II Genetiikka 4.(3) Nukleiinihapot

Koko: px
Aloita esitys sivulta:

Download "II Genetiikka 4.(3) Nukleiinihapot"

Transkriptio

1 II Genetiikka 4.(3) Nukleiinihapot

2 Geenitekniikka - menetelmiä, joiden avulla dna:ta ja rna:ta voidaan eristää, muokata ja siirtää muihin soluihin tai eliöihin

3 kromosomit koostuvat dna-rihmasta ja siihen liittyvistä histoniproteiineista = kromatiinirihma sentromeeri telomeeri kromatidi = kromosomin haara sisarkromatidit = kahdentuneen kromosomin identtiset kromatidirihmat tytärkromosomit = tumanjakautumisessa kahdentumalla syntyneet identtisiä kromosomeja

4 dna koostuu nukleotideista, jotka sisältävät deoksiriboosin, fosfaatin ja emäksen (adeniini tymiini, sytosiini guaniini) 3 pää = sokeripää 5 pää = fosfaattipää

5

6 plasmidit ovat pieniä dna:ta sisältäviä rakenteita bakteereilla myös hiiva- ja sienisoluissa dna-virukset: 1- tai 2- juosteista dna:ta rna-virukset: 1- tai 2- juosteista rna:ta

7 Rna-molekyylit useimmiten yksijuosteista riboosi-sokeri, tymiiniä vastaa urasiili

8 eri rna-tyyppejä: lähetti-rna: kopioi tumassa DNAsta ohjeen proteiinin valmistukseen ja kuljettaa sen solulimaan

9 aminohappo kiinnittyy siirtäjä-rna: kuljettaa solulimassa aminohappoja ja liittää niitä ketjuksi ribosomilla tripletin tunnistus antikodonin avulla

10 ribosomi-rna: solulimassa ribosomin rakenneosa

11 Mitokondrio-rna emäsparia 37 geeniä: proteiinien, siirtäjä-rna:n ja ribosomi-rna:n valmistamista varten periytyy äidin munasolussa jälkeläisille mutaatioita tapahtuu paljon voidaan käyttää suku- ja evoluutiotutkimuksessa

12 - alle 5% dna:sta 5.Geenit - koostuvat emäskolmikoista (tripleteistä), joista kukin vastaa tiettyä aminohappoa (taulukko) - dnassa on koodaava juoste ja mallijuoste - (malli)juosteen kolmikot = kodonit - emäskolmikoiden järjestys = lukukehys

13 A. Geenien rakenne: 1. Säätelyalue 5.Geenit Määrää, missä, milloin ja kuinka aktiivisesti geeni toimii 2. Koodaava alue Sisältää rna-molekyylin valmistusohjeen Eksonit koodaavia jaksoja Intronit ei-koodaavia jaksoja Esim. aloituskoodimattirtiuhuinajaaölääikcxvpyörälläkds sdsdsdsdlopetuskoodi

14 - aitotumaisilla: yksi säätelyalue + yksi koodaava alue - esitumaisilla: operoni = yksi säätelyalue + monta koodaavaa aluetta

15 B. Geenien toiminta: kaikissa soluissa on kaikki geenit, mutta: - vain pieni osa geeneistä on kerrallaan toiminnassa - eri kudoksissa toimivat eri geenit - alkiolla toimivat eri geenit kuin aikuisella - monet geenit lukkiutuvat toimintansa jälkeen

16 - ylläpitogeenit toimivat kaikissa soluissa jatkuvasti - ylellisyysgeenit toimivat erikoistuneissa soluissa - tuottajageenit ohjaavat proteiinien valmistusta - säätelygeenit säätelevät muiden geenien toimintaa esim. - säätelytekijöiden kiinnittymisellä säätelyalueelle - vaihtoehtoisella silmukoinnilla

17 Epigenetiikka = muutoksia dna:n rakenteessa, jotka vaikuttavat geenien säätelyyn - ei = mutaatiot - voivat johtua esim. ympäristön ja ruokavalion vaikutuksista - esim. dnan metylaatio X-kromosomin inaktivaatio = naisilla toisen X-kromosomin geenit eivät ilmene geneettinen leimautuminen = geenin ilmenemiseen vaikuttaa se, kummalta vanhemmalta geeni on peritty

18 6. Solujen jakautuminen DNA:n kahdentuminen eli replikaatio edeltää solunjakautumista: - entsyymi avaa molekyylin useista kohdista aukaisukupliksi, jotka laajenevat molempiin suuntiin replikaatiohaarukoista

19 - nukleotidit muodostavat uudet juosteet alkuperäisten templaattien rinnalle DNA-polymeraasin avulla - uusi nukleotidi voi kiinnittyä 3 -päähän toisella puolella replikaatio etenee katkonaisesti alukkeiden avulla

20 - pistemutaatio = väärä, ylimääräinen tai puuttuva emäs - entsyymit viimeistelevät ja korjaavat - transposonit = hyppiviä geenejä = dnan emäsjaksoja, jotka voivat vaihtaa paikkaa aiheuttavat helposti mutaatioita

21

22 solunjakautuminen: mitoosi tuottaa somaattisia soluja meioosi tuottaa sukusoluja

23 7. Genomi Ihmisellä: HGP (Human Genome Project) kromosomia dna:ta n.2 metriä joka solussa n geeniä n. 3,2 miljardia emäsparia yksi geeni n emäsparin mittainen Genomiikka tutkii geneettisen tiedon merkitystä ja toimintaa Sekvensointi = emäsjärjestyksen selvittäminen (esim. geenin tai koko eliön perimän) cdna = komplementaarinen dna = lähetti-rnasta käännetty dna

24 8. Proteiinisynteesi solut tuottavat proteiineja: entsyymeiksi (esim. pepsiini) tuhansia erilaisia rakenneproteiineiksi (kollageeni) määrällisesti eniten supistuviksi proteiineiksi (aktiini) varastoproteiineiksi (munanvalkuainen) kuljetusproteiineiksi (hemoglobiini) hormoneiksi (insuliini) viestintäproteiineiksi (reseptorit) suojaproteiineiksi (vasta-aineet) proteiinimyrkyiksi (botuliini)

25 1. Jäljentäminen eli transkriptio: tumassa DNA:n koodaava juoste = geeni toinen juoste toimii mallijuosteena RNA-polymeraasi entsyymi liittää RNA-nukleotideja DNA:n mallijuosteen rinnalle geenin ohje kopioituu esilähetti-rnahan (tymiiniä vastaa urasiili) transkriptiofaktorit = säätelyproteiineja

26 intronit poistetaan esi-lähetti RNAsta silmukoinnissa, eksonit liittyvät toisiinsa vaihtoehtoinen silmukointi esim. vasta-aineen tuotannossa

27 2. Kääntäminen eli translaatio ribosomi kiinnittyy lähetti-rna:han siirtäjä-rnat kuljettavat paikalle aminohappoja emäskolmikoiden (kodoni) koodin mukaan synteesi alkaa aloituskolmikolla (TAC) ja päättyy lopetuskolmikkoon (ATT, ATC, ACT) aminohapot muodostavat peptidiketjun, josta solulimakalvostossa muodostuu proteiini

28 Dna Geeni Esiaste-rna Lähetti-rna Transkriptio Translaatio Proteiini Silmukointi Intronit, eksonit Tuma, tumakotelo Solulima, ribosomi

29

30

31 DNAsta ominaisuudeksi

32

33 9. Mutaatiot muutos perimässä aiheuttajina mutageenit, esim. jotkin kemikaalit ja säteily suurin osa spontaaneja erilaisia mutaatiotyyppejä Geenimutaatiot Kromosomimutaatiot Kromosomistomutaatiot Sirppisoluanemia Downin syndrooma

34 - Mutaation merkitys?

35 Geenimutaatio eli muutos geenin emäsjärjestyksessä Yksi emäs on muuttunut kolmikkokoodi on muuttunut yksi aminohappo on muuttunut. Emäs voi jäädä pois tai kaksinkertaistua loput kolmikkokoodit muuttuvat aminohapot muuttuvat. voi olla: hiljainen mutaatio neutraali m. missense-m. nonsense-m.

36 Kromosomimutaatiot eli kromosomin rakenne muuttuu A B C D E F G H I J A B C D E F H I J Häviämä A B C D E F G G H I J Kahdentuma A B C D E F G H I J A B C D E G F H I J Kääntymä A B C D E F G H I J K L M N O P G H I J Siirtymä

37 Kromosomistomutaatiot kromosomien lukumäärä muuttunut aneuploidiassa kromosomi puuttuu tai on liikaa monosomia (2n-1) trisomia (2n+1) polyploidiassa kokonaisia peruskromosomistoja normaalista poikkeava määrä autopolyploidia allopolyploidia haploidiassa on vain yksi peruskromosomisto (n) autopolyploidia = saman lajin kromosomisto moninkertaistunut (3n, 4n, ) allopolyploidia = kahden lajin kromosomistot yhdistyneet

38 Downin oireyhtymä

39 Ovat katalyytteinä toimivia proteiineja. Helpottavat ja nopeuttavat elimistön reaktioita. Entsyymit KOFAKTORI PROTEIINI TOIMIVA ENTSYYMI Eivät kulu reaktioissa. Kofaktori voi olla 1) epäorgaaninen ioni tai 1) orgaaninen yhdiste eli koentsyymi (esim. vitamiini tai hivenaine) Vaikuttavat vain tiettyyn aineeseen (substraattiin) tietyssä reaktiossa. Inhibiittorit voivat estää toiminnan.

40 - entsyymin vaikutus voi olla katabolinen (hajottava) tai anabolinen (rakentava) -solussa tapahtuu tuhansia entsyymien katalysoimia reaktioita

41 1. Yhdistä oikein Yhdistä kirjaimilla (a-h) merkitty käsite tarkimmin sitä vastaavaan numerolla (I-VIII) merkittyyn käsitteeseen. a) haploidi b) diploidi c) polyploidi d) iturata e) replikaatiohaarukka f) silmukointi g) antikodoni h) perimä I) siirtäjä-rna II) dna:n kahdentuminen III) sukusolujen muodostama solulinja sukupolvesta toiseen IV) ihmisen somaattinen solu V) ihmisen sukusolu VI) 5n VII) yksilön kaikki dna VIII) esiaste-rna BI5 I Solu ja perimä 3. Perimän rakenne ja toiminta. Otava

42 VASTAUS 1: Yhdistä oikein a) haploidi - V) ihmisen sukusolu b) diploidi - IV) ihmisen somaattinen solu c) polyploidi - VI) 5n d) iturata - III) sukusolujen muodostama solulinja sukupolvesta toiseen e) replikaatiohaarukka - II) dna:n kahdentuminen f) silmukointi - VIII) esiasterna g) antikodoni - I) siirtäjärna h) perimä - VII) yksilön kaikki dna BI5 I Solu ja perimä 3. Perimän rakenne ja toiminta. Otava

43 2. Termit Nimeä suomenkielinen termi tai selitys tieteellisellä tai vierasperäisellä termillä. a)kahdentumaan kykenevä perimän koodin sisältävä molekyyli b)perintötekijä c)aitotumaisen geenin lähetti-rna:ta koodaava dna-jakso d)geenin koodaavan alueen sisällä oleva dna-jakso, joka ei koodaa lähetti-rna:ta e)geenin säätelyalueen kohta, johon RNA-polymeraasi kiinnittyy f)esitumaisilla eliöillä peräkkäisten geenien muodostama toimintayksikkö, jolla on yksi säätelyalue. BI5 I Solu ja perimä 3. Perimän rakenne ja toiminta. Otava

44 VASTAUS 2: Termit a) DNA b) Geeni c) Eksoni d) Introni e) Promoottori f) Operoni BI5 I Solu ja perimä 3. Perimän rakenne ja toiminta. Otava

45 3. Proteiinisynteesi Kirjoita proteiinisynteesin vaiheet oikeaan järjestykseen. Translaatio eli siirtäjä-rna:t tuovat aminohapot ribosomille. Transkriptio eli esi-lähetti-rna:n muodostuminen tumassa dnajuosteen mallin mukaisesti. Dna-kaksoisjuoste avautuu. Lähetti-rna kypsyy. Lähetti-rna siirtyy ribosomille. Aminohapot kiinnittyvät toisiina peptidisidoksin. Rna-polymeraasin kiinnittyminen promoottoriin. BI5 I Solu ja perimä 3. Perimän rakenne ja toiminta. Otava

46 VASTAUS 3: Proteiinisynteesi 6. translaatio eli siirtäjä-rna:t tuovat aminohapot ribosomille 3. transkriptio eli esi-lähetti-rna:n muodostuminen tumassa dnajuosteen mallin mukaisesti 2. dna-kaksoisjuoste avautuu 4. lähetti-rna kypsyy 5. lähetti-rna siirtyy ribosomille 8. aminohappoketjut laskostuvat kolmi- ulotteiseksi rakenteeksi 7. aminohapot kiinnittyvät toisiinsa peptidisidoksin 1.rna-polymeraasin kiinnittyminen promoottoriin BI5 I Solu ja perimä 3. Perimän rakenne ja toiminta. Otava

47 4. Emäkset Erään geenin emäsjärjestys koodaavan juosteen dna-jakso emästen osalta alkaa seuraavasti: ATGATATTAACCGCCGAAAGCCGC a)mikä on dna:n mallijuosteen emäsjärjestys? b)mikä on lähetti-rna:n emäsjärjestys? c)mitkä ovat vastaavat siirtäjä-rna-molekyylien emäskolmikot eli antikodonit? d)mikä on muodostuvan polypeptidin aminohappojärjestys? e)jos mallijuosteen neljäs emäs muuttuu pistemutaation seurauksena tymiiniksi, miten aminohappojärjestys muuttuu? f)jos mallijuosteen neljäs emäs häviää pistemutaation seurauksena, miten aminohappojärjestys muuttuu? g)minkälainen kahdentuma tai häviämä ei muuta lukukehystä? BI5 I Solu ja perimä 3. Perimän rakenne ja toiminta. Otava

48 VASTAUS 4: Emäkset a) TACTATAATTGGCGGCTTTCGGCG b) AUGAUAUUAACCGCCGAAAGCCGC c) UAC UAU AAU UGG CGG CUU UCG GCG d) metioniini, isoleusiini, leusiini, treoniini, alaniini, glutamiinihappo,seriini, arginiini e) Isoleusiinin paikalle tulisikin leusiini f) Polypeptidiketjuun tulisi vain kolme aminohappoa metioniini, tyrosiini kolmas emäskolmikko olisi tuolloin lopetuskolmikko ja synteesi päättyisi tähän. BI5 I Solu ja perimä 3. Perimän rakenne ja toiminta. Otava

49 5. Käsitekartta Merkitse taulukkoon rasteilla, mitkä rakenteet löytyvät kustakin solutyypistä. BI5 I Solu ja perimä 3. Perimän rakenne ja toiminta. Otava

50 VASTAUS 5: Käsitekartta 1. pistemutaatio 2. kromosomimutaatio 3-5. kahdentuma, siirtymä, kääntymä 6. kromosomistomutaatio 7-8. monosomia, trisomia Allo- ja autopolyploidia BI5 I Solu ja perimä 3. Perimän rakenne ja toiminta. Otava

51 6. YO S-08 Selosta, mikä on geeni ja mistä toiminnallisista osista se rakentuu. BI5 I Solu ja perimä 3. Perimän rakenne ja toiminta. Otava

52 VASTAUS 6: YO S-08 Geeni on osa kromosomin DNA-ketjua, joka koodaa kolmen emäksen jaksoina yhtä peptidiketjua. Geeni on kromosomissa sijaitseva perintötekijä. Geenistä voi olla eri alleeleja. Esitumaisilla geenin koodaava jakso on yhtenäinen, mutta tumallisilla se on usein jaksottunut koodaaviin (eksoneihin) ja eikoodaaviin alueisiin(introneihin). Valmiissa lähetti RNAssa on vain koodaavia alueita vastaavat alueet. Yksittäisissä geeneissä on säätelyalue (promoottori) ja varsinainen koodaava alue. RNA polymeraasi sitoutuu prommoottoriin ja lähetti RNAta alkaa muodostua. Esitumaisilla sama säätelyalue voi säädellä useiden peräkkäisten geenien toimintaa (operoni). Geenien säätelyyn voi osallistua tehostajajaksoja. Ne voivat sijaita hyvinkin kaukana itse geenistä. BI5 I Solu ja perimä 3. Perimän rakenne ja toiminta. Otava

53 7. YO S-05 a) Selitä lyhyesti, kuinka solussa geneettinen informaatio tulkitaan valmistettavan proteiinin aminohappojärjestykseksi. b) Sirppisoluanemian aiheuttaa resessiivinen alleeli, joka homotsygoottina on letaali. Taudin aiheuttavassa globiinimolekyylissä on yhden aminohapon ero verrattuna normaalihemoglobiiniin: valiini on korvannut glutamiinihapon. Normaali punasolu: Val-His-Leu-Thr-Pro-Glu-Glu Sirppisolu: Val-His-Leu-Thr-Pro-Val-Glu- Mikä virhe hemoglobiinin geenikoodissa on todennäköisimmin saanut aikaan kyseisen aminohappovaihdoksen, miten se heijastuu koko molekyyliin ja punasolun toimintaan? BI5 I Solu ja perimä 3. Perimän rakenne ja toiminta. Otava

54 VASTAUS 7: YO S-05 Tieto valmistettavan proteiinin aminohappojärjestyksestä sisältyy DNA:n emäsjärjestykseen, jossa yksi emäskolmikko vastaa yhtä aminohappoa. toimivan geenin alueelta kaksijuosteinen DNA avautuu, viereen rakentuu emäsparisäännön mukaisesti (A U; T A; C G; G C) lähetti-rna lähetti-rna siirtyy tumasta tumakelmun huokosen kautta solulimaan ribosomille Siirtäjä-RNA:t kuljettavat kukin oman aminohapponsa ribosomille. SiirtäjäRNAn antikodoni ja lähettirnan kodoni vastaavat toisiaan emäsparisäännöllä. Näin lähettirnalle kopioitu geenin nukleotidikoodi kääntyy proteiinin aminohappojärjestykseksi BI5 I Solu ja perimä 3. Perimän rakenne ja toiminta. Otava

55 VASTAUS 7: YO S-05 Taulukosta 33B ilmenee että glutamiinihappoa vastaa kaksi emäskolmikkoa (CTT ja CTC) ja valiinia vastaa neljä eri emäskolmikkoa (CAA, CAG, CAT, CAC) Todennäköisintä on, että DNA-koodissa on tapahtunut yksi pistemutaatio: CTT tai CTC keskimmäinen emäs on vaihtunut tymiinistä adeniiniksi CAT tai CAC Proteiinin avaruusrakenne määräytyy sen aminohappojärjestyksen mukaan. Oikea tertiäärirakenne taas vaikuttaa valkuaisen totuttuun toimintaan Sirppisoluhemoglobiini ei sido happea kuten normaali hemoglobiini. Poikkeava hemoglobiinirakenne ilmenee punasolujen sirppimäisyytenä, jolloin niiden hapenkuljetuskin veressä häiriintyy. BI5 I Solu ja perimä 3. Perimän rakenne ja toiminta. Otava

56 8. YO K-10 a) Tutkittaessa erään entsyymin lähetti-rna:ta, löytyi molekyylin keskivaiheilta seuraava emäsjärjestys 5` UAU CCC CUG UAG CUU AAA AAG AGA 3`. Mitä voit tämän perusteella päätellä tuotettavan entsyymin primaarirakenteesta ja toimivuudesta? b) Ihmisen genomissa on arviolta 15 miljoonaa kohtaa, joissa yksilöiden välisessä vertailussa voidaan osoittaa yhden emäksen muutos. Miksi yhden emäksen muutokset eivät välttämättä aiheuta fenotyyppimuutoksia? c) Esittele jokin menetelmä, jolla yksittäiset dna:n emäsmuutokset voidaan osoittaa. BI5 I Solu ja perimä 3. Perimän rakenne ja toiminta. Otava

57 VASTAUS 8: YO K-10 a) Lähetti-RNAn emäsjärjestystä vastaava pätkä DNAn mallijuostetta on 3 ATAGGGGACATC (lopetus). Taulukosta 33B saadaan entsyymin vastaava aminohappojärjestys: tyrosiini, proliini, arginiini, lopetus. Lopetus-kodonia vastaavaa siirtäjärnata ei ole, joten proteiinisynteesi päättyy ennen aikaisesti, eikä toimivaa entsyymiä synny. b) Neljästä emäksestä saadaan 64 erilaista emäskolmikkoa. Erilaisia aminohappoja on 20 samaa aminohappoa voi koodata useampi DNAn emäskolmikko (taulukko 33B). Yhden emäksen mutaatio voi olla neutraali eikä näy fenotyypissä. c) DNA:n eristäminen, puhdistus, pilkkominen katkaisuentsyymillä, kloonaus, tunnistus koettimen avulla, DNA -pätkien erottaminen elektroforeettisesti, emäsjärjestyksen määrittäminen sekvensoimalla. DNA:n eristäminen, puhdistus, pilkkominen katkaisuentsyymillä, monistaminen PCR - tekniikalla, elektroforeesi, sekvensointi (emäsjärjestyksen tunnistaminen perustuu eri tavoin merkattuihin lopettaviin nukleotideihin). BI5 I Solu ja perimä 3. Perimän rakenne ja toiminta. Otava

VASTAUS 1: Yhdistä oikein

VASTAUS 1: Yhdistä oikein KPL3 VASTAUS 1: Yhdistä oikein a) haploidi - V) ihmisen sukusolu b) diploidi - IV) ihmisen somaattinen solu c) polyploidi - VI) 5n d) iturata - III) sukusolujen muodostama solulinja sukupolvesta toiseen

Lisätiedot

Francis Crick ja James D. Watson

Francis Crick ja James D. Watson Francis Crick ja James D. Watson Francis Crick ja James D. Watson selvittivät DNAn rakenteen 1953 (Nobel-palkinto 1962). Rosalind Franklin ei ehtinyt saada kunniaa DNA:n rakenteen selvittämisestä. Hän

Lisätiedot

DNA (deoksiribonukleiinihappo)

DNA (deoksiribonukleiinihappo) DNA (deoksiribonukleiinihappo) Kaksoiskierre (10 emäsparin välein täysi kierros) Kaksi sokerifosfaattirunkoa. Huomaa suunta: 5 -päässä vapaana fosfaatti (kiinni sokerin 5. hiilessä) 3 -päässä vapaana sokeri

Lisätiedot

DNA (deoksiribonukleiinihappo)

DNA (deoksiribonukleiinihappo) DNA (deoksiribonukleiinihappo) Kaksoiskierre (10 emäsparin välein täysi kierros) Kaksi sokerifosfaattirunkoa. Huomaa suunta: 5 päässä vapaana fosfaatti (kiinni sokerin 5. hiilessä) 3 päässä vapaana sokeri

Lisätiedot

6 GEENIT OHJAAVAT SOLUN TOIMINTAA nukleiinihapot DNA ja RNA Geenin rakenne Geneettinen informaatio Proteiinisynteesi

6 GEENIT OHJAAVAT SOLUN TOIMINTAA nukleiinihapot DNA ja RNA Geenin rakenne Geneettinen informaatio Proteiinisynteesi 6 GEENIT OHJAAVAT SOLUN TOIMINTAA nukleiinihapot DNA ja RNA Geenin rakenne Geneettinen informaatio Proteiinisynteesi GENEETTINEN INFORMAATIO Geeneihin pakattu informaatio ohjaa solun toimintaa ja siirtyy

Lisätiedot

Perinnöllisyystieteen perusteita III Perinnöllisyystieteen perusteita

Perinnöllisyystieteen perusteita III Perinnöllisyystieteen perusteita Perinnöllisyystieteen perusteita III Perinnöllisyystieteen perusteita 10. Valkuaisaineiden valmistaminen solussa 1. Avainsanat 2. Perinnöllinen tieto on dna:n emäsjärjestyksessä 3. Proteiinit koostuvat

Lisätiedot

Avainsanat: perimä dna rna 5`-ja 3`-päät replikaatio polymeraasientsyymi eksoni introni promoottori tehostajajakso silmukointi mutaatio

Avainsanat: perimä dna rna 5`-ja 3`-päät replikaatio polymeraasientsyymi eksoni introni promoottori tehostajajakso silmukointi mutaatio Avainsanat: perimä dna rna 5`-ja 3`-päät replikaatio polymeraasientsyymi eksoni introni promoottori tehostajajakso silmukointi mutaatio Perinnöllinen informaatio sijaitsee dna:ssa eli deoksiribonukleiinihapossa

Lisätiedot

Sukunimi 26. 05. 2005 Etunimet Tehtävä 3 Pisteet / 20

Sukunimi 26. 05. 2005 Etunimet Tehtävä 3 Pisteet / 20 Helsingin yliopisto/tampereen yliopisto Henkilötunnus - Biokemian/bioteknologian valintakoe Sukunimi 26. 05. 2005 Etunimet Tehtävä 3 Pisteet / 20 3: Osa 1 Tumallisten solujen genomin toiminnassa sekä geenien

Lisätiedot

Peptidi ---- F ----- K ----- V ----- R ----- H ----- A ---- A. Siirtäjä-RNA:n (trna:n) (3 ) AAG UUC CAC GCA GUG CGU (5 ) antikodonit

Peptidi ---- F ----- K ----- V ----- R ----- H ----- A ---- A. Siirtäjä-RNA:n (trna:n) (3 ) AAG UUC CAC GCA GUG CGU (5 ) antikodonit Helsingin yliopisto/tampereen yliopisto Henkilötunnus - Biokemian/bioteknologian valintakoe Sukunimi 24.5.2006 Etunimet Tehtävä 3 Pisteet / 20 Osa 1: Haluat selvittää -- F -- K -- V -- R -- H -- A peptidiä

Lisätiedot

DNA:n informaation kulku, koostumus

DNA:n informaation kulku, koostumus DNA:n informaation kulku, koostumus KOOSTUMUS Elävien bio-organismien koostumus. Vety, hiili, happi ja typpi muodostavat yli 99% orgaanisten molekyylien rakenneosista. Biomolekyylit voidaan pääosin jakaa

Lisätiedot

SÄTEILYN TERVEYSVAIKUTUKSET

SÄTEILYN TERVEYSVAIKUTUKSET SÄTEILYN TERVEYSVAIKUTUKSET 25 Säteily- ja ydinturvallisuus -kirjasarjan toimituskunta: Sisko Salomaa, Wendla Paile, Tarja K. Ikäheimonen, Roy Pöllänen, Anne Weltner, Olavi Pukkila, Jorma Sandberg, Heidi

Lisätiedot

Perinnöllisyystieteen perusteita III Perinnöllisyystieteen perusteita. BI2 III Perinnöllisyystieteen perusteita 9. Solut lisääntyvät jakautumalla

Perinnöllisyystieteen perusteita III Perinnöllisyystieteen perusteita. BI2 III Perinnöllisyystieteen perusteita 9. Solut lisääntyvät jakautumalla Perinnöllisyystieteen perusteita III Perinnöllisyystieteen perusteita 9. Solut lisääntyvät jakautumalla 1. Avainsanat 2. Solut lisääntyvät jakautumalla 3. Dna eli deoksiribonukleiinihappo sisältää perimän

Lisätiedot

Bioteknologian tutkinto-ohjelma Valintakoe Tehtävä 3 Pisteet / 30

Bioteknologian tutkinto-ohjelma Valintakoe Tehtävä 3 Pisteet / 30 Tampereen yliopisto Bioteknologian tutkinto-ohjelma Valintakoe 21.5.2015 Henkilötunnus - Sukunimi Etunimet Tehtävä 3 Pisteet / 30 3. a) Alla on lyhyt jakso dsdna:ta, joka koodaa muutaman aminohappotähteen

Lisätiedot

DNA Tiina Immonen, FT, yo-lehtori HY Biolääketieteen laitos, Biokemia ja kehitysbiologia

DNA Tiina Immonen, FT, yo-lehtori HY Biolääketieteen laitos, Biokemia ja kehitysbiologia DNA 3.3.2015 Tiina Immonen, FT, yo-lehtori HY Biolääketieteen laitos, Biokemia ja kehitysbiologia Koordinaattori, Master s Degree Programme in Translational Medicine (TRANSMED) 1 Sisältö DNA:n rakenne

Lisätiedot

Perinnöllisyyden perusteita

Perinnöllisyyden perusteita Perinnöllisyyden perusteita Eero Lukkari Tämä artikkeli kertoo perinnöllisyyden perusmekanismeista johdantona muille jalostus- ja terveysaiheisille artikkeleille. Koirien, kuten muidenkin eliöiden, perimä

Lisätiedot

Geenitekniikan perusmenetelmät

Geenitekniikan perusmenetelmät Loppukurssikoe To klo 14-16 2 osiota: monivalintatehtäväosio ja kirjallinen osio, jossa vastataan kahteen kysymykseen viidestä. Koe on auki klo 14.05-16. Voit tehdä sen oppitunnilla, jolloin saat tarvittaessa

Lisätiedot

DNA Tiina Immonen, FT, yo-lehtori HY Lääketieteellinen tiedekunta Biokemia ja kehitysbiologia

DNA Tiina Immonen, FT, yo-lehtori HY Lääketieteellinen tiedekunta Biokemia ja kehitysbiologia DNA 18.4.2016 Tiina Immonen, FT, yo-lehtori HY Lääketieteellinen tiedekunta Biokemia ja kehitysbiologia Koordinaattori, Master s Degree Programme in Translational Medicine (TRANSMED) 1 Sisältö DNA:n rakenne

Lisätiedot

Euromit2014-konferenssin tausta-aineistoa Tuottaja Tampereen yliopiston viestintä

Euromit2014-konferenssin tausta-aineistoa Tuottaja Tampereen yliopiston viestintä Mitkä mitokondriot? Lyhyt johdatus geenitutkijoiden maailmaan Ihmisen kasvua ja kehitystä ohjaava informaatio on solun tumassa, DNA:ssa, josta se erilaisten prosessien kautta päätyy ohjaamaan elimistön,

Lisätiedot

måndag 10 februari 14 Jaana Ohtonen Kielikoulu/Språkskolan Haparanda

måndag 10 februari 14 Jaana Ohtonen Kielikoulu/Språkskolan Haparanda GENETIIKKA: KROMOSOMI DNA & GEENI Yksilön ominaisuudet 2 Yksilön ominaisuudet Perintötekijät 2 Yksilön ominaisuudet Perintötekijät Ympäristötekijät 2 Perittyjä ominaisuuksia 3 Leukakuoppa Perittyjä ominaisuuksia

Lisätiedot

Nimi sosiaaliturvatunnus

Nimi sosiaaliturvatunnus Valintakoe 2013 / Biokemia Nimi sosiaaliturvatunnus 1. Selitä: (3,0 p) a) Mitä ovat eksonit ja intronit ja miten ne eroavat toisistaan? b) Mitä eläinsolulle tapahtuu, jos se laitetaan sen sisällä olevaa

Lisätiedot

KOE 6 Biotekniikka. 1. Geenien kloonaus plasmidien avulla.

KOE 6 Biotekniikka. 1. Geenien kloonaus plasmidien avulla. Esseekysymyksistä 1-2 voi saada enintään 9 pistettä/kysymys. Vastauksia pisteytettäessä huomioidaan asiatiedot, joista voi saada enintään 7 pistettä. Lisäksi vastaaja saa enintään kaksi pistettä, mikäli

Lisätiedot

LUENTO 3 Kyösti Ryynänen Seutuviikko 2014, Jämsä

LUENTO 3 Kyösti Ryynänen Seutuviikko 2014, Jämsä LUENTO 3 Kyösti Ryynänen Seutuviikko 2014, Jämsä MITEN MATERIA KOODAA MATERIAA? 1 PROTEIINISYNTEESI DNA SISÄLTÄÄ GENEETTISEN KOODIN EMÄSJÄRJESTYKSEN MUODOSSA DNA:N EMÄSJÄRJESTYS KOPIOIDAAN (TRANSKRIPTIO)

Lisätiedot

Perinnöllisyys 2. Enni Kaltiainen

Perinnöllisyys 2. Enni Kaltiainen Perinnöllisyys 2 Enni Kaltiainen Tunnin sisältö: Kytkeytyneiden geenien periytyminen Ihmisen perinnöllisyys Sukupuu Mutaatiot Kytkeytyneet geenit Jokainen kromosomi sisältää kymmeniä geenejä (= kytkeytyneet)

Lisätiedot

Seutuviikko 2015, Jämsä Kyösti Ryynänen PROTEIINISYNTEESI LUENTO 3 DNA-RAKENNE DNA SOLUJAKAUTUMINEN DNA-KAKSOISKIERRE

Seutuviikko 2015, Jämsä Kyösti Ryynänen PROTEIINISYNTEESI LUENTO 3 DNA-RAKENNE DNA SOLUJAKAUTUMINEN DNA-KAKSOISKIERRE Seutuviikko 2015, Jämsä Kyösti Ryynänen LUENTO 3 MITEN MATERIA KOODAA MATERIAA? 1 PROTEIINISYNTEESI DNA SISÄLTÄÄ GENEETTISEN KOODIN EMÄSJÄRJESTYKSEN MUODOSSA DNA:N EMÄSJÄRJESTYS KOPIOIDAAN (TRANSKRIPTIO)

Lisätiedot

Bioteknologian perustyökaluja

Bioteknologian perustyökaluja Bioteknologian perustyökaluja DNAn ja RNAn eristäminen helppoa. Puhdistaminen työlästä (DNA pestään lukuisilla liuottimilla). Myös lähetti-rnat voidaan eristää ja muuntaa virusten käänteiskopioijaentsyymin

Lisätiedot

Genomin ilmentyminen Liisa Kauppi, Genomibiologian tutkimusohjelma

Genomin ilmentyminen Liisa Kauppi, Genomibiologian tutkimusohjelma Genomin ilmentyminen 17.1.2013 Liisa Kauppi, Genomibiologian tutkimusohjelma liisa.kauppi@helsinki.fi Genomin ilmentyminen transkription aloitus RNA:n synteesi ja muokkaus DNA:n ja RNA:n välisiä eroja

Lisätiedot

Genomin ylläpito Tiina Immonen BLL Lääke8eteellinen biokemia ja kehitysbiologia

Genomin ylläpito Tiina Immonen BLL Lääke8eteellinen biokemia ja kehitysbiologia Genomin ylläpito 14.1.2014 Tiina Immonen BLL Lääke8eteellinen biokemia ja kehitysbiologia Luennon sisältö DNA:n kahdentuminen eli replikaa8o DNA:n korjausmekanismit Replikaa8ovirheiden korjaus Emäksenpoistokorjaus

Lisätiedot

Anatomia ja fysiologia 1 Peruselintoiminnat

Anatomia ja fysiologia 1 Peruselintoiminnat Anatomia ja fysiologia 1 Peruselintoiminnat Solu Laura Partanen Yleistä Elimistö koostuu soluista ja soluväliaineesta Makroskooppinen mikroskooppinen Mm. liikkumiskyky, reagointi ärsykkeisiin, aineenvaihdunta

Lisätiedot

GEENITEKNIIKAN PERUSASIOITA

GEENITEKNIIKAN PERUSASIOITA GEENITEKNIIKAN PERUSASIOITA GEENITEKNIIKKKA ON BIOTEKNIIKAN OSA-ALUE! Biotekniikka tutkii ja kehittää elävien solujen, solun osien, biokemiallisten menetelmien sekä molekyylibiologian uusimpien menetelmien

Lisätiedot

KOULUTUSOHJELMA Sukunimi: 18.5.2016 Etunimet: Nimikirjoitus: BIOLOGIA (45 p) Valintakoe klo 9.00-13.00

KOULUTUSOHJELMA Sukunimi: 18.5.2016 Etunimet: Nimikirjoitus: BIOLOGIA (45 p) Valintakoe klo 9.00-13.00 BIOLÄÄKETIETEEN Henkilötunnus: - KOULUTUSOHJELMA Sukunimi: 18.5.2016 Etunimet: Nimikirjoitus: BIOLOGIA (45 p) Valintakoe klo 9.00-13.00 Kirjoita selvästi nimesi ja muut henkilötietosi niille varattuun

Lisätiedot

Biopolymeerit. Biopolymeerit ovat kasveissa ja eläimissä esiintyviä polymeerejä.

Biopolymeerit. Biopolymeerit ovat kasveissa ja eläimissä esiintyviä polymeerejä. Biopolymeerit Biopolymeerit ovat kasveissa ja eläimissä esiintyviä polymeerejä. Tärkeimpiä biopolymeerejä ovat hiilihydraatit, proteiinit ja nukleiinihapot. 1 Hiilihydraatit Hiilihydraatit jaetaan mono

Lisätiedot

BIOLOGIAN OSIO (45 p.)

BIOLOGIAN OSIO (45 p.) BIOLÄÄKETIETEEN KOULUTUSOHJELMA PÄÄSYKOE 17.5.2017 BIOLOGIAN OSIO (45 p.) HYVÄN VASTAUKSEN PIIRTEET I) Esseetehtävät (2 kpl) a) Selitä perustellen, miten kuvaan merkittyihin kohtiin osuvat mutaatiot voivat

Lisätiedot

BIOLOGIAN OSIO (45 p.)

BIOLOGIAN OSIO (45 p.) BIOLÄÄKETIETEEN KOULUTUSOHJELMA PÄÄSYKOE 17.5.2017 BIOLOGIAN OSIO (45 p.) HYVÄN VASTAUKSEN PIIRTEET I) Esseetehtävät (2 kpl) a) Selitä perustellen, miten kuvaan merkittyihin kohtiin osuvat mutaatiot voivat

Lisätiedot

Perinnöllisyyden perusteita

Perinnöllisyyden perusteita Perinnöllisyyden perusteita Perinnöllisyystieteen isä on augustinolaismunkki Gregor Johann Mendel (1822-1884). Mendel kasvatti herneitä Brnon (nykyisessä Tsekissä) luostarin pihalla. 1866 julkaisu tuloksista

Lisätiedot

Biomolekyylit 2. Nukleotidit, aminohapot ja proteiinit

Biomolekyylit 2. Nukleotidit, aminohapot ja proteiinit Biomolekyylit 2 Nukleotidit, aminohapot ja proteiinit Nukleotidit Ihmisen perimä, eli DNA (deoksiribonukleiinihappo) muodostuu pitkästä nukleotidiketjusta. Lisäksi nukleotidit toimivat mm. proteiinisynteesissä

Lisätiedot

Genomin ylläpito TIINA IMMONEN MEDICUM BIOKEMIA JA KEHITYSBIOLOGIA

Genomin ylläpito TIINA IMMONEN MEDICUM BIOKEMIA JA KEHITYSBIOLOGIA Genomin ylläpito 5.12.2017 TIINA IMMONEN MEDICUM BIOKEMIA JA KEHITYSBIOLOGIA Luennon sisältö Tuman kromosomien rakenne ja pakkautuminen Pakkautumisen säätely: histonien modifikaatiot DNA:n kahdentuminen

Lisätiedot

Genomin ilmentyminen

Genomin ilmentyminen Kauppi 17/01/2014 Genomin ilmentyminen LH1, Molekyylibiologia 17.1.2014 Liisa Kauppi, Genomibiologian tutkimusohjelma liisa.kauppi@helsinki.fi Huone C501b, Biomedicum 1 Transkriptiofaktorin mutaatio voi

Lisätiedot

Genomi-ilmentyminen Genom expression (uttryckning) Nina Peitsaro, yliopistonlehtori, Medicum, Biokemia ja Kehitysbiologia

Genomi-ilmentyminen Genom expression (uttryckning) Nina Peitsaro, yliopistonlehtori, Medicum, Biokemia ja Kehitysbiologia Genomi-ilmentyminen Genom expression (uttryckning) DNA RNA 7.12.2017 Nina Peitsaro, yliopistonlehtori, Medicum, Biokemia ja Kehitysbiologia Osaamistavoitteet Lärandemål Luennon jälkeen ymmärrät pääperiaatteet

Lisätiedot

Muuttumaton genomi? Genomin ylläpito. Jakson luennot. Luennon sisältö DNA:N KAHDENTUMINEN ELI REPLIKAATIO

Muuttumaton genomi? Genomin ylläpito. Jakson luennot. Luennon sisältö DNA:N KAHDENTUMINEN ELI REPLIKAATIO Muuttumaton genomi? Genomin ylläpito SNP 14.1.2013 Tiina Immonen Biolääketieteen laitos Biokemia ja kehitysbiologia Jakson luennot Mitä on genomilääketiede? Dan Lindholm Genomin ylläpito Tiina Immonen

Lisätiedot

a) dominoivaan: esiintyy joka sukupolvessa, sairaille vanhemmille voi syntyä terveitä lapsia

a) dominoivaan: esiintyy joka sukupolvessa, sairaille vanhemmille voi syntyä terveitä lapsia 1. Sukupuut Seuraavat ihmisen sukupuut edustavat periytymistä, jossa ominaisuuden määrää yksi alleeli. Päättele sukupuista A-F, mitä periytymistapaa kukin niistä voi edustaa. Vastaa taulukkoon kirjaimin

Lisätiedot

Solun tutkiminen. - Geenitekniikka

Solun tutkiminen. - Geenitekniikka Solun tutkiminen - Geenitekniikka Tunnin sisältö 1. Bioteknologian peruskäsitteitä 2. Hieman mikroskoopeista 3. DNA:n eristäminen, puhdistaminen ja pilkkominen 4. Geenikirjasto 5. PCR 6. Elektroforeesi

Lisätiedot

Etunimi: Henkilötunnus:

Etunimi: Henkilötunnus: Kokonaispisteet: Lue oheinen artikkeli ja vastaa kysymyksiin 1-25. Huomaa, että artikkelista ei löydy suoraan vastausta kaikkiin kysymyksiin, vaan sinun tulee myös tuntea ja selittää tarkemmin artikkelissa

Lisätiedot

Perinnöllisyys. Enni Kaltiainen

Perinnöllisyys. Enni Kaltiainen Perinnöllisyys Enni Kaltiainen Tällä tunnilla: - Lyhyt kertaus genetiikasta - Meioosi - Perinnöllisyyden perusteet - Risteytystehtävät h"p://files.ko-sivukone.com/refluksi.ko-sivukone.com/j0284919.jpg Kertausta

Lisätiedot

DNA > RNA > Proteiinit

DNA > RNA > Proteiinit Genetiikan perusteiden luentojen ensimmäisessä osassa tarkasteltiin transmissiogenetiikkaa eli sitä, kuinka geenit siirtyvät sukupolvesta toiseen Toisessa osassa ryhdymme tarkastelemaan sitä, mitä geenit

Lisätiedot

Nimi sosiaaliturvatunnus. Vastaa lyhyesti, selkeällä käsialalla. Vain vastausruudun sisällä olevat tekstit, kuvat jne huomioidaan

Nimi sosiaaliturvatunnus. Vastaa lyhyesti, selkeällä käsialalla. Vain vastausruudun sisällä olevat tekstit, kuvat jne huomioidaan 1. Valitse listasta kunkin yhdisteen yleiskielessä käytettävä ei-systemaattinen nimi. (pisteet yht. 5p) a) C-vitamiini b) glukoosi c) etikkahappo d) salisyylihappo e) beta-karoteeni a. b. c. d. e. ksylitoli

Lisätiedot

Nimi sosiaaliturvatunnus. Vastaa lyhyesti, selkeällä käsialalla. Vain vastausruudun sisällä olevat tekstit, kuvat jne huomioidaan

Nimi sosiaaliturvatunnus. Vastaa lyhyesti, selkeällä käsialalla. Vain vastausruudun sisällä olevat tekstit, kuvat jne huomioidaan 1. a) Seoksen komponentit voidaan erotella toisistaan kromatografisilla menetelmillä. Mihin kromatografiset menetelmät perustuvat? (2p) Menetelmät perustuvat seoksen osasten erilaiseen sitoutumiseen paikallaan

Lisätiedot

2.1 Solun rakenne - Lisämateriaalit

2.1 Solun rakenne - Lisämateriaalit 2.1 Solun rakenne - Lisämateriaalit Tiivistelmä Esitumaisiset eli alkeistumalliset solut ovat pieniä (n.1-10µm), niissä on vähän soluelimiä, eikä tumaa (esim. arkeonit, bakteerit) Tumalliset eli aitotumalliset

Lisätiedot

DNA RNA proteiinit transkriptio prosessointi translaatio regulaatio

DNA RNA proteiinit transkriptio prosessointi translaatio regulaatio replikaatio repair mitoosi meioosi fertilisaatio rekombinaatio repair mendelistinen genetiikka DNA-huusholli Geenien toiminta molekyyligenetiikka DNA RNA proteiinit transkriptio prosessointi translaatio

Lisätiedot

Epigeneettinen säätely ja genomin leimautuminen. Tiina Immonen Medicum, Biokemia ja kehitysbiologia

Epigeneettinen säätely ja genomin leimautuminen. Tiina Immonen Medicum, Biokemia ja kehitysbiologia Epigeneettinen säätely ja genomin leimautuminen Tiina Immonen Medicum, Biokemia ja kehitysbiologia 12.12.2017 Epigenetic inheritance: A heritable alteration in a cell s or organism s phenotype that does

Lisätiedot

Nukleiinihapot! Juha Klefström, Biolääketieteen laitos/biokemia ja genomibiologian tutkimusohjelma Helsingin yliopisto.

Nukleiinihapot! Juha Klefström, Biolääketieteen laitos/biokemia ja genomibiologian tutkimusohjelma Helsingin yliopisto. Nukleiinihapot! Juha Klefström, Biolääketieteen laitos/biokemia ja genomibiologian tutkimusohjelma Helsingin yliopisto Juha.Klefstrom@helsinki.fi Nukleiinihapot! kertausta matkan varrella, vähemmän kuitenkin

Lisätiedot

VALINTAKOE 2014 Terveyden biotieteiden koulutusohjelmat/ty ja ISY

VALINTAKOE 2014 Terveyden biotieteiden koulutusohjelmat/ty ja ISY VALINTAKOE 2014 Terveyden biotieteiden koulutusohjelmat/ty ja ISY BIOLOGIAN KYSYMYSTEN Hyvän vastauksen piirteet 2014 Väittämätehtävät. Maksimipisteet 10. Määrittele tai kuvaa lyhyesti seuraavat termit.

Lisätiedot

Solun perusrakenne I Solun perusrakenne. BI2 I Solun perusrakenne 2. Solun perusrakenne

Solun perusrakenne I Solun perusrakenne. BI2 I Solun perusrakenne 2. Solun perusrakenne Solun perusrakenne I Solun perusrakenne 2. Solun perusrakenne 1. Avainsanat 2. Kaikille soluille yhteiset piirteet 3. Kasvisolun rakenne 4. Eläinsolun rakenne 5. Sienisolun rakenne 6. Bakteerisolun rakenne

Lisätiedot

Lääketieteen ja biotieteiden tiedekunta Sukunimi Bioteknologia tutkinto-ohjelma Etunimet valintakoe pe Tehtävä 1 Pisteet / 15

Lääketieteen ja biotieteiden tiedekunta Sukunimi Bioteknologia tutkinto-ohjelma Etunimet valintakoe pe Tehtävä 1 Pisteet / 15 Tampereen yliopisto Henkilötunnus - Lääketieteen ja biotieteiden tiedekunta Sukunimi Bioteknologia tutkinto-ohjelma Etunimet valintakoe pe 18.5.2018 Tehtävä 1 Pisteet / 15 1. Alla on esitetty urheilijan

Lisätiedot

Ribosomit 1. Ribosomit 2. Ribosomit 3

Ribosomit 1. Ribosomit 2. Ribosomit 3 Ribosomit 1 Palade & Siekevitz eristivät jaottelusentrifugaatiolla ns. mikrosomeja radioakt. aminohapot kertyivät mikrosomeihin, jotka peräisin rer:ää sisältävistä soluista proteiinisynteesi soluliman

Lisätiedot

Väärin, Downin oireyhtymä johtuu ylimääräisestä kromosomista n.21 (trisomia) Geeni s. 93.

Väärin, Downin oireyhtymä johtuu ylimääräisestä kromosomista n.21 (trisomia) Geeni s. 93. 1 I) Ovatko väittämät oikein (O) vai väärin (V)? Jos väite on mielestäsi väärin, perustele se lyhyesti väittämän alla oleville riveille. O/V 1.2. Downin oireyhtymä johtuu pistemutaatista fenyylialaniinin

Lisätiedot

Biomolekyylit ja biomeerit

Biomolekyylit ja biomeerit Biomolekyylit ja biomeerit Polymeerit ovat hyvin suurikokoisia, pitkäketjuisia molekyylejä, jotka muodostuvat monomeereista joko polyadditio- tai polykondensaatioreaktiolla. Polymeerit Synteettiset polymeerit

Lisätiedot

DNA, RNA ja proteiinirakenteen ennustaminen

DNA, RNA ja proteiinirakenteen ennustaminen S-114.500 Solubiosysteemien perusteet Harjoitustyö Syksy 2003 DNA, RNA ja proteiinirakenteen ennustaminen Ilpo Tertsonen, 58152p Jaakko Niemi, 55114s Sisällysluettelo 1. Alkusanat... 3 2. Johdanto... 4

Lisätiedot

"Geenin toiminnan säätely" Moniste sivu 13

Geenin toiminnan säätely Moniste sivu 13 "Geenin toiminnan säätely" Moniste sivu 13 Monisteen alussa on erittäin tärkeitä ohjeita turvallisuudesta Lukekaa sivu 5 huolellisesti ja usein Vaarat vaanivat: Palavia nesteitä ja liekkejä on joskus/usein

Lisätiedot

3 Eliökunnan luokittelu

3 Eliökunnan luokittelu 3 Eliökunnan luokittelu YO Biologian tehtävien vastausohjeista osa on luettelomaisia ja vain osa on laadittu siten, että ohjeen mukainen mallivastaus riittää täysiin pisteisiin esimerkiksi ylioppilaskokeessa.

Lisätiedot

Solu - perusteet. Enni Kaltiainen

Solu - perusteet. Enni Kaltiainen Solu - perusteet Enni Kaltiainen Solu -perusteet 1. Solusta yleisesti 2. Soluelimet Kalvorakenteet Kalvottomat elimet 3. DNA:n rakenne 4. Solunjakautuminen ja solusykli Synteesi Mitoosi http://www.google.fi/imgres?q=elimet&hl=fi&gbv=2&biw=1280&bih=827&tbm=isch&tbnid=zb_-6_m_rqbtym:&imgrefurl=http://www.hila

Lisätiedot

DNA RNA proteiinit transkriptio prosessointi translaatio regulaatio

DNA RNA proteiinit transkriptio prosessointi translaatio regulaatio CELL 411-- replikaatio repair mitoosi meioosi fertilisaatio rekombinaatio repair mendelistinen genetiikka DNA-huusholli Geenien toiminta molekyyligenetiikka DNA RNA proteiinit transkriptio prosessointi

Lisätiedot

Biologian tehtävien vastaukset ja selitykset

Biologian tehtävien vastaukset ja selitykset Biologian tehtävien vastaukset ja selitykset Ilmainen lääkiksen harjoituspääsykoe, kevät 2017 Tehtävä 2. (20 p) A. 1. EPÄTOSI. Ks. s. 4. Menetelmää käytetään geenitekniikassa geenien muokkaamisessa. 2.

Lisätiedot

*2,3,4,5 *1,2,3,4,5. Helsingin yliopisto. hakukohde. Sukunimi. Tampereen yliopisto. Etunimet. Valintakoe 21.05.2012 Tehtävä 1 Pisteet / 30. Tehtävä 1.

*2,3,4,5 *1,2,3,4,5. Helsingin yliopisto. hakukohde. Sukunimi. Tampereen yliopisto. Etunimet. Valintakoe 21.05.2012 Tehtävä 1 Pisteet / 30. Tehtävä 1. Helsingin yliopisto Molekyylibiotieteiden hakukohde Tampereen yliopisto Bioteknologian hakukohde Henkilötunnus - Sukunimi (myös entinen) Etunimet Valintakoe 21.05.2012 Tehtävä 1 Pisteet / 30 Tehtävä 1.

Lisätiedot

BIOLOGIAN OSIO (45 p.)

BIOLOGIAN OSIO (45 p.) BIOLÄÄKETIETEEN KOULUTUSOHJELMA VALINTAKOE 16.5.2018 BIOLOGIAN OSIO (45 p.) HYVÄN VASTAUKSEN PIIRTEET I) Esseetehtävät (2 kpl) a) Aitotumallisen solun elämänkierron (solusyklin) vaiheet. Havainnollista

Lisätiedot

1. Nukleiinihapot DNA ja RNA - Nukleiinihappojen rakenteeseen ja nukleotideihin tutustuminen - DNA:n ja RNA:n mallintaminen

1. Nukleiinihapot DNA ja RNA - Nukleiinihappojen rakenteeseen ja nukleotideihin tutustuminen - DNA:n ja RNA:n mallintaminen Teemakokonaisuudessa Genetiikkaa (5 tuntia) avataan geenien saloja kokeellisten tai toiminnallisten tehtävien avulla. Teemakokonaisuudessa tutustutaan DNA:han, RNA:han, proteiineihin, proteiinisynteesiin,

Lisätiedot

465 E MOLEKYYLIBIOLOGIAA

465 E MOLEKYYLIBIOLOGIAA 465 E MOLEKYYLIBIOLOGIAA 466 E1 Geneettinen koodi elämän yhteinen kieli Latvala Juho & Seppälä Mika Solu-ja kehitysbiologian kurssin kirjoitelma Anatomian ja solubiologian laitos, Oulun yliopisto 12.9.2009

Lisätiedot

Epigeneettinen säätely ja genomin leimautuminen. Tiina Immonen BLL Biokemia ja kehitysbiologia

Epigeneettinen säätely ja genomin leimautuminen. Tiina Immonen BLL Biokemia ja kehitysbiologia Epigeneettinen säätely ja genomin leimautuminen Tiina Immonen BLL Biokemia ja kehitysbiologia 21.1.2014 Epigeneettinen säätely Epigenetic: may be used for anything to do with development, but nowadays

Lisätiedot

BIOLOGIAN OSIO (45 p.)

BIOLOGIAN OSIO (45 p.) BIOLÄÄKETIETEEN KOULUTUSOHJELMA VALINTAKOE 15.5.2019 BIOLOGIAN OSIO (45 p.) Hyvän vastauksen piirteet Hyvän vastauksen piirteet on yleinen kuvaus kunkin koetehtävän osalta arvioinnin perusteena olevista

Lisätiedot

Nimi sosiaaliturvatunnus. Vastaa lyhyesti, selkeällä käsialalla. Vain vastausruudun sisällä olevat tekstit, kuvat jne huomioidaan

Nimi sosiaaliturvatunnus. Vastaa lyhyesti, selkeällä käsialalla. Vain vastausruudun sisällä olevat tekstit, kuvat jne huomioidaan 1. a) Mitä tarkoitetaan biopolymeerilla? Mihin kolmeen ryhmään biopolymeerit voidaan jakaa? (1,5 p) Biopolymeerit ovat luonnossa esiintyviä / elävien solujen muodostamia polymeerejä / makromolekyylejä.

Lisätiedot

Hyvän vastauksen piirteet. Biolääketieteen valintakoe 20.05.2015. Maksimipisteet: 45

Hyvän vastauksen piirteet. Biolääketieteen valintakoe 20.05.2015. Maksimipisteet: 45 Hyvän vastauksen piirteet Biolääketieteen valintakoe 20.05.2015 Maksimipisteet: 45 I) Monivalintakysymykset. Rengasta oikea vaihtoehto. Vain yksi vaihtoehdoista on oikein. Vastaus on hylätty, jos on rengastettu

Lisätiedot

Solun perusrakenne I Solun perusrakenne. BI2 I Solun perusrakenne 3. Solujen kemiallinen rakenne

Solun perusrakenne I Solun perusrakenne. BI2 I Solun perusrakenne 3. Solujen kemiallinen rakenne Solun perusrakenne I Solun perusrakenne 3. Solujen kemiallinen rakenne 1. Avainsanat 2. Solut koostuvat molekyyleistä 3. Hiilihydraatit 4. Lipidit eli rasva-aineet 5. Valkuaisaineet eli proteiinit rakentuvat

Lisätiedot

Metsäpatologian laboratorio tuhotutkimuksen apuna. Metsätaimitarhapäivät 23. 24.1.2014 Anne Uimari

Metsäpatologian laboratorio tuhotutkimuksen apuna. Metsätaimitarhapäivät 23. 24.1.2014 Anne Uimari Metsäpatologian laboratorio tuhotutkimuksen apuna Metsätaimitarhapäivät 23. 24.1.2014 Anne Uimari Metsäpuiden vaivat Metsäpuiden eloa ja terveyttä uhkaavat monet taudinaiheuttajat: Bioottiset taudinaiheuttajat

Lisätiedot

BI4 IHMISEN BIOLOGIA

BI4 IHMISEN BIOLOGIA BI4 IHMISEN BIOLOGIA IHMINEN ON TOIMIVA KOKONAISUUS Ihmisessä on noin 60 000 miljardia solua Solujen perusrakenne on samanlainen, mutta ne ovat erilaistuneet hoitamaan omia tehtäviään Solujen on oltava

Lisätiedot

Erilaisia soluja. Siittiösolu on ihmisen pienimpiä soluja. Tohvelieläin koostuu vain yhdestä solusta. Veren punasoluja

Erilaisia soluja. Siittiösolu on ihmisen pienimpiä soluja. Tohvelieläin koostuu vain yhdestä solusta. Veren punasoluja Erilaisia soluja Veren punasoluja Tohvelieläin koostuu vain yhdestä solusta Siittiösolu on ihmisen pienimpiä soluja Pajun juurisolukko Bakteereja Malarialoisioita ihmisen puhasoluissa Hermosolu Valomikroskooppi

Lisätiedot

PROTEIINIEN RAKENTAMINEN

PROTEIINIEN RAKENTAMINEN PROTEIINIEN RAKENTAMINEN TAUSTAA Proteiinit ovat äärimmäisen tärkeitä kaikille elämänmuodoille. Kaikki solut tarvitsevat prote- iineja toimiakseen kunnolla. Osa proteiineista toimii entsyymeinä eli nopeuttaa

Lisätiedot

Vastaa lyhyesti selkeällä käsialalla. Vain vastausruudun sisällä olevat tekstit, kuvat jne huomioidaan

Vastaa lyhyesti selkeällä käsialalla. Vain vastausruudun sisällä olevat tekstit, kuvat jne huomioidaan 1 1) Tunnista molekyylit (1 piste) ja täytä seuraava taulukko (2 pistettä) a) b) c) d) a) Syklinen AMP (camp) (0.25) b) Beta-karoteeni (0.25 p) c) Sakkaroosi (0.25 p) d) -D-Glukopyranoosi (0.25 p) 2 Taulukko.

Lisätiedot

DNA-testit. sukututkimuksessa Keravan kirjasto Paula Päivinen

DNA-testit. sukututkimuksessa Keravan kirjasto Paula Päivinen DNA-testit sukututkimuksessa 28.11.2017 Keravan kirjasto Paula Päivinen Solu tuma kromosomit 23 paria DNA Tumassa olevat kromosomit periytyvät jälkeläisille puoliksi isältä ja äidiltä Y-kromosomi periytyy

Lisätiedot

DNA RNA proteiinit transkriptio prosessointi translaatio regulaatio

DNA RNA proteiinit transkriptio prosessointi translaatio regulaatio replikaatio repair mitoosi meioosi fertilisaatio rekombinaatio repair mendelistinen genetiikka DNA-huusholli Geenien toiminta molekyyligenetiikka DNA RNA proteiinit transkriptio prosessointi translaatio

Lisätiedot

DNA sukututkimuksen tukena

DNA sukututkimuksen tukena Järvenpää 12,2,2019 Teuvo Ikonen teuvo.ikonen@welho.com DNA sukututkimuksen tukena DNA sukututkimuksessa (Peter Sjölund: Släktforska med DNA) tiesitkö, että olet kävelevä sukukirja? on kuin lukisit kirjaa

Lisätiedot

MALLIVASTAUKSET (max 30 p/kysymys, max 120 p koko kokeesta)

MALLIVASTAUKSET (max 30 p/kysymys, max 120 p koko kokeesta) Tehtävä Pisteet a) Mitkä ovat solussa DNA:n, mitkä RNA:n tehtäviä? Miksi mielestäsi DNA on valikoitunut kaikkien solullisten organismien perintöainekseksi? max 5 DNA: perinnöllisen tiedon säilyttäminen

Lisätiedot

Geneettinen umpikuja: Koira uhanalaisena lajina kuusiosaisen artikkelisarjan 1. osa

Geneettinen umpikuja: Koira uhanalaisena lajina kuusiosaisen artikkelisarjan 1. osa Geneettinen umpikuja: Koira uhanalaisena lajina kuusiosaisen artikkelisarjan 1. osa Susan Thorpe-Vargas Ph.D., John Cargill MA, MBA, MS, D. Caroline Coile, Ph.D. Käännös Inkeri Kangasvuo Koskaan ei ehkä

Lisätiedot

Drosophila on kehitysgenetiikan mallilaji nro 1

Drosophila on kehitysgenetiikan mallilaji nro 1 Drosophila on kehitysgenetiikan mallilaji nro 1 replikaatio repair mitoosi meioosi fertilisaatio rekombinaatio repair mendelistinen genetiikka DNA-huusholli Geenien toiminta molekyyligenetiikka DNA RNA

Lisätiedot

NON-CODING RNA (ncrna)

NON-CODING RNA (ncrna) NON-CODING RNA (ncrna) 1. Yleistä NcRNA eli non-coding RNA tarkoittaa kaikkia proteiinia koodaamattomia rnamolekyylejä. Näistä yleisimmin tunnetut ovat ribosomaalinen RNA (rrna) sekä siirtäjä-rna (trna),

Lisätiedot

Ribosomit 1. Ribosomit 4. Ribosomit 2. Ribosomit 3. Proteiinisynteesin periaate 1

Ribosomit 1. Ribosomit 4. Ribosomit 2. Ribosomit 3. Proteiinisynteesin periaate 1 Ribosomit 1 Ribosomit 4 Palade & Siekevitz eristivät jaottelusentrifugaatiolla ns. mikrosomeja radioakt. aminohapot kertyivät mikrosomeihin, jotka peräisin rer:ää sisältävistä soluista proteiinisynteesi

Lisätiedot

Hyvän vastauksen piirteet. Biolääketieteen valintakoe Maksimipisteet: 45

Hyvän vastauksen piirteet. Biolääketieteen valintakoe Maksimipisteet: 45 Hyvän vastauksen piirteet Biolääketieteen valintakoe 20.05.2015 Maksimipisteet: 45 I) Monivalintakysymykset. Rengasta oikea vaihtoehto. Vain yksi vaihtoehdoista on oikein. Vastaus on hylätty, jos on rengastettu

Lisätiedot

Ekologiset ympäristöongelmat. 10. Geeniteknologia. BI5 II Geeniteknologia 4. Geenitekniikan perusmenetelmiä

Ekologiset ympäristöongelmat. 10. Geeniteknologia. BI5 II Geeniteknologia 4. Geenitekniikan perusmenetelmiä Ekologiset ympäristöongelmat 10. Geeniteknologia Dna:n ja rna:n käsittely Eristäminen Puhdistaminen Lähetti-rna:t voidaan muuntaa niiden emäsjärjestystä vastaavaksi ns. komplementaariseksi dna:ksi (c-dna)

Lisätiedot

Avainsanat: BI5 III Biotekniikan sovelluksia 9. Perimä ja terveys.

Avainsanat: BI5 III Biotekniikan sovelluksia 9. Perimä ja terveys. Avainsanat: mutaatio Monitekijäinen sairaus Kromosomisairaus Sukupuu Suomalainen tautiperintö Geeniterapia Suora geeninsiirto Epäsuora geeninsiirto Kantasolut Totipotentti Pluripotentti Multipotentti Kudospankki

Lisätiedot

Tarkastele kuvaa, muistele matematiikan oppejasi, täytä tekstin aukot ja vastaa kysymyksiin.

Tarkastele kuvaa, muistele matematiikan oppejasi, täytä tekstin aukot ja vastaa kysymyksiin. 1. Pääryhmien ominaispiirteitä Tarkastele kuvaa, muistele matematiikan oppejasi, täytä tekstin aukot ja vastaa kysymyksiin. Merkitse aukkoihin mittakaavan tuttujen yksiköiden lyhenteet yksiköitä ovat metri,

Lisätiedot

Päähaku, molekyylibiotieteiden kandiohjelma Valintakoe klo

Päähaku, molekyylibiotieteiden kandiohjelma Valintakoe klo Päähaku, molekyylibiotieteiden kandiohjelma Valintakoe 26.4.2019 klo 9.00 13.00 Kirjoita henkilö- ja yhteystietosi tekstaamalla. Kirjoita nimesi latinalaisilla kirjaimilla (abcd...), älä esimerkiksi kyrillisillä

Lisätiedot

b) keskusjyvänen eläinsolujen solulimassa lähellä tumaa, 2 kpl toimivat mitoosissa ja meioosissa sukkularihmojenkiinnittymiskohtina.

b) keskusjyvänen eläinsolujen solulimassa lähellä tumaa, 2 kpl toimivat mitoosissa ja meioosissa sukkularihmojenkiinnittymiskohtina. Bi5 kertaustehtäviä, mallivastauksia 1. Selosta lyhyesti, missä sijaitsevat seuraavat solun osat: a) tumajyvänen b) keskusjyvänen (sentrioli, sentrosomi), c) soluneste, d) mitokondrio, e) solulimakalvosto

Lisätiedot

Biologia. Pakolliset kurssit. 1. Eliömaailma (BI1)

Biologia. Pakolliset kurssit. 1. Eliömaailma (BI1) Biologia Pakolliset kurssit 1. Eliömaailma (BI1) tuntee elämän tunnusmerkit ja perusedellytykset sekä tietää, miten elämän ilmiöitä tutkitaan ymmärtää, mitä luonnon monimuotoisuus biosysteemien eri tasoilla

Lisätiedot

PCR - tekniikka elintarvikeanalytiikassa

PCR - tekniikka elintarvikeanalytiikassa PCR - tekniikka elintarvikeanalytiikassa Listerian, Salmonellan ja kampylobakteerien tunnistus elintarvikkeista ja rehuista 29.11.2012 Eva Fredriksson-Lidsle Listeria monocytogenes Salmonella (spp) Campylobacter

Lisätiedot

9/30/2013. GMO analytiikka. Termistöä. Markkinoilla olevien GM kasvien ominaisuuksia

9/30/2013. GMO analytiikka. Termistöä. Markkinoilla olevien GM kasvien ominaisuuksia GMO analytiikka Kemian ja toksikologian tutkimusyksikkö Evira Termistöä geenimuuntelu muuntogeeninen siirtogeeninen GM GMO (geneettisesti muunnettu organismi) GM tapahtuma (event): käytetään silloin kun

Lisätiedot

a. In vivo: soluja tutkitaan elävän eliön osana, in vitro: soluja tutkitaan eliöstä irrallaan vaikkapa koeputkessa.

a. In vivo: soluja tutkitaan elävän eliön osana, in vitro: soluja tutkitaan eliöstä irrallaan vaikkapa koeputkessa. Luku 1 Elämän ymmärtämiseksi on tutkittava soluja Tehtävien ratkaisut 1. Selvitä käsitteitä a. In vivo: soluja tutkitaan elävän eliön osana, in vitro: soluja tutkitaan eliöstä irrallaan vaikkapa koeputkessa.

Lisätiedot

Symbioosi 2 VASTAUKSET

Symbioosi 2 VASTAUKSET Luku 13 Symbioosi 2 VASTAUKSET 1. Termit Vastaus: a= sukusolut b= genotyyppi c= F2-polvi d= F1-polvi e= P-polvi 2. Termien erot a. Fenotyyppi ja genotyyppi Vastaus: fenotyyppi on yksilön ilmiasu, genotyyppi

Lisätiedot

2 Bakteerit ja arkeonit ovat tumattomia mikrobeja. 3 Tumallisiin mikrobeihin kuuluu eliöitä alkueliöiden ja sienten kunnista

2 Bakteerit ja arkeonit ovat tumattomia mikrobeja. 3 Tumallisiin mikrobeihin kuuluu eliöitä alkueliöiden ja sienten kunnista Oppikirjan tehtävien vastaukset Sisällysluettelo: 1 Biologian sovellukset ovat yhä moninaisempia 2 Bakteerit ja arkeonit ovat tumattomia mikrobeja 3 Tumallisiin mikrobeihin kuuluu eliöitä alkueliöiden

Lisätiedot

Biologia ylioppilaskoe

Biologia ylioppilaskoe Biologia ylioppilaskoe 12 tehtävää, joista kahdeksaan (8) vastataan Tehtävät vaikeutuvat loppua kohden, jokeritehtävät merkitty +:lla Molempiin jokereihin saa vastata ja ne lasketaan mukaan kahdeksaan

Lisätiedot

Hyvä käyttäjä! Ystävällisin terveisin. Toimitus

Hyvä käyttäjä! Ystävällisin terveisin. Toimitus Hyvä käyttäjä! Tämä pdf-tiedosto on ladattu Tieteen Kuvalehden verkkosivuilta (www.tieteenkuvalehti.com). Tiedosto on tarkoitettu henkilökohtaiseen käyttöön, eikä sitä saa luovuttaa kolmannelle osapuolelle.

Lisätiedot

Miten on mahdollista, että meillä on vasta-aineet (antibodit) aivan kaikkea mahdollista sisääntunkeutuvaa vierasmateriaalia vastaan?

Miten on mahdollista, että meillä on vasta-aineet (antibodit) aivan kaikkea mahdollista sisääntunkeutuvaa vierasmateriaalia vastaan? Miten on mahdollista, että meillä on vasta-aineet (antibodit) aivan kaikkea mahdollista sisääntunkeutuvaa vierasmateriaalia vastaan? Antipodidiversiteetin generointi Robert Koch (TB) 1905 Niels K. Jerne

Lisätiedot

6.4. Genomin koon evoluutio Genomin koko vaihtelee

6.4. Genomin koon evoluutio Genomin koko vaihtelee 6.4. Genomin koon evoluutio 6.4.1. Genomin koko vaihtelee C-arvo: genomin haploidi koko pg:na 1 pg = 0.98 x 10 9 bp = 1 milj. kb = 1000 Mb (ero: geneettinen genomin koko (cm)) Missäkohtaa genomiaon kokoeroja?

Lisätiedot