MS-A0402 Diskreetin matematiikan perusteet

Koko: px
Aloita esitys sivulta:

Download "MS-A0402 Diskreetin matematiikan perusteet"

Transkriptio

1 MS-A0402 Diskreetin matematiikan perusteet Osa 6: Verkkoteoria Riikka Kangaslampi 2017 Matematiikan ja systeemianalyysin laitos Aalto-yliopisto

2 Verkkojen peruskäsitteitä

3 Motivaatiota (...) networks may be used to model a huge array of phenomena across all scientific and social disciplines. Examples include the World Wide Web, citation networks, social networks (e.g., Facebook), recommendation networks (e.g., Netflix), gene regulatory networks, neural connectivity networks, oscillator networks, sports playoff networks, road and traffic networks, chemical networks, economic networks, epidemiological networks, game theory, geospatial networks, metabolic networks, protein networks and food webs, to name a few. (Grady & Polimeni: Discrete Calculus. Springer 2010.) 1 / 44 R. Kangaslampi MS-A0402

4 Verkko Suunnattu verkko on pari [V, E], missä V on joukko, jonka alkiot ovat verkon solmut ja E on joukon V V osajoukko, jonka alkiot ovat solmujen väliset (suunnatut) kaaret eli linkit. Suuntaamaton verkko (tai vain verkko) on pari [V, E] missä V on joukko, jonka alkiot ovat verkon solmut ja E {{a, b} : a, b V } on verkon solmujen välisten kaarien joukko. Jos verkon kahden solmun välillä on kaari, niin ne ovat toistensa naapureita ja kyseisen kaaren päätesolmut. Suuntamaton verkko [V, E] on yksinkertainen, jos {v, v} = {v} / E kaikilla v V ja suunnatun verkon tapauksessa jos [v, v] / E kaikilla v V. 2 / 44 R. Kangaslampi MS-A0402

5 Verkko Esimerkki 1 Montako kaarta n-solmuisessa yksinkertaisessa verkossa voi enintään olla? ( ) n Vastaus:. Tällaista verkkoa kutsutaan täydelliseksi. 2 3 / 44 R. Kangaslampi MS-A0402

6 Verkko Verkon [V, E] polku (solmusta v 0 solmuun v n ) on jono [v 0, v 1,..., v n ], missä v j V, j = 0, 1,..., n ja jokaisella j = 1,..., n on olemassa kaari solmujen v j 1 ja v j välillä. Polun [v 0, v 1,..., v n ] pituus on n. Verkon [V, E] sykli (tai kierros) on sen polku [v 0, v 1,..., v n ] missä v n = v 0. Polku [v 0, v 1,..., v n ] on yksinkertainen jos v j v k, 0 j < k n. Sykli [v 0, v 1,..., v n ] on yksinkertainen jos [v 0, v 1,..., v n 1 ] on yksinkertainen ja suuntaamattomassa verkossa n 2. 4 / 44 R. Kangaslampi MS-A0402

7 Verkko Esimerkki 2 (Yhtenäinen, ei-yksinkertainen verkko) Punaisella on piirretty yksinkertainen sykli [1, 2, 6, 8, 10, 7, 4, 1] ja vihreällä polku [3, 5, 9, 11, 12, 9], joka ei ole yksinkertainen. Solmujono [1, 2, 3, 4, 5, 6] ei sen sijaan ole polku, koska esimerkiksi {3, 4} ei ole kaari. 5 / 44 R. Kangaslampi MS-A0402

8 Solmun aste Määritelmä 3 Verkon (V, E) solmun v V aste on deg(v) = {A E : v A} eli niiden kaarien lukumäärä, joiden toinen päätepiste on v. Lause 4 (Kättelylemma) Jokaiselle verkolle (V, E) pätee deg(v) = 2 E. v V Todistus. Käydään kaaret läpi yksi kerrallaan. Kukin kaari kasvattaa solmujen astelukujen summaa kahdella, sillä kunkin kaaren molemmissa päissä on solmu, joiden astelukuun kaari lasketaan kerran. Siispä kaarien lukumäärä on puolet solmujen astelukujen summasta. 6 / 44 R. Kangaslampi MS-A0402

9 Solmun aste Esimerkki 5 Lasketaan kättelylemman avulla kaarien lukumäärä täydellisessä verkossa K n = (V, E), jossa siis V = n ja E sisältää kaikki mahdolliset kaaret. Toisaalta deg(v) = n 1 kaikilla v V, joten deg(v) = n(n 1). v V Toisaalta (kättelylemma) 2 E = deg(v), joten v V E = 1 ( ) n 2 n(n 1) =. 2 7 / 44 R. Kangaslampi MS-A0402

10 Verkkoisomorfismi Isomorfismilla tarkoitetaan sellaista kahden joukon välistä bijektiota, joka säilyttää joukon rakenteen; esimerkiksi ryhmä- tai verkkorakenteen. Määritelmä 6 Kaksi verkkoa (V 1, E 1 ) ja (V 2, E 2 ) ovat isomorfiset, jos on olemassa niiden välinen isomorfismi eli bijektio f : V 1 V 2 jolle {u, v} E 1 {f (u), f (v)} E 2. Isomorfiset verkot ovat esitystä vaille samat. Esimerkiksi solmujen asteluvut ja syklien pituudet ovat samoja. 8 / 44 R. Kangaslampi MS-A0402

11 Verkkoisomorfismi Esimerkki 7 Ovatko alla olevat verkot isomorfiset? 3 2 c b 4 1 d a 5 6 e f Eivät. Vasemmanpuoleisessa verkossa ei ole yhtään sykliä, jonka pituus olisi 3, mutta sellaisia on oikeanpuoleisessa verkossa. Tästä seuraa, etteivät verkot voi olla isomorfiset. 9 / 44 R. Kangaslampi MS-A0402

12 Verkkoisomorfismi Esimerkki 8 Ovatko alla olevat verkot isomorfiset? 2 1 b a 5 e 3 4 c d Kyllä. Isomorfismiksi verkkojen välille kelpaa esim. ψ : V 1 V 2, missä ψ(2) = c ja ψ(4) = e (tai päinvastoin), jolloin täytyy olla ψ(1) = d, ψ(3) = b ja ψ(5) = a. 10 / 44 R. Kangaslampi MS-A0402

13 Kävely verkolla Määritelmä Kävely verkolla (V, E) on jono solmuja (v 0,..., v n ) siten, että {v i, v i+1 } E kaikilla i = 0,..., n 1. Luku n on kävelyn pituus. Kävely alkaa solmusta v 0 ja päättyy solmuun v n. Jos v 0 = v n, niin kävely on suljettu. Kävely voidaan ilmaista myös jonona kaaria (e 1,..., e n ) siten, että kahdella peräkkäisellä kaarella on yhteinen solmu. Käsitteellinen ero polun (path) ja kävelyn (walk) välillä: polku voidaan kävellä kahteen eri suuntaan. 11 / 44 R. Kangaslampi MS-A0402

14 Yhtenäisyys Määritelmä Verkko on yhtenäinen, jos sen jokaisen kahden solmun välillä on kävely. (Yhtäpitävästi: polku.) Solmujen joukon relaatio u v u:n ja v:n välillä on polku on ekvivalenssi, joka jakaa verkon solmut yhtenäisiin ekvivalenssiluokkiin eli komponentteihin. 12 / 44 R. Kangaslampi MS-A0402

15 Eulerin kävely Määritelmä 9 Verkon Eulerin kävely on kävely, joka käy läpi verkon kaikki kaaret täsmälleen kerran. Vastaavasti Eulerin sykli: Eulerin kävely, jossa lähtöpiste = päätepiste. Sovellus: Chinese postman problem Postimiehen kannattaa etsiä jakelualueelleen reitti, jossa samaa katua ei kävellä kahdesti ja jossa palataan lähtöpisteeseen. Tällainen löytyy täsmälleen silloin, kun jakelualueen ruutukaavasta löytyy Eulerin sykli. (Kadut = kaaret, katujen risteykset = solmut.) 13 / 44 R. Kangaslampi MS-A0402

16 Eulerin kävely Lause 10 (Euler 1736) Yhtenäisellä verkolla on Eulerin sykli täsmälleen silloin, kun sen jokaisen solmun aste on parillinen. Todistus ( ) Jos verkolla on Eulerin sykli, niin sykli (kävely) saapuu kuhunkin solmuun yhtä monta kertaa kuin se lähtee ko. solmusta. ( ) Olkoon verkon (V, E) jokaisen solmun aste parillinen. Verkolla (V, E) on ainakin yksi sykli: 14 / 44 R. Kangaslampi MS-A0402

17 Eulerin kävely Todistus (jatkuu) Aloitetaan kävely mielivaltaisesta solmusta ja valitaan kullakin askeleella uusi kaari kunnes joku solmu toistuu. (Verkko on äärellinen, joten joku solmu toistuu lopulta. Siihen asti voidaan asteiden parillisuuden nojalla valita aina uusi kaari.) Kun edellä löydetyn syklin kaaret poistetaan E:stä, niin saadun verkon (V, E ) kaikkien solmujen aste on edelleen parillinen. (Huom. poistettiin syklistä pelkät kaaret.) Siten verkolla (V, E ) on jälleen vähintään yksi sykli, ja voidaan toistaa syklien poistamista kunnes yhtään kaarta ei jää jäljelle. Näin alkuperäinen kaarien joukko E on yhdiste erillisistä sykleistä. 15 / 44 R. Kangaslampi MS-A0402

18 Eulerin kävely Todistus (jatkuu) Erilliset syklit voidaan edelleen asettaa järjestykseen siten, että peräkkäisillä sykleillä on yksi yhteinen solmu. (Jos tämä ei onnistuisi, niin verkko ei olisi yhtenäinen.) Etsitty Eulerin sykli saadaan, kun kävellään erilliset syklit läpi järjestyksessä seuraavasti: siirrytään seuraavaan sykliin heti kun kohdataan yhteinen solmu, viimeinen sykli kierretään kokonaan, ja lopuksi peruutetaan samojen yhteisten solmujen kautta ja kierretään syklit loppuun. 16 / 44 R. Kangaslampi MS-A0402

19 Eulerin kävely Esimerkki 11 (Terveisiä ala-asteelta) Voiko alla olevan kuvion piirtää nostamatta kynää paperista? Eli: onko vastaavalla verkolla Eulerin sykli? Vastaus: Kyllä. Perustelemme sen seuraavalla seurauksella edellisestä lauseesta: 17 / 44 R. Kangaslampi MS-A0402

20 Eulerin kävely Seuraus Verkolla on Eulerin kävely, joka ei ole sykli. Verkolla on täsmälleen kaksi solmua, joiden aste on pariton. Todistus. Kaksi paritonasteista solmua syntyy, kun poistetaan Eulerin syklistä yksi kaari, ja toisinpäin (yhdistetään paritonasteiset solmut kaarella). 18 / 44 R. Kangaslampi MS-A0402

21 Hamiltonin kävely Määritelmä 12 Verkon Hamiltonin kävely on kävely, joka käy läpi verkon kaikki solmut täsmälleen kerran. Vastaavasti Hamiltonin sykli: Hamiltonin kävely, jossa lähtöpiste = päätepiste ja välissä olevat solmut käydään läpi täsmälleen kerran. Siinä missä Eulerin kävelylle löytyi helppo kriteeri algoritmeineen, niin Hamiltonin kävely on vaikeampi juttu. Yhtäpitävää ehtoa ei tunneta! 19 / 44 R. Kangaslampi MS-A0402

22 Hamiltonin kävely Riittävä ehto: Lause 13 Lause (G. Dirac 1952) Jos verkolla on n 3 solmua siten, että kullekin solmulle v pätee deg(v) n/2, niin verkolla on Hamiltonin sykli. Todistus. Sivuutetaan. Ks. esim. s_theorem 20 / 44 R. Kangaslampi MS-A0402

23 Naapurimatriisi Jos [V, E] on verkko, jossa on m solmua V = {v 1,... v m }, niin sen naapurimatriisi on m m-matriisi 1, {v j, v k } E, A(j, k) = 0, {v j, v k } / E. Lemma 14 Jos n 1 niin A n (j, k) on n-pituisten polkujen lukumäärä solmusta v j solmuun v k. (Todistetaan kurssilla MS-E1050 Graph Theory) 21 / 44 R. Kangaslampi MS-A0402

24 Naapurimatriisi Esimerkki 15 Verkon naapurimatriisi on A = / 44 R. Kangaslampi MS-A0402

25 Naapurimatriisi Esimerkki 15 (jatkuu) Nyt A 2 = ja A 3 = , Matriisin A 3 alkio A 3 (1, 2) = 3 kertoo, että solmusta 1 solmuun 2 on kolme polkua, joiden pituus on 3. Nämä ovat [1, 3, 1, 2], [1, 2, 1, 2] ja [1, 2, 3, 2]. 23 / 44 R. Kangaslampi MS-A0402

26 Solmujen väritykset

27 Solmujen värittäminen Määritelmä 16 Verkon G = (V, E) solmuväritys on funktio ω : V {1, 2,..., k} (jollekin k) siten, että {u, v} E ω(u) ω(v). Pienintä lukua k, jolle tällainen funktio löytyy, sanotaan verkon G kromaattiseksi luvuksi ja merkitään χ(g). Esimerkki / 44 R. Kangaslampi MS-A0402

28 Solmujen värittäminen Esimerkki 18 Täydelliselle n-solmuiselle verkolle K n pätee χ(k n ) = n χ(g) = 1 E = 0 χ(g) = 2 G on kaksijakoinen χ(g) 3: ei tunnettua kriteeriä. Kaarien väritys voidaan määritellä vastaavasti. Sille eivät kuitenkaan päde samat tulokset! 25 / 44 R. Kangaslampi MS-A0402

29 Sovellus: konfliktiverkot Esimerkki 19 Viisi opiskelijaa A, B, C, D ja E tekevät kuutta eri projektityötä seuraavissa ryhmissä: 1. A, B, C 2. B, D 3. B, C 4. B, E 5. A, C 6. D, E. Jos kunkin projektin tekeminen valmiiksi kestää kokonaisen päivän kultakin ryhmän jäseneltä, onko mahdollista saada kaikkia projekteja valmiiksi vähemmässä kuin kuudessa päivässä? 26 / 44 R. Kangaslampi MS-A0402

30 Sovellus: konfliktiverkot Esimerkki 19 (jatkuu) Muodostetaan konfliktiverkko G, jonka kuusi solmua numeroidaan ryhmien mukaisilla numeroilla 1 6 ja jossa solmujen välillä on kaari ryhmillä on yhteisiä jäseniä Tällöin kaikkien projektien saaminen valmiiksi on mahdollista χ(g) päivässä. 27 / 44 R. Kangaslampi MS-A0402

31 Sovellus: konfliktiverkot Esimerkki 19 (jatkuu) Koska solmut {1, 2, 3, 4} ja niitä yhdistävät kaaret muodostavat täydellisen verkon K 4, niin on oltava χ(g) 4. Toisaalta näemme kuvasta, että solmut 5 ja 2 voidaan värittää samalla värillä, samoin solmut 6 ja Siten χ(g) = 4 eli neljä päivää riittää. 28 / 44 R. Kangaslampi MS-A0402

32 Sovellus: ohjelmointikielen kääntäjä Ohjelman silmukan (for, while) suorittaminen nopeutuu, kun kääntäjä tallentaa silmukassa toistuvasti käytetyt muuttujat tavallisen muistin asemesta suorittimen muistiin. Toisaalta suorittimen muistia käytettävissä vähän. Muodostetaan verkko G, jonka solmut ovat silmukassa käytetyt muuttujat ja solmujen välillä on kaari jos niitä vastaavien muuttujien on silmukkaa suoritettaessa oltava käytössä yhtäaikaa. Tarvittavien suoritinmuistipaikkojen määrä on tällöin χ(g). 29 / 44 R. Kangaslampi MS-A0402

33 Solmujen värittäminen ahneella algoritmilla Kromaattisen luvun löytäminen on vaikea ongelma: ei tunneta algoritmia, jonka nopeus solmujen lukumäärän kasvaessa olisi polynominen. Kuitenkin seuraavan kalvon ahne algoritmi on usein hyödyllinen sekä käytännössä että osana teoreettisia todistuksia ( by the greedy algorithm... ). Ahneen algoritmin antama luku riippuu järjestyksestä, jossa algoritmi käy läpi verkon solmut, ja ainakin yksi solmujen järjestys antaa verkon kromaattisen luvun. (Mietitään kohta miksi.) 30 / 44 R. Kangaslampi MS-A0402

34 Solmujen värittäminen ahneella algoritmilla Helppo, mutta ei välttämättä optimaalinen tapa solmujen värityksen löytämiseksi on seuraava ahne algoritmi: Ahne algoritmi Aseta solmut johonkin järjestykseen: [v 1, v 2,..., v n ]. Aseta värit johonkin järjestykseen: [c 1, c 2,..., c r ]. Väritä ensimmäinen solmu ensimmäisellä värillä, eli ω(v 1 ) = c 1. Jos solmut v 1,..., v k on väritetty, niin väritä solmu v k+1 ensimmäisellä käytettävissä olevalla värillä siten, että ehto ettei naapureita väritetä samalla värillä toteutuu, eli ω(v k+1 ) = c j missä j = min {i 1 : {v p, v k+1 } E & p k ω(v p ) c i }. 31 / 44 R. Kangaslampi MS-A0402

35 Solmujen värittäminen ahneella algoritmilla Esimerkki 20 Väritetään äskeinen konfliktiverkko ahneella algoritmilla, solmun numerojärjestyksessä ja värit järjestyksessä punainen, sininen, vihreä, keltainen, oranssi, violetti / 44 R. Kangaslampi MS-A0402

36 Solmujen värittäminen ahneella algoritmilla Lause 21 Olkoon verkon G solmujen suurin asteluku k. Tällöin χ(g) k + 1. Todistus. Kullakin solmulla on enintään k naapuria, joten enintään k väriä riittää naapurien värittämiseen, ja siten itse solmu voidaan värittää jollakin (k + 1):stä ensimmäisestä käytettävissä olevasta väristä. 33 / 44 R. Kangaslampi MS-A0402

37 Virittäjäpuut

38 Puu Määritelmä 22 Puu on yhtenäinen, syklitön verkko. Määritelmä 23 Juurrettu puu on puu, jonka yksi solmu v 0 on valittu sen juureksi. Tällöin solmun v taso (eng. level) on kävelyn (v 0,..., v) pituus solmu on lehti (eng. leaf) jos se on tasolla i eikä sillä ole naapureita tasolla i + 1. Esimerkki 24 Sukupuut, tiedostopuut, valintapuut. 34 / 44 R. Kangaslampi MS-A0402

39 Virittäjäpuu, painotettu verkko Määritelmä 25 Yhtenäisen verkon virittäjäpuu on puu, joka sisältää verkon kaikki solmut. (Tällainen löytyy aina; poistetaan sykleistä kaaria. Huom. ei yksikäsitteinen.) Määritelmä 26 Painotettu verkko on verkko G = (V, E) varustettuna painofunktiolla w : E R. Verkon kokonaispaino on w(g) = e E w(e). Esimerkki 27 Kaupungit yhdistettyinä datakaapeleilla; w(e) on kaapelin e hinta, tai sähköverkot; w(e) on johtimen e resistanssi. 35 / 44 R. Kangaslampi MS-A0402

40 Minimaalinen virittäjäpuu (eng. MST) Määritelmä 28 Painotetun verkon G minimaalinen virittäjäpuu on sellainen G:n virittäjäpuu T, jolle w(t ) w(u) mille tahansa G:n virittäjäpuulle U. Ahne algoritmi (Prim) Valitaan kaari e 1, jonka paino on minimaalinen. Valitaan e 1 :n naapurikaari e 2, jonka paino on e 1 :n naapurikaarien joukossa minimaalinen. Jatketaan: joka vaiheessa valitaan tähänastisten kaarien naapurien joukosta minimaalinen siten, että puurakenne (yhtenäisyys, ei syklejä) säilyy Näin saadaan minimaalinen virittäjäpuu T, jonka kaaret ovat {e 1,..., e n }. 36 / 44 R. Kangaslampi MS-A0402

41 MST (= Minimal Spanning Tree) Esimerkki 29 (Virittäjäpuu Primin algoritmilla) 3 A B 6 5 F C 5 3 E 6 D 37 / 44 R. Kangaslampi MS-A0402

42 MST Miksi edellä saatu virittäjäpuu T todella on minimaalinen? Olkoon U T toinen virittäjäpuu ja olkoon e k = {u, v} ensimmäinen kaarista {e 1,..., e n }, joka ei ole U:n kaari. Kävellään u:sta v:hen puussa U; olkoon e tämän kävelyn ensimmäinen kaari, joka ei ole joukossa {e 1,..., e k 1 }. Tällöin ahneen algoritmin nojalla w(e k ) w(e). Korvataan kaari e kaarella e k. Virittäjäpuu U tulee korvattua virittäjäpuulla U k, jolle w(u k ) = w(u) w(e) + w(e k ) w(u). Olkoon e k+1 ensimmäinen T :n kaari, joka ei ole U k :n kaari. Toistetaan samaa prosessia; saadaan virittäjäpuiden jono U, U k,..., U n = T siten, että w(t ) = w(u n ) w(u n 1 )... w(u k ) w(u). 38 / 44 R. Kangaslampi MS-A0402

43 MST Edellä esitelty ahne MST-algoritmi oli Primin algoritmi. Toinen ahne algoritmi on Kruskalin algoritmi: valitaan kaari e 1, jonka paino on minimaalinen valitaan kaari e 2, jonka paino on minimaalinen joukossa E \ {e 1 } kussakin vaiheessa hylätään sellaiset kaaret, jotka muodostaisivat syklin; jatketaan kunnes virittäjäpuu. Esimerkit näistä algoritmeista verkkotehtävissä. 39 / 44 R. Kangaslampi MS-A0402

44 MST Esimerkki 30 (Virittäjäpuu Kurskalin algoritmilla) 3 A B 6 5 F C 5 3 E 6 D 40 / 44 R. Kangaslampi MS-A0402

45 Lopuksi

46 Jatkoa? Monta diskreetin matematiikan aihealuetta jäi käsittelemättä. Hyvä niin, tästä voi sitten jatkaa eteenpäin! Diskreetin matematiikan jatkokursseja: MS-C Algebran perusrakenteet MS-E Graph theory MS-E Combinatorics MS-E Number theory MS-E Galois theory 41 / 44 R. Kangaslampi MS-A0402

47 Jatkoa? Verkoista kiinnostunut hyötyy myös tilastotieteestä, esim. MS-C Tilastollisen analyysin perusteet MS-C Koesuunnittelu ja tilastolliset mallit ja diskreetistä optimoinnista esim. MS-C Optimoinnin perusteet MS-E Linear programming MS-E Nonlinear programming unohtamatta tietotekniikan laitoksen verkkoihin ja algoritmeihin liittyviä kursseja. 42 / 44 R. Kangaslampi MS-A0402

48 Lopuksi Palautekysely aukeaa lähipäivinä, vastauslinkki tulee sähköpostitse. Jos haluat osallistua loppukokeeseen, muista ilmoittautua Oodissa. 43 / 44 R. Kangaslampi MS-A0402

49 Lopuksi Suurkiitos kaikille! 44 / 44 R. Kangaslampi MS-A0402

MS-A0401 Diskreetin matematiikan perusteet

MS-A0401 Diskreetin matematiikan perusteet MS-A0401 Diskreetin matematiikan perusteet Osa 6: Verkkoteoria Riikka Kangaslampi Syksy 2017 Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Verkkojen peruskäsitteitä Motivaatiota (...) networks

Lisätiedot

Luento 9: Permutaatiot ja symmetriat 1 MS-A0401 Diskreetin matematiikan perusteet, syksy 2014 Harri Varpanen Aalto-yliopisto Matematiikan ja systeemianalyysin laitos Keskiviikko 8.10.2014 Ryhmän toiminta

Lisätiedot

V. V. Vazirani: Approximation Algorithms, luvut 3-4 Matti Kääriäinen

V. V. Vazirani: Approximation Algorithms, luvut 3-4 Matti Kääriäinen V. V. Vazirani: Approximation Algorithms, luvut 3-4 Matti Kääriäinen Luento omatoimisen luennan tueksi algoritmiikan tutkimusseminaarissa 23.9.2002. 1 Sisältö Esitellään ongelmat Steiner-puu Kauppamatkustajan

Lisätiedot

Johdatus graafiteoriaan

Johdatus graafiteoriaan Johdatus graafiteoriaan Syksy 2017 Lauri Hella Tampereen yliopisto Luonnontieteiden tiedekunta 166 Luku 4 Erilaisia graafeja 4.1 Eulerin graafi 4.2 Hamiltonin graafi 4.3 Tasograafi 4.4 Graafin värittäminen

Lisätiedot

Johdatus graafiteoriaan

Johdatus graafiteoriaan Johdatus graafiteoriaan Syksy 2017 Lauri Hella Tampereen yliopisto Luonnontieteiden tiedekunta 62 Luku 2 Yhtenäisyys 2.1 Polku 2.2 Lyhin painotettu polku 2.3 Yhtenäinen graafi 2.4 Komponentti 2.5 Aste

Lisätiedot

Diskreetin matematiikan perusteet Esimerkkiratkaisut 3 / vko 10

Diskreetin matematiikan perusteet Esimerkkiratkaisut 3 / vko 10 Diskreetin matematiikan perusteet Esimerkkiratkaisut / vko 0 Tuntitehtävät - lasketaan alkuviikon harjoituksissa ja tuntitehtävät - loppuviikon harjoituksissa. Kotitehtävät - tarkastetaan loppuviikon harjoituksissa.

Lisätiedot

verkkojen G ja H välinen isomorfismi. Nyt kuvaus f on bijektio, joka säilyttää kyseisissä verkoissa esiintyvät särmät, joten pari

verkkojen G ja H välinen isomorfismi. Nyt kuvaus f on bijektio, joka säilyttää kyseisissä verkoissa esiintyvät särmät, joten pari Tehtävä 9 : 1 Merkitään kirjaimella G tehtäväpaperin kuvan vasemmanpuoleista verkkoa sekä kirjaimella H tehtäväpaperin kuvan oikeanpuoleista verkkoa. Kuvan perusteella voidaan havaita, että verkko G on

Lisätiedot

MS-A0402 Diskreetin matematiikan perusteet

MS-A0402 Diskreetin matematiikan perusteet MS-A040 Diskreetin matematiikan perusteet Osa : Relaatiot ja funktiot Riikka Kangaslampi 017 Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Relaatiot Relaatio Määritelmä 1 Relaatio joukosta A

Lisätiedot

DMP / Kevät 2016 / Mallit Harjoitus 6 / viikko 13 / alkuviikko

DMP / Kevät 2016 / Mallit Harjoitus 6 / viikko 13 / alkuviikko DMP / Kevät 2016 / Mallit Harjoitus 6 / viikko 13 / alkuviikko Alkuviikon tuntitehtävä 1: Montako kahdeksaan yhtäsuureen sektoriin leikattua pitsaa voidaan tehdä kolmesta täytteestä siten, että kukin sektori

Lisätiedot

j(j 1) = n(n2 1) 3 + (k + 1)k = (k + 1)(k2 k + 3k) 3 = (k + 1)(k2 + 2k + 1 1)

j(j 1) = n(n2 1) 3 + (k + 1)k = (k + 1)(k2 k + 3k) 3 = (k + 1)(k2 + 2k + 1 1) MS-A0401 Diskreetin matematiikan perusteet Tentti ja välikokeiden uusinta 10.11.015 Kirjoita jokaiseen koepaperiin nimesi, opiskelijanumerosi ym. tiedot! Laskimia tai taulukoita ei saa käyttää tässä kokeessa!

Lisätiedot

Kurssikoe on maanantaina 29.6. Muista ilmoittautua kokeeseen viimeistään 10 päivää ennen koetta! Ilmoittautumisohjeet löytyvät kurssin kotisivuilla.

Kurssikoe on maanantaina 29.6. Muista ilmoittautua kokeeseen viimeistään 10 päivää ennen koetta! Ilmoittautumisohjeet löytyvät kurssin kotisivuilla. HY / Avoin ylioisto Johdatus yliopistomatematiikkaan, kesä 201 Harjoitus 7 Ratkaisut palautettava viimeistään perjantaina 26.6.201 klo 16.00. Huom! Luennot ovat salissa CK112 maanantaista 1.6. lähtien.

Lisätiedot

0 v i v j / E, M ij = 1 v i v j E.

0 v i v j / E, M ij = 1 v i v j E. Vieruspistematriisi Graafi esitetään tietokoneessa useimmiten matriisin avulla. Graafin G = (V, E), V = {v 1, v 2,..., v n } vieruspistematriisi (adjacency matrix)on n n matriisi M = (M ij ), missä n on

Lisätiedot

keskenään isomorfiset? (Perustele!) Ratkaisu. Ovat. Tämän näkee indeksoimalla kärjet kuvan osoittamalla tavalla: a 1 b 3 a 5

keskenään isomorfiset? (Perustele!) Ratkaisu. Ovat. Tämän näkee indeksoimalla kärjet kuvan osoittamalla tavalla: a 1 b 3 a 5 Johdatus diskreettiin matematiikkaan Harjoitus 6, 21.10.2015 1. Ovatko verkot keskenään isomorfiset? (Perustele!) Ratkaisu. Ovat. Tämän näkee indeksoimalla kärjet kuvan osoittamalla tavalla: a 2 b 4 a

Lisätiedot

Johdatus graafiteoriaan

Johdatus graafiteoriaan Johdatus graafiteoriaan Syksy 2017 Lauri Hella Tampereen yliopisto Luonnontieteiden tiedekunta 126 Luku 3 Puut 3.1 Puu 3.2 Virittävä puu 3.3 Virittävän puun konstruointi 3.4 Minimaalinen virittävä puu

Lisätiedot

Algoritmi on periaatteellisella tasolla seuraava:

Algoritmi on periaatteellisella tasolla seuraava: Algoritmi on periaatteellisella tasolla seuraava: Dijkstra(V, E, l, v 0 ): S := { v 0 } D[v 0 ] := 0 for v V S do D[v] := l(v 0, v) end for while S V do valitse v V S jolle D[v] on minimaalinen S := S

Lisätiedot

Diskreetit rakenteet

Diskreetit rakenteet Diskreetit rakenteet 811120P 5 op 7. Oulun yliopisto Tietojenkäsittelytieteiden laitos 2015 / 2016 Periodi 1 Mikä on verkko? verkko (eli graafi) koostuu solmuista ja väleistä, jotka yhdistävät solmuja

Lisätiedot

10. Painotetut graafit

10. Painotetut graafit 10. Painotetut graafit Esiintyy monesti sovelluksia, joita on kätevä esittää graafeina. Tällaisia ovat esim. tietoverkko tai maantieverkko. Näihin liittyy erinäisiä tekijöitä. Tietoverkkoja käytettäessä

Lisätiedot

Valitaan alkio x 1 A B ja merkitään A 1 = A { x 1 }. Perinnöllisyyden nojalla A 1 I.

Valitaan alkio x 1 A B ja merkitään A 1 = A { x 1 }. Perinnöllisyyden nojalla A 1 I. Vaihto-ominaisuudella on seuraava intuition kannalta keskeinen seuraus: Olkoot A I ja B I samankokoisia riippumattomia joukkoja: A = B = m jollain m > 0. Olkoon vielä n = m A B, jolloin A B = B A = n.

Lisätiedot

MS-A0401 Diskreetin matematiikan perusteet Esimerkkejä ym., osa II

MS-A0401 Diskreetin matematiikan perusteet Esimerkkejä ym., osa II MS-A0401 Diskreetin matematiikan perusteet Esimerkkejä ym., osa II G. Gripenberg Aalto-yliopisto 14. lokakuuta 2015 G. Gripenberg (Aalto-yliopisto) MS-A0401 Diskreetin matematiikan perusteet Esimerkkejä14.

Lisätiedot

MS-A0402 Diskreetin matematiikan perusteet Yhteenveto, osa II

MS-A0402 Diskreetin matematiikan perusteet Yhteenveto, osa II MS-A0402 Diskreetin matematiikan perusteet Yhteenveto, osa II G. Gripenberg Aalto-yliopisto 2. huhtikuuta 2015 G. Gripenberg (Aalto-yliopisto) MS-A0402 Diskreetin matematiikan perusteet Yhteenveto, 2.

Lisätiedot

MS-A0402 Diskreetin matematiikan perusteet Yhteenveto, osa II

MS-A0402 Diskreetin matematiikan perusteet Yhteenveto, osa II MS-A0402 Diskreetin matematiikan perusteet Yhteenveto, osa II G. Gripenberg Aalto-yliopisto 2. huhtikuuta 2015 G. Gripenberg (Aalto-yliopisto) MS-A0402 Diskreetin matematiikan perusteet Yhteenveto, 2.

Lisätiedot

MS-A0402 Diskreetin matematiikan perusteet Yhteenveto, osa II

MS-A0402 Diskreetin matematiikan perusteet Yhteenveto, osa II MS-A0402 Diskreetin matematiikan perusteet Yhteenveto, osa II G. Gripenberg Aalto-yliopisto 2. huhtikuuta 2015 1 Modulaariaritmetiikka Eukleideen algoritmi RSA-algoritmi 2 Ryhmät ja permutaatiot Ryhmät

Lisätiedot

MS-A0401 Diskreetin matematiikan perusteet Yhteenveto, osa II

MS-A0401 Diskreetin matematiikan perusteet Yhteenveto, osa II MS-A0401 Diskreetin matematiikan perusteet Yhteenveto, osa II G. Gripenberg Aalto-yliopisto 14. lokakuuta 2015 G. Gripenberg (Aalto-yliopisto) MS-A0401 Diskreetin matematiikan perusteet Yhteenveto, 14.

Lisätiedot

Puiden karakterisointi

Puiden karakterisointi Puiden karakterisointi LuK-tutkielma Airta Ella 2502661 Matemaattisten tieteiden laitos Oulun yliopisto Syksy 2018 Sisältö Johdanto 2 1 Johdatus verkkoteoriaan 3 1.1 Verkko käsitteenä.........................

Lisätiedot

MS-A0401 Diskreetin matematiikan perusteet Yhteenveto, osa II

MS-A0401 Diskreetin matematiikan perusteet Yhteenveto, osa II MS-A0401 Diskreetin matematiikan perusteet Yhteenveto, osa II G. Gripenberg Aalto-yliopisto 14. lokakuuta 2015 G. Gripenberg (Aalto-yliopisto) MS-A0401 Diskreetin matematiikan perusteet Yhteenveto, 14.

Lisätiedot

MS-A0401 Diskreetin matematiikan perusteet Yhteenveto, osa II

MS-A0401 Diskreetin matematiikan perusteet Yhteenveto, osa II MS-A0401 Diskreetin matematiikan perusteet Yhteenveto, osa II G. Gripenberg Aalto-yliopisto 14. lokakuuta 2015 1 Modulaariaritmetiikka Eukleideen algoritmi RSA-algoritmi 2 Ryhmät ja permutaatiot Permutaatiot

Lisätiedot

MS-A0401 Diskreetin matematiikan perusteet Esimerkkejä ym., osa II

MS-A0401 Diskreetin matematiikan perusteet Esimerkkejä ym., osa II MS-A040 Diskreetin matematiikan perusteet Esimerkkejä ym., osa II G. Gripenberg Aalto-yliopisto 4. lokakuuta 05 G. Gripenberg (Aalto-yliopisto) MS-A040 Diskreetin matematiikan perusteet Esimerkkejä4. ym.,

Lisätiedot

MS-A0401 Diskreetin matematiikan perusteet Esimerkkejä ym., osa II

MS-A0401 Diskreetin matematiikan perusteet Esimerkkejä ym., osa II MS-A040 Diskreetin matematiikan perusteet Esimerkkejä ym., osa II G. Gripenberg Aalto-yliopisto 4. lokakuuta 0 Modulaariaritmetiikka Eukleideen algoritmi RSA-algoritmi Ryhmät ja permutaatiot Permutaatiot

Lisätiedot

Tehtävä 10 : 1. Tehtävä 10 : 2

Tehtävä 10 : 1. Tehtävä 10 : 2 Tehtävä 0 : Kuvassa Etelä-Amerikan valtioita vastaavat solmut on sijoitettu toisiinsa nähden niiden pääkaupunkien keskinäistä sijaintia vastaavalla tavalla. Kuvioon on joukon {0,, 2, 3 alkioilla merkitty

Lisätiedot

Algoritmit 1. Luento 13 Ti 23.2.2016. Timo Männikkö

Algoritmit 1. Luento 13 Ti 23.2.2016. Timo Männikkö Algoritmit 1 Luento 13 Ti 23.2.2016 Timo Männikkö Luento 13 Suunnittelumenetelmät Taulukointi Kapsäkkiongelma Ahne menetelmä Verkon lyhimmät polut Dijkstran menetelmä Verkon lyhin virittävä puu Kruskalin

Lisätiedot

Johdatus verkkoteoriaan 4. luento

Johdatus verkkoteoriaan 4. luento Johdatus verkkoteoriaan 4. luento 28.11.17 Viikolla 46 läpikäydyt käsitteet Viikolla 47 läpikäydyt käsitteet Verkko eli graafi, tasoverkko, solmut, välit, alueet, suunnatut verkot, isomorfiset verkot,

Lisätiedot

Kaikki kurssin laskuharjoitukset pidetään Exactumin salissa C123. Malliratkaisut tulevat nettiin kurssisivulle.

Kaikki kurssin laskuharjoitukset pidetään Exactumin salissa C123. Malliratkaisut tulevat nettiin kurssisivulle. Kombinatoriikka, kesä 2010 Harjoitus 1 Ratkaisuehdotuksia (RT (5 sivua Kaikki kurssin laskuharjoitukset pidetään Exactumin salissa C123. Malliratkaisut tulevat nettiin kurssisivulle. 1. Osoita, että vuoden

Lisätiedot

MS-A0402 Diskreetin matematiikan perusteet Yhteenveto, osa II

MS-A0402 Diskreetin matematiikan perusteet Yhteenveto, osa II MS-A0402 Diskreetin matematiikan perusteet Yhteenveto, osa II G. Gripenberg Aalto-yliopisto 3. huhtikuuta 2014 G. Gripenberg (Aalto-yliopisto) MS-A0402 Diskreetin matematiikan perusteetyhteenveto, 3. osahuhtikuuta

Lisätiedot

Datatähti 2019 loppu

Datatähti 2019 loppu Datatähti 2019 loppu task type time limit memory limit A Summa standard 1.00 s 512 MB B Bittijono standard 1.00 s 512 MB C Auringonlasku standard 1.00 s 512 MB D Binääripuu standard 1.00 s 512 MB E Funktio

Lisätiedot

Ratkaisu. Tulkitaan de Bruijnin jonon etsimiseksi aakkostossa S := {0, 1} sanapituudelle n = 4. Neljän pituisia sanoja on N = 2 n = 16 kpl.

Ratkaisu. Tulkitaan de Bruijnin jonon etsimiseksi aakkostossa S := {0, 1} sanapituudelle n = 4. Neljän pituisia sanoja on N = 2 n = 16 kpl. iskreetti matematiikka, syksy 00 arjoitus, ratkaisuista. seta 8 nollaa ja 8 ykköstä renkaaksi niin, että jokainen yhdistelmä 0000, 000,..., esiintyy täsmälleen kerran. Vihje: Tulkitse de ruijnin jonon

Lisätiedot

Luku 7. Verkkoalgoritmit. 7.1 Määritelmiä

Luku 7. Verkkoalgoritmit. 7.1 Määritelmiä Luku 7 Verkkoalgoritmit Verkot soveltuvat monenlaisten ohjelmointiongelmien mallintamiseen. Tyypillinen esimerkki verkosta on tieverkosto, jonka rakenne muistuttaa luonnostaan verkkoa. Joskus taas verkko

Lisätiedot

MS-A0402 Diskreetin matematiikan perusteet Esimerkkejä ym., osa II

MS-A0402 Diskreetin matematiikan perusteet Esimerkkejä ym., osa II MS-A040 Diskreetin matematiikan perusteet Esimerkkejä ym., osa II G. Gripenberg Aalto-yliopisto. huhtikuuta 0 G. Gripenberg (Aalto-yliopisto) MS-A040 Diskreetin matematiikan perusteet Esimerkkejä. ym.,

Lisätiedot

MS-A0402 Diskreetin matematiikan perusteet Esimerkkejä ym., osa II

MS-A0402 Diskreetin matematiikan perusteet Esimerkkejä ym., osa II MS-A040 Diskreetin matematiikan perusteet Esimerkkejä ym., osa II G. Gripenberg Aalto-yliopisto. huhtikuuta 0 Modulaariaritmetiikka Eukleideen algoritmi RSA-algoritmi Ryhmät ja permutaatiot Ryhmät Permutaatiot

Lisätiedot

MS-A0402 Diskreetin matematiikan perusteet Yhteenveto, osa II

MS-A0402 Diskreetin matematiikan perusteet Yhteenveto, osa II MS-A0402 Diskreetin matematiikan perusteet Yhteenveto, osa II G. Gripenberg Aalto-yliopisto 3. huhtikuuta 2014 1 Modulaariaritmetiikka Eukleideen algoritmi RSA-algoritmi 2 Permutaatiot ja ryhmät Ryhmät

Lisätiedot

Tehtävä 8 : 1. Tehtävä 8 : 2

Tehtävä 8 : 1. Tehtävä 8 : 2 Tehtävä 8 : 1 Merkitään kirjaimella G tarkasteltavaa Petersenin verkkoa. Olkoon A joukon V(G) niiden solmujen joukko, joita vastaavat solmut sijaitsevat tehtäväpaperin kuvassa ulkokehällä. Joukon A jokaisella

Lisätiedot

MS-A0401 Diskreetin matematiikan perusteet

MS-A0401 Diskreetin matematiikan perusteet MS-A0401 Diskreetin matematiikan perusteet Osa 2: Relaatiot ja funktiot Riikka Kangaslampi Syksy 2017 Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Relaatiot Relaatio Määritelmä 1 Relaatio joukosta

Lisätiedot

Algoritmit 1. Luento 8 Ke Timo Männikkö

Algoritmit 1. Luento 8 Ke Timo Männikkö Algoritmit 1 Luento 8 Ke 1.2.2017 Timo Männikkö Luento 8 Järjestetty binääripuu Solmujen läpikäynti Binääripuun korkeus Binääripuun tasapainottaminen Graafit ja verkot Verkon lyhimmät polut Fordin ja Fulkersonin

Lisätiedot

Vastaus 1. Lasketaan joukkojen alkiot, ja todetaan, että niitä on 3 molemmissa.

Vastaus 1. Lasketaan joukkojen alkiot, ja todetaan, että niitä on 3 molemmissa. Miten perustella, että joukossa A = {a, b, c} on yhtä monta alkiota kuin joukossa B = {d, e, f }? Vastaus 1. Lasketaan joukkojen alkiot, ja todetaan, että niitä on 3 molemmissa. Vastaus 2. Vertaillaan

Lisätiedot

Induktiotodistus: Tapaus n = 0 selvä; ol. väite pätee kun n < m.

Induktiotodistus: Tapaus n = 0 selvä; ol. väite pätee kun n < m. Väite: T (n) (a + b)n 2 + a. Induktiotodistus: Tapaus n = 0 selvä; ol. väite pätee kun n < m. Huomaa että funktion x x 2 + (m 1 x) 2 kuvaaja on ylöspäin aukeava paraabeli, joten funktio saavuttaa suurimman

Lisätiedot

Miten perustella, että joukossa A = {a, b, c} on yhtä monta alkiota kuin joukossa B = {d, e, f }?

Miten perustella, että joukossa A = {a, b, c} on yhtä monta alkiota kuin joukossa B = {d, e, f }? Miten perustella, että joukossa A = {a, b, c} on yhtä monta alkiota kuin joukossa B = {d, e, f }? Miten perustella, että joukossa A = {a, b, c} on yhtä monta alkiota kuin joukossa B = {d, e, f }? Vastaus

Lisätiedot

58131 Tietorakenteet ja algoritmit (kevät 2014) Uusinta- ja erilliskoe, , vastauksia

58131 Tietorakenteet ja algoritmit (kevät 2014) Uusinta- ja erilliskoe, , vastauksia 58131 Tietorakenteet ja algoritmit (kevät 2014) Uusinta- ja erilliskoe, 10..2014, vastauksia 1. [9 pistettä] (a) Todistetaan 2n 2 + n + 5 = O(n 2 ): Kun n 1 on 2n 2 + n + 5 2n 2 + n 2 +5n 2 = 8n 2. Eli

Lisätiedot

Graafin 3-värittyvyyden tutkinta T Graafiteoria, projektityö (eksakti algoritmi), kevät 2005

Graafin 3-värittyvyyden tutkinta T Graafiteoria, projektityö (eksakti algoritmi), kevät 2005 Graafin 3-värittyvyyden tutkinta T-79.165 Graafiteoria, projektityö (eksakti algoritmi), kevät 2005 Mikko Malinen, 36474R 29. maaliskuuta, 2005 Tiivistelmä Artikkelissa käydään läpi teoriaa, jonka avulla

Lisätiedot

58131 Tietorakenteet ja algoritmit (syksy 2015) Toinen välikoe, malliratkaisut

58131 Tietorakenteet ja algoritmit (syksy 2015) Toinen välikoe, malliratkaisut Tietorakenteet ja algoritmit (syksy 0) Toinen välikoe, malliratkaisut. (a) Alussa puu näyttää tältä: Lisätään 4: 4 Tasapaino rikkoutuu solmussa. Tehdään kaksoiskierto ensin oikealle solmusta ja sitten

Lisätiedot

Diskreetin matematiikan perusteet Laskuharjoitus 2 / vko 9

Diskreetin matematiikan perusteet Laskuharjoitus 2 / vko 9 Diskreetin matematiikan perusteet Laskuharjoitus 2 / vko 9 Tuntitehtävät 9-10 lasketaan alkuviikon harjoituksissa ja tuntitehtävät 13-14 loppuviikon harjoituksissa. Kotitehtävät 11-12 tarkastetaan loppuviikon

Lisätiedot

Algoritmit 1. Luento 9 Ti Timo Männikkö

Algoritmit 1. Luento 9 Ti Timo Männikkö Algoritmit 1 Luento 9 Ti 7.2.2017 Timo Männikkö Luento 9 Graafit ja verkot Kaaritaulukko, bittimatriisi, pituusmatriisi Verkon lyhimmät polut Floydin menetelmä Lähtevien ja tulevien kaarien listat Forward

Lisätiedot

= 5! 2 2!3! = = 10. Edelleen tästä joukosta voidaan valita kolme särmää yhteensä = 10! 3 3!7! = = 120

= 5! 2 2!3! = = 10. Edelleen tästä joukosta voidaan valita kolme särmää yhteensä = 10! 3 3!7! = = 120 Tehtävä 1 : 1 Merkitään jatkossa kirjaimella H kaikkien solmujoukon V sellaisten verkkojen kokoelmaa, joissa on tasan kolme särmää. a) Jokainen verkko G H toteuttaa väitteen E(G) [V]. Toisaalta jokainen

Lisätiedot

isomeerejä yhteensä yhdeksän kappaletta.

isomeerejä yhteensä yhdeksän kappaletta. Tehtävä 2 : 1 Esitetään aluksi eräitä havaintoja. Jokaisella n Z + symbolilla H (n) merkitään kaikkien niiden verkkojen joukkoa, jotka vastaavat jotakin tehtävänannon ehtojen mukaista alkaanin hiiliketjua

Lisätiedot

A274101 TIETORAKENTEET JA ALGORITMIT

A274101 TIETORAKENTEET JA ALGORITMIT A274101 TIETORAKENTEET JA ALGORITMIT VERKOT ELI GRAAFIT Lähteet: Timo Harju, Opintomoniste Keijo Ruohonen, Graafiteoria (math.tut.fi/~ruohonen/gt.pdf) HISTORIAA Verkko- eli graafiteorian historia on saanut

Lisätiedot

Eulerin verkkojen karakterisointi

Eulerin verkkojen karakterisointi Eulerin verkkojen karakterisointi Pro Gradu -tutkielma Jenni Heikkilä 373175 Matemaattisten tieteiden laitos Oulun yliopisto Syksy 018 Sisältö Johdanto 1 Verkkojen peruskäsitteet 3 1.1 Verkon määrittely.........................

Lisätiedot

Näytetään nyt relaatioon liittyvien ekvivalenssiluokkien olevan verkon G lohkojen särmäjoukkoja. Olkoon siis f verkon G jokin särmä.

Näytetään nyt relaatioon liittyvien ekvivalenssiluokkien olevan verkon G lohkojen särmäjoukkoja. Olkoon siis f verkon G jokin särmä. Tehtävä 6 : 1 Oletetaan ensin joukon X olevan sisältymisen suhteen minimaalinen solmut a ja b toisistaan erotteleva joukon V(G)\{a, b} osajoukko. Olkoon x joukon X alkio. Oletuksen nojalla joukko X\{x}

Lisätiedot

MS-A0402 Diskreetin matematiikan perusteet Esimerkkejä, todistuksia ym., osa II

MS-A0402 Diskreetin matematiikan perusteet Esimerkkejä, todistuksia ym., osa II MS-A0402 Diskreetin matematiikan perusteet Esimerkkejä, todistuksia ym., osa II G. Gripenberg Aalto-yliopisto 3. huhtikuuta 204 G. Gripenberg (Aalto-yliopisto) MS-A0402 Diskreetin matematiikan perusteetesimerkkejä,

Lisätiedot

Algoritmit 2. Luento 11 Ti Timo Männikkö

Algoritmit 2. Luento 11 Ti Timo Männikkö Algoritmit 2 Luento 11 Ti 24.4.2018 Timo Männikkö Luento 11 Rajoitehaku Kapsäkkiongelma Kauppamatkustajan ongelma Paikallinen etsintä Lyhin virittävä puu Vaihtoalgoritmit Algoritmit 2 Kevät 2018 Luento

Lisätiedot

MS-A0402 Diskreetin matematiikan perusteet Esimerkkejä, todistuksia ym., osa II

MS-A0402 Diskreetin matematiikan perusteet Esimerkkejä, todistuksia ym., osa II MS-A0402 Diskreetin matematiikan perusteet Esimerkkejä, todistuksia ym., osa II G. Gripenberg Aalto-yliopisto 3. huhtikuuta 2014 G. Gripenberg (Aalto-yliopisto) MS-A0402 Diskreetin matematiikan perusteetesimerkkejä,

Lisätiedot

MS-A0402 Diskreetin matematiikan perusteet Esimerkkejä, todistuksia ym., osa II

MS-A0402 Diskreetin matematiikan perusteet Esimerkkejä, todistuksia ym., osa II MS-A0402 Diskreetin matematiikan perusteet Esimerkkejä, todistuksia ym., osa II G. Gripenberg Modulaariaritmetiikka 2 Permutaatiot ja ryhmät Aalto-yliopisto 3. huhtikuuta 204 3 Verkot G. Gripenberg (Aalto-yliopisto)

Lisätiedot

MS-A0402 Diskreetin matematiikan perusteet

MS-A0402 Diskreetin matematiikan perusteet MS-A0402 Diskreetin matematiikan perusteet Osa 1: Joukko-oppi ja logiikka Riikka Kangaslampi 2017 Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Kiitokset Nämä luentokalvot perustuvat Gustaf

Lisätiedot

VERKKOTEORIAN ALKEITA. Martti E. Pesonen 28.2.2013

VERKKOTEORIAN ALKEITA. Martti E. Pesonen 28.2.2013 VERKKOTEORIAN ALKEITA Martti E. Pesonen 28.2.2013 1 Sisältö 1 VERKOISTA 1 1.1 Mitä matemaattiset verkot ovat?................ 1 1.1.1 Verkkoteorian synty.................... 1 1.2 Suuntaamaton verkko.......................

Lisätiedot

Königsbergin sillat. Königsberg 1700-luvulla. Leonhard Euler ( )

Königsbergin sillat. Königsberg 1700-luvulla. Leonhard Euler ( ) Königsbergin sillat 1700-luvun Königsbergin (nykyisen Kaliningradin) läpi virtasi joki, jonka ylitti seitsemän siltaa. Sanotaan, että kaupungin asukkaat yrittivät löytää reittiä, joka lähtisi heidän kotoaan,

Lisätiedot

Olkoon seuraavaksi G 2 sellainen tasan n solmua sisältävä suunnattu verkko,

Olkoon seuraavaksi G 2 sellainen tasan n solmua sisältävä suunnattu verkko, Tehtävä 1 : 1 a) Olkoon G heikosti yhtenäinen suunnattu verkko, jossa on yhteensä n solmua. Määritelmän nojalla verkko G S on yhtenäinen, jolloin verkoksi T voidaan valita jokin verkon G S virittävä alipuu.

Lisätiedot

Kysymys: Voidaanko graafi piirtää tasoon niin, että sen viivat eivät risteä muualla kuin pisteiden kohdalla?

Kysymys: Voidaanko graafi piirtää tasoon niin, että sen viivat eivät risteä muualla kuin pisteiden kohdalla? 7.7. Tasograafit Graafi voidaan piirtää mielivaltaisen monella tavalla. Graafin ominaisuudet voivat näkyä selkeästi jossain piirtämistavoissa, mutta ei toisessa. Eräs tärkeä graafiryhmä, pintagraafit,

Lisätiedot

58131 Tietorakenteet ja algoritmit (kevät 2013) Kurssikoe 2, , vastauksia

58131 Tietorakenteet ja algoritmit (kevät 2013) Kurssikoe 2, , vastauksia 58131 Tietorakenteet ja algoritmit (kevät 2013) Kurssikoe 2, 652013, vastauksia 1 [6 pistettä] Vastaa jokaisesta alla olevasta väittämästä onko se tosi vai epätosi ja anna lyhyt perustelu Jokaisesta kohdasta

Lisätiedot

MS-A0401 Diskreetin matematiikan perusteet Yhteenveto ja esimerkkejä ym., osa II

MS-A0401 Diskreetin matematiikan perusteet Yhteenveto ja esimerkkejä ym., osa II MS-A040 Diskreetin matematiikan perusteet Yhteenveto ja esimerkkejä ym., osa II G. Gripenberg Aalto-yliopisto 0. lokakuuta 0 Modulaariaritmetiikka Eukleideen algoritmi RSA-algoritmi Ryhmät ja permutaatiot

Lisätiedot

Algoritmit 2. Luento 13 Ti Timo Männikkö

Algoritmit 2. Luento 13 Ti Timo Männikkö Algoritmit 2 Luento 13 Ti 2.5.2017 Timo Männikkö Luento 13 Merkkijonon sovitus Horspoolin algoritmi Laskennallinen vaativuus Päätösongelmat Epädeterministinen algoritmi Vaativuusluokat NP-täydellisyys

Lisätiedot

b) Olkoon G vähintään kaksi solmua sisältävä puu. Sallitaan verkon G olevan

b) Olkoon G vähintään kaksi solmua sisältävä puu. Sallitaan verkon G olevan Tehtävä 7 : 1 a) Olkoon G jokin epäyhtenäinen verkko. Tällöin väittämä V (G) 2 pätee jo epäyhtenäisyyden nojalla. Jokaisella joukolla X on ehto X 0 voimassa, joten ehdot A < 0 ja F < 0 toteuttavilla joukoilla

Lisätiedot

MS-A0401 Diskreetin matematiikan perusteet

MS-A0401 Diskreetin matematiikan perusteet MS-A0401 Diskreetin matematiikan perusteet Osa 5: Ryhmät ja permutaatiot Riikka Kangaslampi Syksy 2017 Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Ryhmät ja permutaatiot Väritysongelma Jos

Lisätiedot

MS-A0401 Diskreetin matematiikan perusteet Yhteenveto ja esimerkkejä ym., osa II

MS-A0401 Diskreetin matematiikan perusteet Yhteenveto ja esimerkkejä ym., osa II MS-A040 Diskreetin matematiikan perusteet Yhteenveto ja esimerkkejä ym., osa II G. Gripenberg Aalto-yliopisto 4. lokakuuta 0 Modulaariaritmetiikka Eukleideen algoritmi RSA-algoritmi Ryhmät ja permutaatiot

Lisätiedot

Algoritmit 1. Luento 13 Ma Timo Männikkö

Algoritmit 1. Luento 13 Ma Timo Männikkö Algoritmit 1 Luento 13 Ma 26.2.2018 Timo Männikkö Luento 13 Suunnittelumenetelmät Taulukointi Kapsäkkiongelma Ahne menetelmä Verkon lyhimmät polut Dijkstran menetelmä Verkon lyhin virittävä puu Kruskalin

Lisätiedot

Algoritmit 1. Luento 1 Ti Timo Männikkö

Algoritmit 1. Luento 1 Ti Timo Männikkö Algoritmit 1 Luento 1 Ti 10.1.2017 Timo Männikkö Luento 1 Algoritmi Algoritmin toteutus Ongelman ratkaiseminen Algoritmin tehokkuus Algoritmin suoritusaika Algoritmin analysointi Algoritmit 1 Kevät 2017

Lisätiedot

811312A Tietorakenteet ja algoritmit 2015-2016. V Verkkojen algoritmeja Osa 2 : Kruskalin ja Dijkstran algoritmit

811312A Tietorakenteet ja algoritmit 2015-2016. V Verkkojen algoritmeja Osa 2 : Kruskalin ja Dijkstran algoritmit 811312A Tietorakenteet ja algoritmit 2015-2016 V Verkkojen algoritmeja Osa 2 : Kruskalin ja Dijkstran algoritmit Sisältö 1. Johdanto 2. Leveyshaku 3. Syvyyshaku 4. Kruskalin algoritmi 5. Dijkstran algoritmi

Lisätiedot

Diskreetin matematiikan perusteet Malliratkaisut 2 / vko 38

Diskreetin matematiikan perusteet Malliratkaisut 2 / vko 38 Diskreetin matematiikan perusteet Malliratkaisut 2 / vko 38 Tuntitehtävät 11-12 lasketaan alkuviikon harjoituksissa ja tuntitehtävät 15-16 loppuviikon harjoituksissa. Kotitehtävät 13-14 tarkastetaan loppuviikon

Lisätiedot

MS-A0402 Diskreetin matematiikan perusteet Esimerkkejä ym., osa I

MS-A0402 Diskreetin matematiikan perusteet Esimerkkejä ym., osa I MS-A040 Diskreetin matematiikan perusteet Esimerkkejä ym., osa I G. Gripenberg Aalto-yliopisto. maaliskuuta 05 G. Gripenberg (Aalto-yliopisto) MS-A040 Diskreetin matematiikan perusteet Esimerkkejä. ym.,

Lisätiedot

Pienin virittävä puu (minimum spanning tree)

Pienin virittävä puu (minimum spanning tree) Pienin virittävä puu (minimum spanning tree) Jatkossa puu tarkoittaa vapaata puuta (ks. s. 11) eli suuntaamatonta verkkoa, joka on yhtenäinen: minkä tahansa kahden solmun välillä on polku syklitön: minkä

Lisätiedot

13 Lyhimmät painotetut polut

13 Lyhimmät painotetut polut TIE-20100 Tietorakenteet ja algoritmit 297 13 Lyhimmät painotetut polut BFS löytää lyhimmän polun lähtösolmusta graafin saavutettaviin solmuihin. Se ei kuitenkaan enää suoriudu tehtävästä, jos kaarien

Lisätiedot

MS-A0402 Diskreetin matematiikan perusteet

MS-A0402 Diskreetin matematiikan perusteet MS-A0402 Diskreetin matematiikan perusteet Osa 5: Ryhmät ja permutaatiot Riikka Kangaslampi 2017 Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Ryhmät ja permutaatiot Väritysongelma Jos meillä

Lisätiedot

10. Painotetut graafit

10. Painotetut graafit 10. Painotetut graafit Esiintyy monesti sovelluksia, joita on kätevä esittää graafeina. Tällaisia ovat esim. tietoverkko tai maantieverkko. Näihin liittyy erinäisiä tekijöitä. Tietoverkkoja käytettäessä

Lisätiedot

MS-A0402 Diskreetin matematiikan perusteet Esimerkkejä ym., osa I

MS-A0402 Diskreetin matematiikan perusteet Esimerkkejä ym., osa I MS-A040 Diskreetin matematiikan perusteet Esimerkkejä ym., osa I G. Gripenberg Aalto-yliopisto. maaliskuuta 05 G. Gripenberg (Aalto-yliopisto) MS-A040 Diskreetin matematiikan perusteet Esimerkkejä. ym.,

Lisätiedot

6.4. Järjestyssuhteet

6.4. Järjestyssuhteet 6.4. Järjestyssuhteet Joukon suhteilla voidaan kuvata myös alkioiden järjestystä tietyn ominaisuuden suhteen. Järjestys on myös kaksipaikkainen suhde (ja on monia erilaisia järjestyksiä). Suhde R joukossa

Lisätiedot

Tietojenkäsittelytieteen ja tilastotieteen matematiikkaa 1/137

Tietojenkäsittelytieteen ja tilastotieteen matematiikkaa 1/137 Tietojenkäsittelytieteen ja tilastotieteen matematiikkaa 1/137 Loogiset konnektiivit Tavallisimmat loogiset konnektiivit ovat negaatio ei konjunktio ja disjunktio tai implikaatio jos..., niin... ekvivalenssi...

Lisätiedot

Verkon värittämistä hajautetuilla algoritmeilla

Verkon värittämistä hajautetuilla algoritmeilla Verkon värittämistä hajautetuilla algoritmeilla 5 12 30 19 72 34 Jukka Suomela 15 77 18 4 9. tammikuuta 2012 19 2 68 Verkko 2 Verkko solmu 3 Verkko solmu kaari 4 Hajautettu järjestelmä solmu (tietokone)

Lisätiedot

PARITUS KAKSIJAKOISESSA

PARITUS KAKSIJAKOISESSA PARITUS KAKSIJAKOISESSA GRAAFISSA Informaatiotekniikan t iik seminaari i Pekka Rossi 4.3.2008 SISÄLTÖ Johdanto Kaksijakoinen graafi Sovituksen peruskäsitteet Sovitusongelma Lisäyspolku Bipartite matching-algoritmi

Lisätiedot

v 8 v 9 v 5 C v 3 v 4

v 8 v 9 v 5 C v 3 v 4 Verkot Verkko on (äärellinen) matemaattinen malli, joka koostuu pisteistä ja pisteitä toisiinsa yhdistävistä viivoista. Jokainen viiva yhdistää kaksi pistettä, jotka ovat viivan päätepisteitä. Esimerkiksi

Lisätiedot

Johdatus verkkoteoriaan luento Netspace

Johdatus verkkoteoriaan luento Netspace Johdatus verkkoteoriaan luento 20.3.18 Netspace Kurssin sijainti muussa suunnitellussa kokonaisuudessa Verkko eli graafi, tasoverkko, solmut, välit, alueet, suunnatut verkot, isomorfiset verkot, verkon

Lisätiedot

TKT20001 Tietorakenteet ja algoritmit Erilliskoe , malliratkaisut (Jyrki Kivinen)

TKT20001 Tietorakenteet ja algoritmit Erilliskoe , malliratkaisut (Jyrki Kivinen) TKT0001 Tietorakenteet ja algoritmit Erilliskoe 5.1.01, malliratkaisut (Jyrki Kivinen) 1. [1 pistettä] (a) Esitä algoritmi, joka poistaa kahteen suuntaan linkitetystä järjestämättömästä tunnussolmullisesta

Lisätiedot

Graafit ja verkot. Joukko solmuja ja joukko järjestämättömiä solmupareja. eli haaroja. Joukko solmuja ja joukko järjestettyjä solmupareja eli kaaria

Graafit ja verkot. Joukko solmuja ja joukko järjestämättömiä solmupareja. eli haaroja. Joukko solmuja ja joukko järjestettyjä solmupareja eli kaaria Graafit ja verkot Suuntamaton graafi: eli haaroja Joukko solmuja ja joukko järjestämättömiä solmupareja Suunnattu graafi: Joukko solmuja ja joukko järjestettyjä solmupareja eli kaaria Haaran päätesolmut:

Lisätiedot

TAMPEREEN YLIOPISTO Pro gradu -tutkielma. Jenna Laine. Ramseyn teoria

TAMPEREEN YLIOPISTO Pro gradu -tutkielma. Jenna Laine. Ramseyn teoria TAMPEREEN YLIOPISTO Pro gradu -tutkielma Jenna Laine Ramseyn teoria Luonnontieteiden tiedekunta Matematiikka Toukokuu 2017 Tampereen yliopisto Luonnontieteiden tiedekunta LAINE, JENNA: Ramseyn teoria Pro

Lisätiedot

A ja B pelaavat sarjan pelejä. Sarjan voittaja on se, joka ensin voittaa n peliä.

A ja B pelaavat sarjan pelejä. Sarjan voittaja on se, joka ensin voittaa n peliä. Esimerkki otteluvoiton todennäköisyys A ja B pelaavat sarjan pelejä. Sarjan voittaja on se, joka ensin voittaa n peliä. Yksittäisessä pelissä A voittaa todennäköisyydellä p ja B todennäköisyydellä q =

Lisätiedot

MS-A0402 Diskreetin matematiikan perusteet Yhteenveto ja esimerkkejä ym., osa II

MS-A0402 Diskreetin matematiikan perusteet Yhteenveto ja esimerkkejä ym., osa II MS-A040 Diskreetin matematiikan perusteet Yhteenveto ja esimerkkejä ym., osa II G. Gripenberg Aalto-yliopisto. huhtikuuta 0 Modulaariaritmetiikka Eukleideen algoritmi RSA-algoritmi Ryhmät ja permutaatiot

Lisätiedot

Eräs keskeinen algoritmien suunnittelutekniikka on. Palauta ongelma johonkin tunnettuun verkko-ongelmaan.

Eräs keskeinen algoritmien suunnittelutekniikka on. Palauta ongelma johonkin tunnettuun verkko-ongelmaan. 5. Verkkoalgoritmeja Eräs keskeinen algoritmien suunnittelutekniikka on Palauta ongelma johonkin tunnettuun verkko-ongelmaan. Palauttaminen edellyttää usein ongelman ja algoritmin pientä modifioimista,

Lisätiedot

Yhtenäisyydestä. Johdanto. Lähipisteavaruus. Tuomas Korppi

Yhtenäisyydestä. Johdanto. Lähipisteavaruus. Tuomas Korppi Solmu 2/2012 1 Yhtenäisyydestä Tuomas Korppi Johdanto Tarkastellaan kuvassa 1 näkyviä verkkoa 1 ja R 2 :n (eli tason) osajoukkoa. Kuvan 2 verkko voidaan jakaa kolmeen osaan niin, että osien välillä ei

Lisätiedot

0. 10. 017 a b c d 1. + +. + +. + + 4. + + + 5. + 6. + P1. Lehtipuiden lukumäärä olkoon aluksi n, jolloin havupuiden määrä on 1,4n. Hakkuiden jälkeen lehtipuiden määrä putoaa lukuun n 0,1n = 0,88n ja havupuiden

Lisätiedot

Äärellisten mallien teoria

Äärellisten mallien teoria Äärellisten mallien teoria Harjoituksen 4 ratkaisut Tehtävä 1. Määritä suurin aste k, johon saakka kuvan verkot G ja G ovat osittaisesti isomorfisia: Ratkaisu 1. Huomataan aluksi, että G =4 G : Ehrenfeucht-Fraïssé

Lisätiedot

Yhtälöryhmä matriisimuodossa. MS-A0007 Matriisilaskenta. Tarkastellaan esimerkkinä lineaarista yhtälöparia. 2x1 x 2 = 1 x 1 + x 2 = 5.

Yhtälöryhmä matriisimuodossa. MS-A0007 Matriisilaskenta. Tarkastellaan esimerkkinä lineaarista yhtälöparia. 2x1 x 2 = 1 x 1 + x 2 = 5. 2. MS-A000 Matriisilaskenta 2. Nuutti Hyvönen, c Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2..205 Tarkastellaan esimerkkinä lineaarista yhtälöparia { 2x x 2 = x x 2 =

Lisätiedot

Shorin algoritmin matematiikkaa Edvard Fagerholm

Shorin algoritmin matematiikkaa Edvard Fagerholm Edvard Fagerholm 1 Määritelmiä Määritelmä 1 Ryhmä G on syklinen, jos a G s.e. G = a. Määritelmä 2 Olkoon G ryhmä. Tällöin alkion a G kertaluku ord(a) on pienin luku n N \ {0}, jolla a n = 1. Jos lukua

Lisätiedot

Tarkennamme geneeristä painamiskorotusalgoritmia

Tarkennamme geneeristä painamiskorotusalgoritmia Korotus-eteen-algoritmi (relabel-to-front) Tarkennamme geneeristä painamiskorotusalgoritmia kiinnittämällä tarkasti, missä järjestyksessä Push- ja Raise-operaatioita suoritetaan. Algoritmin peruskomponentiksi

Lisätiedot

1 Määrittelyjä ja aputuloksia

1 Määrittelyjä ja aputuloksia 1 Määrittelyjä ja aputuloksia 1.1 Supremum ja infimum Aluksi kerrataan pienimmän ylärajan (supremum) ja suurimman alarajan (infimum) perusominaisuuksia ja esitetään muutamia myöhemmissä todistuksissa tarvittavia

Lisätiedot

MS-A0402 Diskreetin matematiikan perusteet

MS-A0402 Diskreetin matematiikan perusteet MS-A0402 Diskreetin matematiikan perusteet Osa 4: Modulaariaritmetiikka Riikka Kangaslampi 2017 Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Modulaariaritmetiikka Jakoyhtälö Määritelmä 1 Luku

Lisätiedot