. Olkoot vektorit a, b ja c seuraavasti

Lisätiedot

ää*r: rfrtlqäe'räs rr[; äsüä FäF r."f F'*üe ;=v* tr, $rr;gt :r1 älfese li ä; äepö* l4:e x1;'.äö l--g! li r: ; ;;*; ssü ntirs E,pä ;;qi?

ää*r: rfrtlqäe'räs rr[; äsüä FäF r.f F'*üe ;=v* tr, $rr;gt :r1 älfese li ä; äepö* l4:e x1;'.äö l--g! li r: ; ;;*; ssü ntirs E,pä ;;qi? j X \: c : 1:8" : Z : : ) ) c 1 T [ b[ ]4 ) < c 1 ü ]T G \\ e p > : [ : e L [? p 2 9 Z S: c? [:? " : e :: [ : >9 Y :[ p e ß < 1 9 1 \ c 4 > ) 1 :91$ :e h b 1 6 " ö:p:?e S9e R ü e $ :1 ee \ eö 4:e 1ö X

Lisätiedot

- Zj + +i, virittämän suunnikkaan pinta-ala. 2x + Y: 4. 3x 2y:2 -x+y:-1. 3x + y:5. -x +2y:2. 4x + Y: 4. voitto : qr Aq+ rr q. : -!A_'r.

- Zj + +i, virittämän suunnikkaan pinta-ala. 2x + Y: 4. 3x 2y:2 -x+y:-1. 3x + y:5. -x +2y:2. 4x + Y: 4. voitto : qr Aq+ rr q. : -!A_'r. Vaasan yliopisto, syksy 2014 Lineaarialgebra, MAH. lo4o 7. harjoitus, (viikko 2, 5.1.-9.1.2015 R01: ma 12-14 Dl15, R02: ke 14-16 D115, R03: to 10-12 F651 Viimeisellä luennolla käsiteltiin opetusmonisteen

Lisätiedot

= ( F dx F dy F dz).

= ( F dx F dy F dz). 17 VEKTORIANALYYSI Luento 2 3.4 Vektorikentän käyräintegraali Voiman tekemä työ on matka (d) kertaa voiman (F) projektio liikkeen suunnassa, yksinkertaisimmillaan W Fd. Jos liike tapahtuu käyrää pitkin

Lisätiedot

Kokeile ilmaiseksi mafyvalmennus.fi/mafynetti. Valmistaudu täydellisesti lääkiksen pääsykokeeseen! Miten opit parhaiten?

Kokeile ilmaiseksi mafyvalmennus.fi/mafynetti. Valmistaudu täydellisesti lääkiksen pääsykokeeseen! Miten opit parhaiten? Miten opit parhaiten? Valmistaudu täydellisesti lääkiksen pääsykokeeseen! n Voit harjoitella kotoa käsin huippusuositulla Mafynetti-ohjelmalla. Mukaan kuuluu 4 täysimittaista harjoituskoetta!! n Harjoittelu

Lisätiedot

Peitelevy ja peitelaippa

Peitelevy ja peitelaippa Peitelevy ja peitelaippa Tuote LVI-numero Pikakoodi PEITELAATTA MERIKA 5688050 JF92 50-75-110/VALKOINEN 510 PEITELEVY ORAS D70/G1/2 167051 PEITELEVY KAULUKSELLA 50 MM-130 MM PEITELEVY KAULUKSELLA 75 MM-150

Lisätiedot

SAMMONKATU SAMMONKATU JAAKON- SARVI- KATU SARVIJAAKONKATU 1: Kalevanrinteen katujen yleissuunnitelma, Liite 3 Asemapiirros 1/4

SAMMONKATU SAMMONKATU JAAKON- SARVI- KATU SARVIJAAKONKATU 1: Kalevanrinteen katujen yleissuunnitelma, Liite 3 Asemapiirros 1/4 KTOS L:\PROJEKTT_2012\1510001046 KLEVRTEE KTUJE YS\14_TULOKSET\3.KTUJE YLESSUUTELM\DWG\KLEVRE YS.DWG Tulostettu: 26.6.2013 n- JO KELLR- SR- JKO- KTU SMMOKTU PYSÄKÖT KORTTEL 4 +100,60 KSPHT 1/2 BUS (varaus)

Lisätiedot

MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 9: Muuttujanvaihto taso- ja avaruusintegraaleissa

MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 9: Muuttujanvaihto taso- ja avaruusintegraaleissa MS-A24 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 9: Muuttujanvaihto taso- ja avaruusintegraaleissa Antti Rasila Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Kevät 216 Antti Rasila

Lisätiedot

Tekijä Pitkä matematiikka Suoran pisteitä ovat esimerkiksi ( 5, 2), ( 2,1), (1, 0), (4, 1) ja ( 11, 4).

Tekijä Pitkä matematiikka Suoran pisteitä ovat esimerkiksi ( 5, 2), ( 2,1), (1, 0), (4, 1) ja ( 11, 4). Tekijä Pitkä matematiikka 4 9.12.2016 212 Suoran pisteitä ovat esimerkiksi ( 5, 2), ( 2,1), (1, 0), (4, 1) ja ( 11, 4). Vastaus esimerkiksi ( 5, 2), ( 2,1), (1, 0), (4, 1) ja ( 11, 4) 213 Merkitään pistettä

Lisätiedot

Harjoitus 2 ( )

Harjoitus 2 ( ) Harjoitus 2 (24.3.2015) Tehtävä 1 Figure 1: Tehtävän 1 graafi. Aikaisimmat aloitushetket selvitetään kaavoilla v[0] = 0 v[p] max 0 i p 1 {v[i]+a i (i,p) E} = v[l]+a l d[p] l. Muodostetaan taulukko, jossa

Lisätiedot

KUNNALLISTEKNINEN SELVITYS. Asemakaava nro Särkänniemen alueen asemakaavan muutoksen aiheuttamat johto- ja putkisiirrot 1 (3) 7.6.

KUNNALLISTEKNINEN SELVITYS. Asemakaava nro Särkänniemen alueen asemakaavan muutoksen aiheuttamat johto- ja putkisiirrot 1 (3) 7.6. Särä l v h jh- j rr () UALLST SLTYS Särä l v h jh- j rr Av r J Sv,., A-öör Sl O A-öör O., www..f Y- - Särä l v h jh- j rr () Rr lj Rr ällää Särä l v h läö, vjhj j jävvärd l j v v lj ljj ll lj. Lj v jl

Lisätiedot

Harjoitus 2 ( )

Harjoitus 2 ( ) Harjoitus 2 (27.3.214) Tehtävä 1 7 4 8 1 1 3 1 2 3 3 2 4 1 1 6 9 1 Kuva 1: Tehtävän 1 graafi. Aikaisimmat aloitushetket selvitetään kaavoilla v[] = v[p] d[p] l. max i p 1 {v[i] + a i (i, p) E} = v[l] +

Lisätiedot

y (0) = 0 y h (x) = C 1 e 2x +C 2 e x e10x e 3 e8x dx + e x 1 3 e9x dx = e 2x 1 3 e8x 1 8 = 1 24 e10x 1 27 e10x = e 10x e10x

y (0) = 0 y h (x) = C 1 e 2x +C 2 e x e10x e 3 e8x dx + e x 1 3 e9x dx = e 2x 1 3 e8x 1 8 = 1 24 e10x 1 27 e10x = e 10x e10x BM0A5830 Differentiaaliyhtälöiden peruskurssi Harjoitus 4, Kevät 017 Päivityksiä: 1. Ratkaise differentiaaliyhtälöt 3y + 4y = 0 ja 3y + 4y = e x.. Ratkaise DY (a) 3y 9y + 6y = e 10x (b) Mikä on edellisen

Lisätiedot

MS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 1: Parametrisoidut käyrät ja kaarenpituus

MS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 1: Parametrisoidut käyrät ja kaarenpituus MS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 1: Parametrisoidut käyrät ja kaarenpituus Antti Rasila Aalto-yliopisto Syksy 2015 Antti Rasila (Aalto-yliopisto) MS-A0202 Syksy 2015 1 / 18

Lisätiedot

g - s Eä;t;i;s!itää# EiäErE ii:ääg Eä E *läeäfiäeräsil* E sis $ä äce:;!ääfät ;1*iEs ;tää:gi g;ää*f ;ij !äef ä:e'geä;:ä Elä tä Efiäilii: ; g E

g - s Eä;t;i;s!itää# EiäErE ii:ääg Eä E *läeäfiäeräsil* E sis $ä äce:;!ääfät ;1*iEs ;tää:gi g;ää*f ;ij !äef ä:e'geä;:ä Elä tä Efiäilii: ; g E H!äf ä'gä;ä lä tä fäl ; $ä äc;!ääfät ;1* ;tääg ä;t;;!tää# är ääg ä *läääeräl* tä*äätäääägtätg B g - ü ;;*ä9äää g;ää*f ' g ;j ä u e *; t t ;; t ü t p ä; u ä; e r * g t g U ).l t r A ä O.* 6) l- C ) t n

Lisätiedot

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme KJR-C1001 Statiikka ja dynamiikka Luento 15.3.2016 Susanna Hurme Päivän aihe: Translaatioliikkeen kinematiikka: asema, nopeus ja kiihtyvyys (Kirjan luvut 12.1-12.5, 16.1 ja 16.2) Osaamistavoitteet Ymmärtää

Lisätiedot

Ruskon Laakeritie 22

Ruskon Laakeritie 22 äi äättä Rs Lri lvsitrstl.... g Sittll sijitt rär rl vl-lll (), issä dll sj vl-l (.) ltvll. lvdt lsvt Rsj yyösjärv j sjärv tt rär. sj vl-l it-l ~ l-l äi äättä.. g Lri vl-lt äi äättä Al läisyydssä lss lv

Lisätiedot

POHJAISTUKAN TIIVISTE GBG

POHJAISTUKAN TIIVISTE GBG WC-varaosat Tuote LVI-numero Pikakoodi POHJAISTUKAN TIIVISTE GBG 5652536 LA37 NORDIC 2300/2200 HUUHTELUVENTT. TIIVISTE GBG NORDIC 2300/2200 T II/ T I/ K KIMSET 6405400001 TREVI/VIVA 9159200001 SEVEN D

Lisätiedot

DDD. g;, lt/' l-1ä. tv~ :J-/?t--q-.-,~)- --,L:: / o D E D F D G D. ~tto f ja k;n[js. tä~ttoet ) tj} J-d-LtJ;tJf'-tt.// p.

DDD. g;, lt/' l-1ä. tv~ :J-/?t--q-.-,~)- --,L:: / o D E D F D G D. ~tto f ja k;n[js. tä~ttoet ) tj} J-d-LtJ;tJf'-tt.// p. ".E f /,,, f:r. :ro 7-. "l"z / f 2. 2 4 CJ ~- /t-f ARKEOLOGISEN KOHTEEN TARKASTUS DDD Tunnistetiedot / j Kunta:!:flal'/i Pr e.vi_ Inventointinumero: - -------- Alue: t)t-,-7 ' Luokka:---=/=/=----:-------

Lisätiedot

> 40 db > 45 db > 50 db > 55 db > 60 db > 65 db > 70 db > 75 db

> 40 db > 45 db > 50 db > 55 db > 60 db > 65 db > 70 db > 75 db Pet jr t Kvm Kr Hyyr yl Sr m Hm Ko e o LIITE.. Mtede melelvty 0 Yömelto (etore: m) Ortmp Petmo Immo Kop Rto Tehr Rö Voe Lepelto Pr Ptlh Rm Kymht Netytem Vroj Prorp Sem Rto Tlllo Vtter Sotmp It-Sto M Korvet

Lisätiedot

KUIVANIEMI JOKIKYLÄ VESKANKANGAS (KUIVANIEMI 3 VESKANKANKANGAS)

KUIVANIEMI JOKIKYLÄ VESKANKANGAS (KUIVANIEMI 3 VESKANKANKANGAS) KUIVANIEMI JOKIKYLÄ VESKANKANGAS (KUIVANIEMI 3 VESKANKANKANGAS) Selvitys V. Luhon vuonna 958 suorittamasta kaivauksesta kivikautisella asuinpaikalla Tuija Wallenius 989 Vuonna 958 Ville Luho suoritti tutkimuksia

Lisätiedot