1. Tietokoneharjoitukset
|
|
- Aki Keskinen
- 8 vuotta sitten
- Katselukertoja:
Transkriptio
1 1. Tietokoneharjoitukset Aluksi Tällä kurssilla käytetään R-ohjelmistoa, jonka käyttämisestä lienee muutama sana paikallaan. R-ohjelmisto on laajasti käytetty vapaassa levityksessä oleva ammattimaiseen tilastolliseen analyysiin soveltuva ohjelmointikieli. Aallon koneilta R löytyy kurssin henkilökunnan tietojen mukaan kaikista Kandidaattikeskuksen (Otakaari 1) ja Maarintalon tietokoneluokista (sekä Windos että Linux). Kurssin tehtävät on mahdollista tehdä perus R-ohjelmiston käyttöliittymällä, joka on mahdollista ladata ilmaiseksi omalle koneelle. R-ohjelmointikieleen on implementoitu monia ohjelmointiympäristöjä (Integrated development environment, IDE). Suosittelemme, että käytätte ohjelmointiympäristöä nimeltä RStudio. Rstudio on niin ikään vapaasti saatavilla, eli sen voi halutessaan ladata omalle koneelleen. Huomaa että RStudio käyttäminen vaatii perus R-ohjelmiston asentamisen. RStudio löytyy Aallon koneilta polusta: c:\program_files\rstudio\bin\rstudio.exe Perusteet Komentoja esitellään kurssin kuluessä sitä mukaa, kun niitä tarvitaan. Tässä muutamia käyttökelpoisia peruskomentoja, joista voi olla apua alkuun pääsemiseksi. Muuttujien luominen Muuttujia luodaan kuten esim. Matlabissa: x = 5 tai vaihtoehtoisesti x <- 5 Vektoreita luodaan komennolla c() x <- c(1,2,3) Matriisi luodaan vektorin avulla X <- matrix(c(1,1,1,2,2,2,3,3,3,4), nrow=5, ncol=2, byrow=false) Argumentit nrow ja ncol kertoo rivien ja sarakkeiden lukumäärän. Argumentti byrow kertoo miten matriisi täytetään, tässä tapauksessa sarakkeittain, eli ylhäältä alas ja vasemmalta oikealle. Huomaa, että R:ssä iso ja pieni kirjain eivät ole sama asia! Koodia kommentoidaan merkillä #. 1 / 10
2 Työhakemiston vaihtaminen Työhakemisto voidaan asettaa komennolla setwd() siten, että hakemisto tulee sulkujen sisään. Ohjelmistossa Rstudio tämä onnistuu myös graafisesti valitsemalla ohjelman ylävalikosta Session-Set Working Directory-Choose Directory. Scriptit Kurssin tehtävät kannataa tehdä R-scripteinä, joihin voi tarvittaessa palata myöhemmin. Scripti luodaan ohjelman ylävalikosta File- New File- R Script. Scriptin voi ajaa komennolla sourcet("scriptin_nimi.r"). Yksittäiset Scriptin rivit voi ajaa Windows-koneissa näppäinyhdistelmällä ctrl+ r tai ctrl+enter (Ubuntussa ctrl+enter). Datan lataaminen Kurssilla käsitellään usein dataa, joka on tallennettu ulkoiseen tiedostoon. Esimerkiksi työhakemistossa oleva tiedosto "data.txt"voidaan ladata komennolla read.table("data.txt", header=t, sep="\t") Argumentti header=t kertoo, että tiedoston ensimmäinen rivi on otsikkorivi. Jos tiedoston enismmäinen rivi halutaan tulkita dataksi, niin voidaan kirjoitaa header=f sen sijaan. Lisäksi jossain tapauksissa aineisto on eroteltu esimerkiksi tabulaattorilla, tällöin voidaan kirjoittaa sep = "\t" tai vaihtoehtoisesti jokin muu dataa erottava merkki (oletuksena on pilkku). Komentojen etsiminen ja help Lisätietoja monista asioista saa komennolla help(). Esimerkiksi help(matrix) kertoo miten komennolla matrix voidaan luoda matriiseja. Erityisen kätevä on myös help.search(), jolla komentoja yms. Voi hakea vapaalla sanahaulla. Esimerkiksi help.search("transpose") hakee tietokannasta komentoja, joiden help-tiedostossa esiintyy sana transpose. Ajamalle haku huomataan, että matriisin X transpoosi voidaan ottaa komennolla t(x). Muuta R:n käyttämiseen on runsaasti materiaalia olemassa mm. 2 / 10
3 Demotehtävät 1.1 Tiedostoon npaastot.txt on tallennettu tulokset tutkimuksesta, jossa on selvitetty ilman kosteuden (Humidity), lämpötilan (Temp) ja paineen (Pressure) vaikutuksia kuormaauton dieselmoottorin typpipäästöihin (NOx). a) Tutustu aineistoon estimoilalla aineistoa kuvaavia tunnuslukuja ja piirtämällä muuttujia kuvaavat histogrammit. Ovatko muutujat normaalijakautuneita? b) Estimoi lineaarinen malli, jossa typpipäästöjä selitetään muuttuujilla kosteus, lämpötila ja paine. c) Mikä on estimoidun mallin selitysaste? d) Testaa permutaatiotestillä, mitkä regressiokertoimet ovat merkitseviä. Toista permutointi 2000 kertaa. e) Poista selittäjät, jotka eivät ole merkitseviä ja estimoi lineaarinen malli. Suorita seuraavat kohdat ilman poistettuja selittäjiä. f) Laske regressiokertoimien keskihajonnat käyttämällä luentokalvojen kaavoja. g) Oletetaan, että normaalisuusoletus pätee. Laske regressiokertoimien 95% luottamusvälit komennolla confint(). h) Oletetaan, että normaalisuusoletus pätee. Toista (g) käyttämällä luentokalvojen kaavoja. i) Laske regressiokertoimien 95% luottamusvälit käyttämällä bootstrapping menetelmää ja vertaa tuloksia kohtiin (g) ja (h). Käytä bootstrap-estimoimisessa silmukkaa, jonka pituus on Piirrä myös histogrammit bootstrap-estimaateista. Ratkaisu. a) Ladataan tiedosto npaastot.txt työympäristöön. Lisäksi asetetaan seed(123), jotta saadaan vastaavat tulokset kuin malleissa. paastot=read.table("npaastot.txt", header=t, sep="\t") set.seed(123) Aineisto sisältää 5 muutujaa, ObsNo, NOx, Humidity, Temp ja Pressure. Aineiston tärkeimmät tunnusluvut saadaan komennolla summary() summary(paastot) ObsNo NOx Humidity Temp Pressure Min. : 1.00 Min. : Min. : Min. :65.44 Min. : st Qu.: st Qu.: st Qu.: st Qu.: st Qu.:29.03 Median :10.50 Median : Median : Median :77.82 Median :29.07 Mean :10.50 Mean : Mean : Mean :78.57 Mean : rd Qu.: rd Qu.: rd Qu.: rd Qu.: rd Qu.:29.16 Max. :20.00 Max. : Max. : Max. :89.28 Max. : / 10
4 Histogrammit saadaan piirrettyä komennolla hist(paastot[,2]) tai hist(paastot[,"nox"]) Kuva 1: Histogrammi NOx-muuttujasta. hist(paastot[,"humidity"]) Kuva 2: Histogrammi Humidity-muuttujasta. 4 / 10
5 hist(paastot[,"temp"]) Kuva 3: Histogrammi Temp-muuttujasta. hist(paastot[,"pressure"]) Kuva 4: Histogrammi Pressure-muuttujasta. cor(paastot) ObsNo NOx Humidity Temp Pressure ObsNo NOx Humidity Temp Pressure / 10
6 Muuttuja NOx korreloi negatiivisesti muuttujan Humidity kanssa ja positiivisesti muutujien Temp ja Pressure kanssa. Muuttujat eivät näytä normaalijakautuneilta. b) Usean muuttujan regressio hoituu R:ssä laittamalla oikealle puolelle selittäjät +-merkillä eroteltuna. sovite1 <- lm(nox~humidity+temp+pressure, data=paastot) summary(sovite1) Tämä tulostaa Call: lm(formula = NOx ~ Humidity + Temp + Pressure, data = paastot) Residuals: Min 1Q Median 3Q Max Coefficients: Estimate Std. Error t value Pr(> t ) (Intercept) Humidity e-05 *** Temp * Pressure Signif. codes: 0 *** ** 0.01 * Residual standard error: on 16 degrees of freedom Multiple R-squared: ,Adjusted R-squared: F-statistic: on 3 and 16 DF, p-value: 1.079e-06 c) Mallin selitysaste on 84,4%, mikä siis on luettu tulosteen kohdasta "Multiple R-squared". Vastaava saadaan myös varianssianalyysihajotelmalla. d) Koska muuttujat eivät ole normaalijakautuneita, on kyseenalaisita päätellä (b) kohdan taulukosta suoraan merkitsevät selittäjät. Permutoidaan selittävät muuttujat yksi kerrallaan ja katsotaan miten se vaikuttaa selitysasteen. k < y.mean <- mean(paastot[,"nox"]) SST <- sum((paastot[,"nox"]-y.mean)^2) SSE <- sum((sovite1$res)^2) Rsquare1 <- 1-SSE/SST perm <- matrix(na,nrow =2000,ncol=3) for(i in 1:k){ tmp1 <- paastot tmp2 <- paastot tmp3 <- paastot 6 / 10
7 } tmp1$pressure <- sample(tmp1$pressure) tmp2$humidity <- sample(tmp2$humidity) tmp3$temp <- sample(tmp3$temp) tmpsovite1 <- lm(nox ~ Humidity+Temp+Pressure, data=tmp1) tmpsovite2 <- lm(nox ~ Humidity+Temp+Pressure, data=tmp2) tmpsovite3 <- lm(nox ~ Humidity+Temp+Pressure, data=tmp3) perm[i,1] <- summary(tmpsovite1)$r.squared perm[i,2] <- summary(tmpsovite2)$r.squared perm[i,3] <- summary(tmpsovite3)$r.squared pre <- 1-sum(perm[,1] < Rsquare1)/k # hum <- 1-sum(perm[,2] < Rsquare1)/k #0 temp <- 1-sum(perm[,3] < Rsquare1)/k # Muuttujat pre, hum ja temp on muodostettu siten, että ykkösestä on vähennetty se osuus permutaatioista, joissa selitysaste on pienentynyt. Huomaa, että seed:in vaihtaminen saattaa muuttaa tuloksia hieman. Kyseisest luvut ovat nähdään koodista kommentteina. Muuttujat kuvaavat nollahypoteesin (H 0 : regressiokerroin ei ole merkitsevä) p-arvoa (katso luentokalvot). Lukujen perusteella muutujan Pressure nollahypoteesi voidaan hyväksyä 5% merkitsevyystasolla ja täten poistetaan mallista. Muiden regressiokertoimien nollahypoteesit hylätään. Mallinvalintakriteereistä lisää ensi viikon harjoituksissa. e) sovite2=lm(nox~humidity+temp, data=paastot) summary(sovite2) Call: lm(formula = NOx ~ Humidity + Temp, data = paastot) Residuals: Min 1Q Median 3Q Max Coefficients: Estimate Std. Error t value Pr(> t ) (Intercept) *** Humidity e-06 *** Temp * --- Signif. codes: 0 *** ** 0.01 * Residual standard error: on 17 degrees of freedom Multiple R-squared: ,Adjusted R-squared: F-statistic: on 2 and 17 DF, p-value: 1.891e-07 7 / 10
8 f) Muodostetaan ensin uusi datamatriisi, josta on poistettu ylimääräiset selittäjät. Tehdään lisäksi tyypimuunnos data framesta matriisiksi (tiedostotyyppeistä lisää kurssilla Introduction to R-programming) ja lisätään sarake mallin vakiota (intercept) varten. tmp <- as.matrix(paastot[,c(3,4)]) n <- nrow(paastot) Intercept <- rep(1,n) paastot2 <- cbind(intercept,tmp) p <- ncol(paastot2) Lasketaan jäännösvarianssin harhaton estimaatti s 2 res <- sovite2$res s2 <- sum(res^2)/(n-p) Regressiokertoimien otosvarianssit ovat matriisin D 2 (b) = s 2 (X T X) 1 diagonaalialkioita, missä s 2 on jäännösvarianssin harhaton estimaattori. stdev <- sqrt(diag( s2*solve(t(paastot2)%*%paastot2))) Joka vastaa kohdan (e) taulukon arvoja g) confinterval <- confint(sovite2, level=0.95) Ja tuloste on: 2.5 % 97.5 % (Intercept) Humidity Temp h) Vastaavat tulokset saadaan komennoilla coef <- sovite2$coef up <- coef + stdev * qt(0.975,n-p) down <- coef - stdev * qt(0.975,n-p) missä komento qt() antaa t-jakauman kvantiilin vapausasteella n p i) Luottamusvälit bootstrap-menetelmällä k < bootmat <- matrix(na,nrow=k,ncol=3) X <- paastot2 set.seed(123) for(i in 1:k){ sovite3 <- lm(nox ~ Humidity + Temp, data=paastot) res.tmp <- sovite3$res res.boot <- sample(res.tmp,replace=true) yb <- sovite3$fitted.values + res.boot bb <- solve(t(x) % * %X) %*%t(x)%*%yb 8 / 10
9 bootmat[i,] <- bb } hist(bootmat[,1]) hist(bootmat[,2]) hist(bootmat[,3]) qconst <- quantile(bootmat[,1], probs = c(0.025,0.975)) qhum <- quantile(bootmat[,2], probs = c(0.025,0.975)) qtemp <- quantile(bootmat[,3], probs = c(0.025,0.975)) Kotitehtävät 1.2 Tiedostossa TUPAKKA.txt on annettu seuraavat tiedot 11 maasta: KULUTUS = Savukkeiden kulutus per capita vuonna 1930, SAIRAST = keuhkosyöpätapausten lukumäärä per henkilöä vuonna Maat on numeroitu tiedostossa seuraavasti 1 = Islanti 7 = USA 2 = Norja 8 = Hollanti 3 = Ruotsi 9 = Sveitsi 4 = Kanada 10 =Suomi 5 = Tanska 11 =Englanti 6 = Itävalta Huomaa, että aineisto sisältää myös tämän tehtävän kannalta paljon ylimääräistä informaatiota. (a) Formuloi yhden selittäjän lineaarinen regressiomalli, jossa muuttujaa SAIRAST selitään muutujalla KULUTUS ja jossa on mukana vakio. (b) Estimoi mallin regressiokertoimet PNS-menetelmällä ja esitä tulkinnat estimoiduille regressiokertoimille. (c) Määrää estimoidun mallin selitysaste. (d) Onko malli tilastollisesti merkitsevä F -testin perusteella? Käytä testissä 1% merkitsevyystasoa. (e) Onko muuttujan KULUTUS regressiokerroin tilastollisesti merkitsevä t-testin perusteella? Vertaa testisuureen p-arvoa kohdassa (d) saatuun p-arvoon ja selitä niiden yhteys. (f) Piirrä estimoitu regressiosuora aineistoa kuvaavaan pistediagrammiin. (g) Selitä mitä tarkoitetaan käsitteellä luottamusväli. (h) Oleta normaalisuusoletuksen pätevän. Määrää kertoimien hajonnat sekä muodosta regressiosuoran kulmakertoimelle 95%:n luottamusväli. Mikä on 99%:n luottamusväli? Huomaa että luottamusväli on huomattavan leveä vakiotermille. Mistä tämä voisi johtua? 9 / 10
10 (i) Laske regressiokertoimien 95% luottamusväliä käyttämällä bootstrapping menetelmää (2000 toistoa). Vertaa tuloksia kohtaan (h). (j) Mitä etua bootstrapping menetelmästä on luottamusvälien laskemisessa suhteessa perinteiseen tapaan laskea luottamusvälit? 10 / 10
Yleinen lineaarinen malli eli usean selittäjän lineaarinen regressiomalli
MS-C2128 Ennustaminen ja aikasarja-analyysi 1. harjoitukset / Tehtävät Kotitehtävät: 2 Aiheet: Aluksi Yleinen lineaarinen malli eli usean selittäjän lineaarinen regressiomalli Tällä kurssilla käytetään
2. Tietokoneharjoitukset
2. Tietokoneharjoitukset Demotehtävät 2.1 Jatkoa kotitehtävälle. a) Piirrä aineistosta pistediagrammi (KULUTUS, SAIRAST) ja siihen estimoitu regressiosuora. KULUTUS on selitettävä muuttuja. b) Määrää estimoidusta
Tässä harjoituksessa käydään läpi R-ohjelman käyttöä esimerkkidatan avulla. eli matriisissa on 200 riviä (havainnot) ja 7 saraketta (mittaus-arvot)
R-ohjelman käyttö data-analyysissä Panu Somervuo 2014 Tässä harjoituksessa käydään läpi R-ohjelman käyttöä esimerkkidatan avulla. 0) käynnistetään R-ohjelma Huom.1 allaolevissa ohjeissa '>' merkki on R:n
Regressioanalyysi. Vilkkumaa / Kuusinen 1
Regressioanalyysi Vilkkumaa / Kuusinen 1 Regressioanalyysin idea ja tavoitteet Regressioanalyysin idea: Halutaan selittää selitettävän muuttujan havaittujen arvojen vaihtelua selittävien muuttujien havaittujen
Johdatus regressioanalyysiin. Heliövaara 1
Johdatus regressioanalyysiin Heliövaara 1 Regressioanalyysin idea Oletetaan, että haluamme selittää jonkin selitettävän muuttujan havaittujen arvojen vaihtelun selittävien muuttujien havaittujen arvojen
Regressioanalyysi. Kuusinen/Heliövaara 1
Regressioanalyysi Kuusinen/Heliövaara 1 Regressioanalyysin idea ja tavoitteet Regressioanalyysin idea: Oletetaan, että haluamme selittää jonkin selitettävän muuttujan havaittujen arvojen vaihtelun joidenkin
MS-C2128 Ennustaminen ja aikasarja-analyysi 2. harjoitukset / Tehtävät Kotitehtävä: 3,4
MS-C2128 Ennustaminen ja aikasarja-analyysi 2. harjoitukset / Tehtävät Kotitehtävä: 3,4 Tehtävä 2.1. Jatkoa tietokonetehtävälle 1.2: (a) Piirrä aineistosta pisteparvikuvaaja (KULUTUS, SAIRAST) ja siihen
(d) Laske selittäjään paino liittyvälle regressiokertoimelle 95 %:n luottamusväli ja tulkitse tulos lyhyesti.
2. VÄLIKOE vuodelta -14 1. Liitteessä 1 on esitetty R-ohjelmalla saatuja tuloksia aineistosta, johon on talletettu kahdenkymmenen satunnaisesti valitun miehen paino (kg), vyötärön ympärysmitta (cm) ja
Harjoitus 9: Excel - Tilastollinen analyysi
Harjoitus 9: Excel - Tilastollinen analyysi Mat-2.2107 Sovelletun matematiikan tietokonetyöt Syksy 2006 Mat-2.2107 Sovelletun matematiikan tietokonetyöt 1 Harjoituksen aiheita Tutustuminen regressioanalyysiin
Mat Tilastollisen analyysin perusteet, kevät 2007
Mat-.14 Tilastollisen analyysin perusteet, kevät 7 7. luento: Tarina yhden selittään lineaarisesta regressiomallista atkuu Kai Virtanen 1 Luennolla 6 opittua Kuvataan havainnot (y, x ) yhden selittään
1. PÄÄTTELY YHDEN SELITTÄJÄN LINEAARISESTA REGRESSIOMALLISTA
Mat-2.104 Tilastollisen analyysin perusteet / Ratkaisut Aiheet: Avainsanat Päättely yhden selittäjän lineaarisesta regressiomallista Ennustaminen, Ennuste, Ennusteen luottamusväli, Estimaatti, Estimaattori,
Suhtautuminen Sukupuoli uudistukseen Mies Nainen Yhteensä Kannattaa Ei kannata Yhteensä
806109 TILASTOTIETEEN PERUSMENETELMÄT I Harjoitus 7, viikko 9, kevät 2011 (Muut kuin taloustieteiden tiedekunnan opiskelijat) MUISTA MIKROLUOKKAHARJOITUKSET VIIKOILLA 8 JA 9! 1. Eräässä suuressa yrityksessä
Tilastollisen analyysin perusteet Luento 8: Lineaarinen regressio, testejä ja luottamusvälejä
Tilastollisen analyysin perusteet Luento 8: Lineaarinen regressio, testejä ja luottamusvälejä arvon Sisältö arvon Bootstrap-luottamusvälit arvon arvon Oletetaan, että meillä on n kappaletta (x 1, y 1 ),
Ilmoittaudu Weboodissa klo (sali L4) pidettävään 1. välikokeeseen!
8069 TILASTOTIETEEN PERUSMENETELMÄT I Harjoitus 7, viikko 9, kevät 2013 (Muut kuin taloustieteiden tiedekunnan opiskelijat) MUISTA MIKROLUOKKAHARJOITUKSET VIIKOLLA 9! Ilmoittaudu Weboodissa 4.3.2013 klo
Opiskelija viipymisaika pistemäärä
806109 TILASTOTIETEEN PERUSMENETELMÄT I Harjoitus 7, viikko 9, kevät 2012 (Muut kuin taloustieteiden tiedekunnan opiskelijat) MUISTA MIKROLUOKKAHARJOITUKSET VIIKOILLA 8 JA 9! 1. Jatkoa harjoituksen 5 tehtävään
Mat Tilastollisen analyysin perusteet, kevät 2007
Mat-.104 Tilastollisen analyysin perusteet, kevät 007 8. luento: Usean selittäjän lineaarinen regressiomalli Kai Virtanen 1 Usean selittäjän lineaarinen regressiomalli Selitettävän muuttujan havaittujen
4. Tietokoneharjoitukset
4. Tietokoneharjoitukset Demotehtävät 4.1 Tarkastellaan seuraavia aikasarjoja. Tiedosto (.txt) Muuttuja Kuvaus Havaintoväli Aikasarjan pituus INTEL Intel_Close Intelin osakekurssi Pörssipäivä n = 20 Intel_Volume
Yleinen lineaarinen malli
MS-C2128 Ennustaminen ja Aikasarja-analyysi, Heikki Seppälä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy 2015 Viikko 1: 1 Määritelmä ja standardioletukset 2
Residuaalit. Residuaalit. UK Ger Fra US Austria. Maat
TAMPEREEN YLIOPISTO Tilastollisen mallintamisen harjoitustyö Teemu Kivioja ja Mika Helminen Epätasapainoisen koeasetelman analyysi Worksheet 5 Matematiikan, tilastotieteen ja filosofian laitos Tilastotiede
xi = yi = 586 Korrelaatiokerroin r: SS xy = x i y i ( x i ) ( y i )/n = SS xx = x 2 i ( x i ) 2 /n =
1. Tutkitaan paperin ominaispainon X(kg/dm 3 ) ja puhkaisulujuuden Y (m 2 ) välistä korrelaatiota. Tiettyä laatua olevasta paperierästä on otettu satunnaisesti 10 arkkia ja määritetty jokaisesta arkista
ABHELSINKI UNIVERSITY OF TECHNOLOGY
Johdatus regressioanalyysiin Regressioanalyysin idea Oletetaan, että haluamme selittää jonkin selitettävän muuttujan havaittujen arvojen vaihtelun selittävien muuttujien havaittujen arvojen vaihtelun avulla.
4. Tietokoneharjoitukset
4. Tietokoneharjoitukset Demotehtävät 4.1 Tarkastellaan seuraavia aikasarjoja. Tiedosto (.txt) Muuttuja Kuvaus Havaintoväli Aikasarjan pituus INTEL Intel_Close Intelin osakekurssi Pörssipäivä n = 20 Intel_Volume
2. Teoriaharjoitukset
2. Teoriaharjoitukset Demotehtävät 2.1 Todista Gauss-Markovin lause. Ratkaisu. Oletetaan että luentokalvojen standardioletukset (i)-(v) ovat voimassa. Huomaa että Gauss-Markovin lause ei vaadi virhetermien
1. Tutkitaan tavallista kahden selittäjän regressiomallia
TA7, Ekonometrian johdantokurssi HARJOITUS 5 RATKAISUEHDOTUKSET 232215 1 Tutkitaan tavallista kahden selittäjän regressiomallia Y i = β + β 1 X 1,i + β 2 X 2,i + u i (a) Kirjoita regressiomalli muodossa
Harjoitukset 4 : Paneelidata (Palautus )
31C99904, Capstone: Ekonometria ja data-analyysi TA : markku.siikanen(a)aalto.fi & tuuli.vanhapelto(a)aalto.fi Harjoitukset 4 : Paneelidata (Palautus 7.3.2017) Tämän harjoituskerran tarkoitus on perehtyä
Yhden selittäjän lineaarinen regressiomalli (jatkoa) Ensi viikolla ei pidetä luentoa eikä harjoituksia. Heliövaara 1
Yhden selittäjän lineaarinen regressiomalli (jatkoa) Ensi viikolla ei pidetä luentoa eikä harjoituksia Heliövaara 1 Regressiokertoimien PNS-estimaattorit Määritellään havaintojen x j ja y j, j = 1, 2,...,n
TA7, Ekonometrian johdantokurssi HARJOITUS 4 1 RATKAISUEHDOTUKSET
TA7, Ekonometrian johdantokurssi HARJOITUS 4 1 RATKAISUEHDOTUKSET 16..015 1. a Poliisivoimien suuruuden lisäksi piirikuntien rikostilastoihin vaikuttaa monet muutkin tekijät. Esimerkiksi asukkaiden keskimääräinen
Aalto-yliopisto, Matematiikan ja systeemianalyysin laitos /Malmivuori MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi,
Aalto-yliopisto, Matematiikan ja systeemianalyysin laitos /Malmivuori MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi, kesä 2016 Laskuharjoitus 5, Kotitehtävien palautus laskuharjoitusten
Tehtävä 1. (a) JYVÄSKYLÄN YLIOPISTO Matematiikan ja tilastotieteen laitos Parametrittomat ja robustit menetelmät Harjoitukset 7, vastaukset
JYVÄSKYLÄN YLIOPISTO Matematiikan ja tilastotieteen laitos Parametrittomat ja robustit menetelmät Harjoitukset 7, vastaukset 12.05.2009 Tehtävä 1 (a) x
1. YKSISUUNTAINEN VARIANSSIANALYYSI: AINEISTON ESITYSMUODOT
Mat-2.104 Tilastollisen analyysin perusteet / Ratkaisut Aiheet: Avainsanat: Yksisuuntainen varianssianalyysi Bartlettin testi, Bonferronin menetelmä, F-testi, Jäännösneliösumma, χ 2 -testi, Kokonaiskeskiarvo,
Johdatus tilastotieteeseen Yleinen lineaarinen malli. TKK (c) Ilkka Mellin (2004) 1
Johdatus tilastotieteeseen Yleinen lineaarinen malli TKK (c) Ilkka Mellin (2004) 1 Yleinen lineaarinen malli Usean selittäjän lineaarinen regressiomalli Yleisen lineaarisen mallin matriisisesitys Yleisen
R: mikä, miksi ja miten?
R: mikä, miksi ja miten? Ilmari Ahonen Matematiikan ja tilastotieteen laitos, Turun yliopisto SSL R-Webinaari 2015 Vähän minusta Valmistuin maisteriksi Turun yliopistossa 2012 Teen neljättä vuotta väitöskirjaa
Ilkka Mellin Tilastolliset menetelmät. Osa 4: Lineaarinen regressioanalyysi. Yleinen lineaarinen malli. TKK (c) Ilkka Mellin (2007) 1
Ilkka Mellin Tilastolliset menetelmät Osa 4: Lineaarinen regressioanalyysi Yleinen lineaarinen malli TKK (c) Ilkka Mellin (2007) 1 Yleinen lineaarinen malli >> Usean selittäjän lineaarinen regressiomalli
Johdatus varianssianalyysiin. Vilkkumaa / Kuusinen 1
Johdatus varianssianalyysiin Vilkkumaa / Kuusinen 1 Motivointi Luento 4: kahden riippumattoman otoksen odotusarvoja voidaan vertailla t-testillä H 0 : μ 1 = μ 2, T = ˉX 1 ˉX 2 s 2 1 + s2 2 n 1 n 2 a t(min[(n
VARIANSSIANALYYSI ANALYSIS OF VARIANCE
VARIANSSIANALYYSI ANALYSIS OF VARIANCE 1 Suomalaisten aikuisten pituusjakauma:.8.7.6.5.4.3.2.1 14 15 16 17 18 19 2 21 Jakauma ei ole normaali, sen olettaminen sellaiseksi johtaa virheellisiin päätelmiin.
Tilastollisen analyysin perusteet Luento 1: Lokaatio ja hajonta
Tilastollisen analyysin perusteet Luento 1: ja hajonta Sisältö Havaittujen arvojen jakauma Havaittujen arvojen jakaumaa voidaan kuvailla ja esitellä tiivistämällä havaintoarvot sopivaan muotoon. Jakauman
Tilastollisen analyysin perusteet Luento 9: Moniulotteinen lineaarinen. regressio
Tilastollisen analyysin perusteet Luento 9: lineaarinen lineaarinen Sisältö lineaarinen lineaarinen lineaarinen Lineaarinen Oletetaan, että meillä on n kappaletta (x 1, y 1 ), (x 2, y 2 )..., (x n, y n
1. USEAN SELITTÄJÄN LINEAARINEN REGRESSIOMALLI JA OSITTAISKORRELAATIO
Mat-2.104 Tilastollisen analyysin perusteet / Ratkaisut Aiheet: Avainsanat Usean selittäjän lineaarinen regressiomalli Estimaatti, Estimaattori, Estimointi, Jäännösneliösumma, Jäännöstermi, Jäännösvarianssi,
[MTTTA] TILASTOMENETELMIEN PERUSTEET, KEVÄT 209 https://coursepages.uta.fi/mttta/kevat-209/ HARJOITUS 5 viikko 8 RYHMÄT: ke 2.5 3.45 ls. C6 Leppälä to 08.30 0.00 ls. C6 Korhonen to 2.5 3.45 ls. C6 Korhonen
(b) Vedonlyöntikertoimet syytetyn ihonvärin eri luokissa
Oulun yliopiston matemaattisten tieteiden tutkimusyksikkö/tilastotiede 805306A JOHDATUS MONIMUUTTUJAMENETELMIIN, sl 2017 (Jari Päkkilä) Harjoitus 3, viikko 47 (19.20.11.): kotitehtävät Ratkaisuja 1. Floridan
Regressiodiagnostiikka ja regressiomallin valinta
Regressiodiagnostiikka ja regressiomallin valinta MS-C2128 Ennustaminen ja Aikasarja-analyysi, Heikki Seppälä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy 2015
6. Tietokoneharjoitukset
6. Tietokoneharjoitukset 6.1 Tiedostossa Const.txt on eräällä Yhdysvaltalaisella asuinalueella aloitettujen rakennusurakoiden määrä kuukausittain, aikavälillä 1966-1974. Urakoiden määrä on skaalattu asuinalueen
Sisällysluettelo ESIPUHE... 4 ALKUSANAT E-KIRJA VERSIOON... 5 SISÄLLYSLUETTELO... 6 1. JOHDANTO TILASTOLLISEEN PÄÄTTELYYN... 8 2. TODENNÄKÖISYYS...
Sisällysluettelo ESIPUHE... 4 ALKUSANAT E-KIRJA VERSIOON... 5 SISÄLLYSLUETTELO... 6 1. JOHDANTO TILASTOLLISEEN PÄÄTTELYYN... 8 1.1 INDUKTIO JA DEDUKTIO... 9 1.2 SYYT JA VAIKUTUKSET... 11 TEHTÄVIÄ... 13
Sovellettu todennäköisyyslaskenta B
Sovellettu todennäköisyyslaskenta B Antti Rasila 22. marraskuuta 2007 Antti Rasila () TodB 22. marraskuuta 2007 1 / 17 1 Epäparametrisia testejä (jatkoa) χ 2 -riippumattomuustesti 2 Johdatus regressioanalyysiin
Esimerkkiaineisto ALKOKULU Olemme käyttäneet 3. harjoituksissa esimerkkinä aineistoa, joka käsittelee yksityisiä kulutusmenoja
MS-C2128 Ennustaminen ja aikasarja-analyysi 6. harjoitukset / Tehtävät Kotitehtävä: 4 Esimerkkiaineisto ALKOKULU Olemme käyttäneet 3. harjoituksissa esimerkkinä aineistoa, joka käsittelee yksityisiä kulutusmenoja
Tilastollisen analyysin perusteet Luento 7: Lineaarinen regressio
Tilastollisen analyysin perusteet Luento 7: Lineaarinen regressio Sisältö Regressioanalyysissä tavoitteena on tutkia yhden tai useamman selittävän muuttujan vaikutusta selitettävään muuttujaan. Sen avulla
Tilastollinen vastepintamallinnus: kokeiden suunnittelu, regressiomallin analyysi, ja vasteen optimointi. Esimerkit laskettu JMP:llä
Tilastollinen vastepintamallinnus: kokeiden suunnittelu, regressiomallin analyysi, ja vasteen optimointi Esimerkit laskettu JMP:llä Antti Hyttinen Tampereen teknillinen yliopisto 29.12.2003 ii Ohjelmien
Yhden selittäjän lineaarinen regressiomalli
Ilkka Melli Tilastolliset meetelmät Osa 4: Lieaarie regressioaalyysi Yhde selittäjä lieaarie regressiomalli TKK (c) Ilkka Melli (007) Yhde selittäjä lieaarie regressiomalli >> Yhde selittäjä lieaarie regressiomalli
ATH-koulutus: R ja survey-kirjasto THL 16.2.2011. 16. 2. 2011 ATH-koulutus / Tommi Härkänen 1
ATH-koulutus: R ja survey-kirjasto THL 16.2.2011 16. 2. 2011 ATH-koulutus / Tommi Härkänen 1 Sisältö Otanta-asetelman kuvaaminen R:llä ja survey-kirjastolla Perustunnusluvut Regressioanalyysit 16. 2. 2011
1. REGRESSIOMALLIN SYSTEMAATTISEN OSAN MUOTO
Mat-2.104 Tilastollisen analyysin perusteet / Ratkaisut Aiheet: Avainsanat: Regressiodiagnostiikka Cooken etäisyys, Funktionaalinen muoto, Diagnostinen grafiikka, Diagnostiset testit, Heteroskedastisuus,
Sisällysluettelo ESIPUHE KIRJAN 1. PAINOKSEEN...3 ESIPUHE KIRJAN 2. PAINOKSEEN...3 SISÄLLYSLUETTELO...4
Sisällysluettelo ESIPUHE KIRJAN 1. PAINOKSEEN...3 ESIPUHE KIRJAN 2. PAINOKSEEN...3 SISÄLLYSLUETTELO...4 1. JOHDANTO TILASTOLLISEEN PÄÄTTELYYN...6 1.1 INDUKTIO JA DEDUKTIO...7 1.2 SYYT JA VAIKUTUKSET...9
Regressiodiagnostiikka ja regressiomallin valinta
Regressiodiagnostiikka ja regressiomallin valinta MS-C2128 Ennustaminen ja Aikasarja-analyysi, Lauri Viitasaari Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy
Harjoitus 3: Regressiomallit (Matlab)
Harjoitus 3: Regressiomallit (Matlab) SCI-C0200 Fysiikan ja matematiikan menetelmien studio SCI-C0200 Fysiikan ja matematiikan menetelmien studio 1 Harjoituksen aiheita Pienimmän neliösumman menetelmä
Kaksisuuntainen varianssianalyysi. Vilkkumaa / Kuusinen 1
Kaksisuuntainen varianssianalyysi Vilkkumaa / Kuusinen 1 Motivointi Luennot 6 ja 7: yksisuuntaisella varianssianalyysilla testataan ryhmäkohtaisten odotusarvojen yhtäsuuruutta, kun perusjoukko on jaettu
Väliestimointi (jatkoa) Heliövaara 1
Väliestimointi (jatkoa) Heliövaara 1 Bernoulli-jakauman odotusarvon luottamusväli 1/2 Olkoon havainnot X 1,..., X n yksinkertainen satunnaisotos Bernoulli-jakaumasta parametrilla p. Eli X Bernoulli(p).
1. YKSISUUNTAINEN VARIANSSIANALYYSI: AINEISTON ESITYSMUODOT
imat-2.104 Tilastollisen analyysin perusteet / Tehtävät Aiheet: Avainsanat: Ysisuuntainen varianssianalyysi Bartlettin testi, Bonferronin menetelmä, F-testi, Jäännösneliösumma, χ 2 -testi, Koonaisesiarvo,
Kokeellisen datan käsittely ja analysointi R:llä
TEKNILLINEN TIEDEKUNTA Kokeellisen datan käsittely ja analysointi R:llä Teemu Pätsi Ympäristötekniikka Kandidaatintyö Huhtikuu 2018 TEKNILLINEN TIEDEKUNTA Kokeellisen datan käsittely ja analysointi R:llä
Harjoitukset 2 : Monimuuttujaregressio (Palautus )
31C99904, Capstone: Ekonometria ja data-analyysi TA : markku.siikanen(a)aalto.fi & tuuli.vanhapelto(a)aalto.fi Harjoitukset 2 : Monimuuttujaregressio (Palautus 24.1.2017) Tämän harjoituskerran tarkoitus
5 Osa 5: Ohjelmointikielen perusteita
5 Osa 5: Ohjelmointikielen perusteita 5.1 Omat funktiot R on lausekekieli: Kaikki komennot kuten funktiokutsut ja sijoitusoperaatiot ovat lausekkeita. Lausekkeet palauttavat jonkin arvon. Lausekkeita voidaan
Viikon 5 harjoituksissa käytämme samoja aikasarjoja kuin viikolla 4. Tiedosto Muuttuja Kuvaus Havaintoväli Aikasarjan pituus
MS-C2128 Ennustaminen ja aikasarja-analyysi 5. harjoitukset / Tehtävät Kotitehtävät: 2 Aihe: ARMA-mallit Viikon 5 harjoituksissa käytämme samoja aikasarjoja kuin viikolla 4. Tehtävä 5.1. Tarkastellaan
Mat Tilastollisen analyysin perusteet, kevät 2007
Mat-2.2104 Tilastollisen analyysin perusteet, kevät 2007 2. luento: Tilastolliset testit Kai Virtanen 1 Tilastollinen testaus Tutkimuksen kohteena olevasta perusjoukosta esitetään väitteitä oletuksia joita
Yksisuuntainen varianssianalyysi (jatkoa) Heliövaara 1
Yksisuuntainen varianssianalyysi (jatkoa) Heliövaara 1 Odotusarvoparien vertailu Jos yksisuuntaisen varianssianalyysin nollahypoteesi H 0 : µ 1 = µ 2 = = µ k = µ hylätään tiedetään, että ainakin kaksi
MTTTA1 Tilastomenetelmien perusteet 5 op Luento , osa 1. 1 Kokonaisuudet johon opintojakso kuuluu
5.3.2018/1 MTTTA1 Tilastomenetelmien perusteet 5 op Luento 5.3.2018, osa 1 1 Kokonaisuudet johon opintojakso kuuluu https://www10.uta.fi/opas/opintojakso.htm?rid=14600 &idx=1&uilang=fi&lang=fi&lvv=2017
Matriisit ovat matlabin perustietotyyppejä. Yksinkertaisimmillaan voimme esitellä ja tallentaa 1x1 vektorin seuraavasti: >> a = 9.81 a = 9.
Python linkit: Python tutoriaali: http://docs.python.org/2/tutorial/ Numpy&Scipy ohjeet: http://docs.scipy.org/doc/ Matlabin alkeet (Pääasiassa Deni Seitzin tekstiä) Matriisit ovat matlabin perustietotyyppejä.
CLT255: Tulosten esittäminen ja niiden arviointi tilastomenetelmillä
CLT255: Tulosten esittäminen ja niiden arviointi tilastomenetelmillä Anssi Yli-Jyrä Syksy 2012 2. opetuskerta, 14.9.2012, luento ja harjoitukset Tämän opetuskerran ja siihen liittyvien harjoitusten jälkeen:
Harjoitusten 4 vastaukset
Harjoitusten 4 vastaukset 4.1. Prosessi on = 1 +, jossa»iid( 2 )ja =1 2. PNS estimaattori :lle on (" P P 2 ") = +( X X 2 ) 1 1. =1 Suluissa oleva termi on deterministinen ja suppenee vihjeen mukaan 2 6:teen.
Yksisuuntainen varianssianalyysi (jatkoa) Kuusinen/Heliövaara 1
Yksisuuntainen varianssianalyysi (jatkoa) Kuusinen/Heliövaara 1 Odotusarvoparien vertailu Jos yksisuuntaisen varianssianalyysin nollahypoteesi H 0 : µ 1 = µ 2 = = µ k = µ hylätään, tiedetään, että ainakin
Tilastollisen analyysin perusteet Luento 6: Korrelaatio ja riippuvuus tilastotieteessä
Tilastollisen analyysin perusteet Luento 6: Korrelaatio ja riippuvuus tilastotieteessä Sisältö Riippumattomuus Jos P(A B) = P(A)P(B), niin tapahtumat A ja B ovat toisistaan riippumattomia. (Keskustelimme
Johdatus tilastotieteeseen Yhden selittäjän lineaarinen regressiomalli. TKK (c) Ilkka Mellin (2005) 1
Johdatus tilastotieteesee Yhde selittää lieaarie regressiomalli TKK (c) Ilkka Melli (2005) Yhde selittää lieaarie regressiomalli Yhde selittää lieaarie regressiomalli a sitä koskevat oletukset Yhde selittää
Kaksisuuntainen varianssianalyysi. Heliövaara 1
Kaksisuuntainen varianssianalyysi Heliövaara 1 Kaksi- tai useampisuuntainen varianssianalyysi Kaksi- tai useampisuuntaisessa varianssianalyysissa perusjoukko on jaettu ryhmiin kahden tai useamman tekijän
Odotusarvoparien vertailu. Vilkkumaa / Kuusinen 1
Odotusarvoparien vertailu Vilkkumaa / Kuusinen 1 Motivointi Viime luennolta: yksisuuntaisella varianssianalyysilla testataan nollahypoteesia H 0 : μ 1 = μ 2 = = μ k = μ Jos H 0 hylätään, tiedetään, että
Estimointi. Vilkkumaa / Kuusinen 1
Estimointi Vilkkumaa / Kuusinen 1 Motivointi Tilastollisessa tutkimuksessa oletetaan jonkin jakauman generoineen tutkimuksen kohteena olevaa ilmiötä koskevat havainnot Tämän mallina käytettävän todennäköisyysjakauman
USEAN MUUTTUJAN REGRESSIOMALLIT JA NIIDEN ANA- LYYSI
TEORIA USEAN MUUTTUJAN REGRESSIOMALLIT JA NIIDEN ANA- LYYSI Regressiomalleilla kuvataan tilanteita, jossa suureen y arvot riippuvat joukosta ns selittäviä muuttujia x 1, x 2,..., x p oletetun funktiomuotoisen
Harjoitus 7: NCSS - Tilastollinen analyysi
Harjoitus 7: NCSS - Tilastollinen analyysi Mat-2.2107 Sovelletun matematiikan tietokonetyöt Syksy 2006 Mat-2.2107 Sovelletun matematiikan tietokonetyöt 1 Harjoituksen aiheita Tilastollinen testaus Testaukseen
Lohkoasetelmat. Heliövaara 1
Lohkoasetelmat Heliövaara 1 Kiusatekijä Kaikissa kokeissa, kokeen tuloksiin voi vaikuttaa vaihtelu joka johtuu kiusatekijästä. Kiusatekijä on tekijä, jolla mahdollisesti on vaikutusta vastemuuttujan arvoon,
Sovellettu todennäköisyyslaskenta B
Sovellettu todennäköisyyslaskenta B Antti Rasila 15. marraskuuta 2007 Antti Rasila () TodB 15. marraskuuta 2007 1 / 19 1 Tilastollisia testejä (jatkoa) Yhden otoksen χ 2 -testi varianssille Kahden riippumattoman
Harjoitus 3: Regressiomallit (Matlab)
Harjoitus 3: Regressiomallit (Matlab) MS-C2107 Sovelletun matematiikan tietokonetyöt MS-C2107 Sovelletun matematiikan tietokonetyöt 1 Harjoituksen aiheita Pienimmän neliösumman menetelmä mallin sovittamisessa
2. Yhden selittäajäan lineaarinen regressiomalli. 2.1 Malli ja parametrien estimointi. Malli:
2. Yhden selittäajäan lineaarinen regressiomalli Regressio-termi peräaisin Galtonilta. IsÄan ja pojan pituus: PitkÄa isäa lyhyempi poika, lyhyt isäa pidempi poika. Son height (cm) 21 2 19 18 17 16 15 15
MTTTA1 Tilastomenetelmien perusteet 5 op Luento Kokonaisuudet johon opintojakso kuuluu
10.1.2019/1 MTTTA1 Tilastomenetelmien perusteet 5 op Luento 10.1.2019 1 Kokonaisuudet johon opintojakso kuuluu https://www10.uta.fi/opas/opintojakso.htm?rid=14600 &idx=1&uilang=fi&lang=fi&lvv=2018 10.1.2019/2
Mat Tilastollisen analyysin perusteet. Painotettu PNS-menetelmä. Avainsanat:
Mat-2.104 Tilastollisen analyysin perusteet / Ratkaisut Aiheet: Avainsanat: Mallin valinta Painotettu PNS-menetelmä Alaspäin askellus, Askellus, Askeltava valikointi, Diagnostinen grafiikka, Diagnostiset
Lohkoasetelmat. Vilkkumaa / Kuusinen 1
Lohkoasetelmat Vilkkumaa / Kuusinen 1 Motivointi 1/3 Kaksisuuntaisella varianssianalyysilla voidaan tutkia kahden tekijän A ja B vaikutusta sekä niiden yhdysvaikutusta tutkimuksen kohteeseen Kaksisuuntaisessa
Johdatus tilastotieteeseen Regressiomallin valinta. TKK (c) Ilkka Mellin (2004) 1
Johdatus tilastotieteeseen Regressiomallin valinta TKK (c) Ilkka Mellin (2004) 1 Regressiomallin valinta Regressiomallin valinta: Johdanto Mallinvalintatestit Mallinvalintakriteerit Epälineaaristen riippuvuuksien
Ilkka Mellin Tilastolliset menetelmät. Osa 4: Lineaarinen regressioanalyysi. Regressiomallin valinta. TKK (c) Ilkka Mellin (2007) 1
Ilkka Mellin Tilastolliset menetelmät Osa 4: Lineaarinen regressioanalyysi Regressiomallin valinta TKK (c) Ilkka Mellin (2007) 1 Regressiomallin valinta >> Regressiomallin valinta: Johdanto Mallinvalintatestit
805324A (805679S) Aikasarja-analyysi Harjoitus 4 (2016)
805324A (805679S) Aikasarja-analyysi Harjoitus 4 (2016) Tavoitteet (teoria): Hallita autokovarianssifunktion ominaisuuksien tarkastelu. Osata laskea autokovarianssifunktion spektriiheysfunktio. Tavoitteet
Jos nyt on saatu havaintoarvot Ü ½ Ü Ò niin suurimman uskottavuuden
1.12.2006 1. Satunnaisjakauman tiheysfunktio on Ü µ Üe Ü, kun Ü ja kun Ü. Määritä parametrin estimaattori momenttimenetelmällä ja suurimman uskottavuuden menetelmällä. Ratkaisu: Jotta kyseessä todella
Lohkoasetelmat. Kuusinen/Heliövaara 1
Lohkoasetelmat Kuusinen/Heliövaara 1 Kiusatekijä Kaikissa kokeissa kokeen tuloksiin voi vaikuttaa vaihtelu, joka johtuu kiusatekijästä. Kiusatekijä on tekijä, jolla on mahdollisesti vaikutusta vastemuuttujan
Ristivalidointia ja grafiikkaa
Ristivalidointia ja grafiikkaa Jari Oksanen Maanantai 12. syyskuuta 2005 Tiivistelmä Tässä monisteessa on maantain tapahtumien yhteenveto. Aloitimme Eija Hurmeen kurssipäiväkirjalla ja sen jälkeen päätiomme
1 Johdatus varianssianalyysiin
Tilastollisia malleja 1 & 2: Varianssianalyysi Jarkko Isotalo Y131A & Y132A 15.1.2013 1 Johdatus varianssianalyysiin 1.1 Milloin varianssianalyysiä käytetään? Varianssianalyysi on tilastotieteellinen menetelmä,
HAVAITUT JA ODOTETUT FREKVENSSIT
HAVAITUT JA ODOTETUT FREKVENSSIT F: E: Usein Harvoin Ei tupakoi Yhteensä (1) (2) (3) Mies (1) 59 28 4 91 Nainen (2) 5 14 174 193 Yhteensä 64 42 178 284 Usein Harvoin Ei tupakoi Yhteensä (1) (2) (3) Mies
1. Tutkitaan regressiomallia Y i = β 0 + β 1 X i + u i ja oletetaan, että tavanomaiset
TA7, Ekonometrian johdantokurssi HARJOITUS 7 RATKAISUEHDOTUKSET 16.3.2015 1. Tutkitaan regressiomallia Y i = β 0 + X i + u i ja oletetaan, että tavanomaiset regressiomallin oletukset pätevät (Key Concept
SEM1, työpaja 2 (12.10.2011)
SEM1, työpaja 2 (12.10.2011) Rakenneyhtälömallitus Mplus-ohjelmalla POLKUMALLIT Tarvittavat tiedostot voit ladata osoitteesta: http://users.utu.fi/eerlaa/mplus Esimerkki: Planned behavior Ajzen, I. (1985):
Sovellettu todennäköisyyslaskenta B
Sovellettu todennäköisyyslaskenta B Antti Rasila 30. lokakuuta 2007 Antti Rasila () TodB 30. lokakuuta 2007 1 / 23 1 Otos ja otosjakaumat (jatkoa) Frekvenssi ja suhteellinen frekvenssi Frekvenssien odotusarvo
TA4b Taloudellinen kasvu Harjoitus 2
TA4b Taloudellinen kasvu Harjoitus 2 Heikki Korpela 26. huhtikuuta 2017 Tehtävä 1. Tarkastellaan teknologiaa ja talouskasvua yhden maan mallilla (kirja, luku 8.3; luontomuistiinpanot, luku 8). Oletetaan,
Harjoitukset 3 : Monimuuttujaregressio 2 (Palautus )
31C99904, Capstone: Ekonometria ja data-analyysi TA : markku.siikanen(a)aalto.fi & tuuli.vanhapelto(a)aalto.fi Harjoitukset 3 : Monimuuttujaregressio 2 (Palautus 7.2.2017) Tämän harjoituskerran tehtävät
FoA5 Tilastollisen analyysin perusteet puheentutkimuksessa. 9. luento. Pertti Palo
FoA5 Tilastollisen analyysin perusteet puheentutkimuksessa 9. luento Pertti Palo 22.11.2012 Käytännön asioita Eihän kukaan paikallaolijoista tee 3 op kurssia? 2. seminaarin ilmoittautuminen. 2. harjoitustyön
Valitse ruudun yläosassa oleva painike Download Scilab.
Luku 1 Ohjeita ohjelmiston Scilab käyttöön 1.1 Ohjelmiston lataaminen Ohjeet ohjelmiston lataamiseen Windows-koneelle. Mene verkko-osoitteeseen www.scilab.org. Valitse ruudun yläosassa oleva painike Download
Tilastollisen analyysin perusteet Luento 11: Epäparametrinen vastine ANOVAlle
Tilastollisen analyysin perusteet Luento 11: Epäparametrinen vastine ANOVAlle - Sisältö - - - Varianssianalyysi Varianssianalyysissä (ANOVA) testataan oletusta normaalijakautuneiden otosten odotusarvojen
Harjoitus 1: Matlab. Harjoitus 1: Matlab. Mat Sovelletun matematiikan tietokonetyöt 1. Syksy 2006
Harjoitus 1: Matlab Mat-2.2107 Sovelletun matematiikan tietokonetyöt Syksy 2006 Mat-2.2107 Sovelletun matematiikan tietokonetyöt 1 Harjoituksen aiheita Tutustuminen Matlab-ohjelmistoon Laskutoimitusten
StatCrunch -laskentasovellus
StatCrunch -laskentasovellus Yleistä sovelluksesta StatCrunch on Integrated Analytics LLC:n valmistama sovellus tilastotieteellisten analyysien tuottamista varten. Se on verkon yli käytettävä analyysisovellus,
1. Normaalisuuden tutkiminen, Bowmanin ja Shentonin testi, Rankit Plot, Wilkin ja Shapiron testi
Mat-2.2104 Tilastollisen analyysin perusteet / Ratkaisut Aiheet: Avainsanat: Yhteensopivuuden ja homogeenisuden testaaminen Bowmanin ja Shentonin testi, Hypoteesi, 2 -homogeenisuustesti, 2 -yhteensopivuustesti,