Aurinkokunnan tutkimuksen historiaa
|
|
- Anita Amanda Tamminen
- 8 vuotta sitten
- Katselukertoja:
Transkriptio
1 Aurinkokunnan tutkimuksen historiaa Maan koko ja muoto Vetovoimalaki ja aurinkokunnan koko Planeettojen löytyminen Planeettojen rakenne ja koostumus Tutkimuslaitteiden ja menetelmien kehittyminen Aurinkokunnan pienkappaleet Aurinkokunnan ulkopuoliset planeetat Maan koko ja muoto Maan koko ja muoto on tunnettava ennen kuin voimme ymmärtää aurinkokunnan muiden kappaleiden ominaisuuksia. Maan pallonmuotoisuus tunnettiin jo antiikin aikana, mutta sen tarkka koko saatiin selville vasta uudella ajalla. 1
2 Eratosthenes (n. 00 e.kr.) Aleksandria Syene Auringon suunta kesäpäivänseisauksena Eratostheneen menetelmä Maan koon määrittämiseksi. Eratosthenes oli kuullut kerrottavan, että kesäpäivänseisauksen aikaan Aurinko paistoi Syenessä kohtisuoraan syvän kaivon pohjalle. Samaan aikaan Aleksandriassa Auringon etäisyys zeniitistä oli 1/50 ympyrän kehän pituudesta. Kamelinajajien kertomusten perusteella hän arvioi paikkakuntien välimatkaksi 5000 stadiaa ja oletti, että Syene ja Aleksandria ovat samalla meridiaanilla. Koko maapallon ympärysmitta on siten 50 kertaa paikkakuntien välimatkaa suurempi, joka nykymitoissa vastaisi n km. Maan koko ja muoto pituusasteen ongelma: leveysaste tähtihavainnoista, pituusasteen mittaamiseen tarvitaan aikaerojen määrittämistä kahdella paikalla samanaikaisesti Kuukeino jo antiikin aikana vasta 1700-l. kronometrit mahdollistivat tarkat mittaukset Vanhat kartat likimain oikein pohjoiseteläsuunnassa, suuria vääristymiä itälänsisuunnassa
3 Astemittaukset? Newton vs. Cassini ym. Retkikunnat 1700-l, Maupertuis, Tornionjokilaakso; de la Condamine, Peru Maa litistynyt Myöhemmin 1800-l mm. Struve Maan muoto Maanpäällisin keinoin mittauksia vain yhden mantereen alueella; valtameret vaativat avaruusgeodesian menetelmiä 3
4 Satelliitit painovoimakentän muoto -- geoidi V GM r n n 1 m 1 n a r n a r n J P (sin ) n n ( J cos m K sin m ) P (sin ) nm nm nm Painovoimasatelliitit Satelliittien radat ja ratamuutokset riippuvat planeetan painovoimakentän muodosta 4
5 Laattatektoniikka ja muut maankuoren liikkeet Wegener 1900-l. alussa Ensimmäiset suorat havainnot 1970-l. satelliittilaser Nykyisin esim. GPS, VLBI havainnot Vetovoimalaki ja aurinkokunnan koko Miten aurinkokunnan kappaleet liikkuvat ja kuinka liikelait saatiin selville. Mitä kappalten liikkeet kertovat, mikä on aurinkokunnan koko. Planeettojen liikkeet taivaalla näyttävät monimutkaisilta, koska liikumme myös itse Auringon ympäri. 5
6 Episyklit Keplerin lait r 1 k / e cos f 1 A r f k 1 3 P 3 4 a G( m m )
7 Newtonin vetovoimalaki F r Gm m 1 r r 3 r r 3 Monen kappaleen ongelma; lasketaan numeerisesti Aurinkokunnan koko Keplerin lait antavat vain ratojen kokosuhteet Vähintään yksi etäisyys mitattava suoraan kolmiomittaus (esim. Mars, Eros,...); nyk. tutka, luotaimet, 7
8 Planeettojen löytyminen Havaintolaitteiden kehittyminen mahdollisti yhä himmeämpien kohteiden löytymisen: silmä kaukoputki valokuvaus elektroniset ilmaisimet luotaimet Maata kiertävät satelliitit Planeetat löytyvät Saturnukseen saakka näkyvät paljain silmin Uranus 1781 (William Herschel) Ceres (Piazzi) Neptunus 1846 (Galle / LeVerrier / Adams) Pluto 1930 (Tombaugh) Kuiperin vyöhyke eksoplaneetat Pluto menettää planeetta-asemansa (006); planeettojen määritelmä IAU 8
9 Planeettojen rakenne ja koostumus Planeettojen fysiikka rakenne. Ensimmäiset havainnot koostumuksesta spektroskopian avulla, vasta laskeutujaluotaimin saatiin yksityiskohtaista tietoa koostumuksesta. Planeetat Ennen kaukoputkia ei tietoa planeettojen luonteesta Likimääräiset koot 1700-l. spektroskopian avulla uutta tietoa (rajoitetusti) melko hyvä käsitys jo 1900-l. alkupuolella luotainlennot ja laskeutujat - yksityiskohdat 9
10 Merkittäviä tapahtumia, menetelmiä, laitteita,... Aurinkokeskinen malli, kopernikaaninen vallankumous, 1500-l. Kaukoputken keksiminen, 1600-l. alku Keplerin planeettaliikkeen lait 1600-l. alku Newtonin vetovoimalaki, 1600-l. loppu Uranus, Neptunus, Pluto, pikkuplaneetat taivaanmekaniikan kehitys 1800-l. loppu Merkittäviä... valokuvaus otetaan käyttöön 1800-l. loppu spektroskopia 1800-l. loppu ydinfysiikka, kvanttimekaniikka 1900-l. suhteellisuusteoria 1900-l. radioastronomia, tutkatekniikka 1900-l. satelliitit, luotaimet
11 Merkittäviä... Sputnik 1, 1957, ensimmäinen satelliitti Explorer 1, 1958, van Allenin säteilyvyöt Luna, 1959, ensimmäinen törmäys Kuuhun Luna 3, 1959, kuvat Kuun toiselta puolelta Merkittäviä... Mariner, 196, Venuksen ohilento Mariner 4, 1964, Marsin ohilento Luna 9, 1966, ensimmäinen kuulaskeutuja 11
12 Merkittäviä... Apollo 11, 1969, 1. miehitetty kuulento Venera 7, 1970, pehmeä lasku Venukseen Pioneer 10, 197, Jupiterin ohilento Venera 9 Merkittäviä... Mariner 10, 1974, Merkuriuksen ohilento Viking 1, 1976, tutkimuksia Marsin pinnalla Pioneer Venus 1, 1979, Venuksen 1. kartoitus 1
13 Merkittäviä... Voyager 1,, , Jupiterin, Saturnuksen, Uranuksen ja Neptunuksen ohilennot Tethys Triton Merkittäviä... Galileo, 1989, ensimmäinen lähikuva asteroidista (Gaspra) Galileo 1995, Jupiterin kaasukehä, Jupiterin ja sen kuiden tutkimus 13
14 Merkittäviä... Halley-luotaimet, 1986, lähitiedot komeetasta Ulysses, 1990-, Auringon napa-alueet Near-Shoemaker, 000, laskeutuminen Eroksen pinnalle Merkittäviä... Magellan, 1990-l., Venuksen kartoitus Mars-laskeutujat, kiertolaiset,
15 Merkittäviä... Cassini/Huygens, 005, Saturnus, Titan Vettä Kuussa ja Marsissa, 000-l Iapetus landslide 15
7. AURINKOKUNTA. Miltä Aurinkokunta näyttää kaukaa ulkoapäin katsottuna? (esim. lähin tähti n. 300 000 AU päässä
7. AURINKOKUNTA Miltä Aurinkokunta näyttää kaukaa ulkoapäin katsottuna? (esim. lähin tähti n. 300 000 AU päässä Jupiter n. 4"päässä) = Keskustähti + jäännöksiä tähden syntyprosessista (debris) = jättiläisplaneetat,
Aurinkokunta. Jyri Näränen Jyri.naranen@nls.fi http://personal.inet.fi/tiede/naranen/ Paikkatietokeskus, MML
Aurinkokunta Jyri Näränen Jyri.naranen@nls.fi http://personal.inet.fi/tiede/naranen/ Paikkatietokeskus, MML Aurinkokunta Mikä se on, miten se on muodostunut ja mitä siellä on? Miten sitä tutkitaan? Planeetat
Merkintöjä planeettojen liikkeistä jo muinaisissa nuolenpääkirjoituksissa. Geometriset mallit vielä alkeellisia.
Johdanto Historiaa Antiikin aikaan Auringon ja Kuun lisäksi tunnettiin viisi kappaletta, jotka liikkuivat tähtitaivaan suhteen: Merkurius, Venus, Mars, Jupiter ja Saturnus. Näitä kutsuttiin planeetoiksi
AURINKOKUNNAN RAKENNE
AURINKOKUNNAN RAKENNE 1) Aurinko (99,9% massasta) 2) Planeetat (8 kpl): Merkurius, Venus, Maa, Mars, Jupiter, Saturnus, Uranus, Neptunus - Maankaltaiset planeetat eli kiviplaneetat: Merkurius, Venus, Maa
Planetologia: Tietoa Aurinkokunnasta
Planetologia: Tietoa Aurinkokunnasta Kuva space.com Tieteen popularisointi Ilari Heikkinen 4.5.2016 Aurinkokunnan synty ja rakenne Aurinkokunta syntyi 4,5 miljardia vuotta sitten valtavan tähtienvälisen
Tähtitieteen peruskurssi Lounais-Hämeen Uranus ry 2013 Aurinkokunta. Kuva NASA
Tähtitieteen peruskurssi Lounais-Hämeen Uranus ry 2013 Aurinkokunta Kuva NASA Aurinkokunnan rakenne Keskustähti, Aurinko Aurinkoa kiertävät planeetat Planeettoja kiertävät kuut Planeettoja pienemmät kääpiöplaneetat,
AKAAN AURINKOKUNTAMALLI
AKAAN AURINKOKUNTAMALLI Millainen on avaruus ympärillämme? Kuinka kaukana Aurinko on meistä? Minkä kokoisia planeetat ovat? Tämä Aurinkokunnan pienoismalli on rakennettu vastaamaan näihin ja moneen muuhun
Aurinkokunta, kohteet
Aurinkokunta, kohteet Merkurius Maasta katsoen Merkurius näkyy aina lähellä Aurinkoa; se voi etääntyä Auringosta vain noin 28 päähän. Siksi Merkurius näkyy vain vaalealla ilta- tai aamutaivaalla. Kirkkaimmillaan
Aloitetaan kyselemällä, mitä kerholaiset tietävät aurinkokunnasta ja avaruudesta ylipäänsä.
LUMATE-tiedekerhokerta, suunnitelma AIHE: AURINKOKUNTA Huom! Valmistele maitopurkit valmiiksi. Varmista, että sinulla on riittävästi soraa jupiteria varten. 1. Alkupohdintaa Aloitetaan kyselemällä, mitä
SUHTEELLISUUSTEORIAN TEOREETTISIA KUMMAJAISIA
MUSTAT AUKOT FAQ Kuinka gravitaatio pääsee ulos tapahtumahorisontista? Schwarzschildin ratkaisu on staattinen. Tähti on kaareuttanut avaruuden jo ennen romahtamistaan mustaksi aukoksi. Ulkopuolinen havaitsija
SATURNUS. Jättiläismäinen kaasuplaneetta Saturnus on aurinkokuntamme toiseksi suurin planeetta heti Jupiterin jälkeen
SATURNUKSEN RENKAAT http://cacarlsagan.blogspot.fi/2009/04/compare-otamanho-dos-planetas-nesta.html SATURNUS Jättiläismäinen kaasuplaneetta Saturnus on aurinkokuntamme toiseksi suurin planeetta heti Jupiterin
Ensimmäinen matkani aurinkokuntaan
EDITORIAL WEEBLE Ensimmäinen matkani aurinkokuntaan FERNANDO G. RODRIGUEZ http://editorialweeble.com/suomi/ Ensimmäinen matkani aurinkokuntaan 2014 Editorial Weeble Kirjoittaja: Fernando G. Rodríguez info@editorialweeble.com
Planeetan määritelmä
Planeetta on suurimassainen tähteä kiertävä kappale, joka on painovoimansa vaikutuksen vuoksi lähes pallon muotoinen ja on tyhjentänyt ympäristönsä planetesimaalista. Sana planeetta tulee muinaiskreikan
TAIVAANMEKANIIKKA IHMISEN PERSPEKTIIVISTÄ
TAIVAANMEKANIIKKA IHMISEN PERSPEKTIIVISTÄ ARKIPÄIVÄISTEN ASIOIDEN TÄHTITIETEELLISET AIHEUTTAJAT, FT Metsähovin Radio-observatorio, Aalto-yliopisto KOPERNIKUKSESTA KEPLERIIN JA NEWTONIIN Nikolaus Kopernikus
Exploring aurinkokunnan ja sen jälkeen vuonna Suomi
Exploring aurinkokunnan ja sen jälkeen vuonna Suomi Exploring the Solar System and Beyond in Finnish Kehittämä Nam Nguyen Hubble Ultra Deep Field ampui 2014 Exploring aurinkokunnan ja sen jälkeen tavoitteena
TÄHTITIETEEN PERUSTEET (8OP)
TÄHTITIETEEN PERUSTEET (8OP) HEIKKI SALO, KEVÄT 2013 (heikki.salo@oulu.fi) Kurssin sisältö/alustava aikataulu: (Luennot pe 12-14 salissa FY 1103) PE 18.1 1. Historiaa/pallotähtitiedettä I to 24.1 Kollokvio
Kosmos = maailmankaikkeus
Kosmos = maailmankaikkeus Synty: Big Bang, alkuräjähdys 13 820 000 000 v sitten Koostumus: - Pimeä energia 3/4 - Pimeä aine ¼ - Näkyvä aine 1/20: - vetyä ¾, heliumia ¼, pari prosenttia muita alkuaineita
TAIVAANMERKIT KESÄLLÄ 2014
TAIVAANMERKIT KESÄLLÄ 2014 Kesä alkoi uudella kuulla 28.5. Kaksosissa 7 21 Neptunus-neliön värittämänä ja päättyy 25.8. uuteen kuuhun Neitsyessä 2 18 oppositiossa perääntyvään Neptunukseen. Herkkiä emootioita
Lataa Matkalla Aurinkokuntaan. Lataa
Lataa Matkalla Aurinkokuntaan Lataa ISBN: 9789513236137 Sivumäärä: 63 Formaatti: PDF Tiedoston koko: 23.23 Mb Mitä komeetat ovat, miten tähdet syntyvät ja kuolevat, entä mikä on musta aukko? Kiehtovassa
OPETTAJAN MATERIAALI YLÄKOULUN OPETTAJALLE
OPETTAJAN MATERIAALI YLÄKOULUN OPETTAJALLE Tähän materiaaliin on koottu oppilaille näytettävään diaesitykseen tarkoitettua lisämateriaalia. Tummennetut tekstit ovat lisätietoja jokaista diaa varten ja
OPETTAJAN MATERIAALI LUKION OPETTAJALLE
OPETTAJAN MATERIAALI LUKION OPETTAJALLE Tähän materiaaliin on koottu oppilaille näytettävään diaesitykseen tarkoitettua lisämateriaalia. Tummennetut tekstit ovat lisätietoja jokaista diaa varten ja ne
Planeetat. Jyri Näränen Geodeettinen laitos http://personal.inet.fi/tiede/naranen/
Planeetat Jyri Näränen Geodeettinen laitos http://personal.inet.fi/tiede/naranen/ Aiheet l Aurinkokuntamme planeetat, painopiste maankaltaisilla l Planeettojen olemus l Planeettojen sisäinen rakenne ja
Luvun 13 laskuesimerkit
Luvun 13 laskuesimerkit Esimerkki 13.1 Olkoon Cavendishin vaa'an pienen pallon massa m 1 = 0.0100 kg ja suuren pallon m 2 = 0.500 kg (molempia kaksi kappaletta). Miten suuren gravitaatiovoiman F g pallot
Tähtitieteen historiaa
Tähtitiede Sisältö: Tähtitieteen historia Kokeellisen tiedonhankinnan menetelmät Perusteoriat Alkuräjähdysteoria Gravitaatiolaki Suhteellisuusteoria Alkuaineiden syntymekanismit Tähtitieteen käsitteitä
Jättiläisplaneetat. Nimensä mukaisesti suuria. Mahdollisesti pieni, kiinteä ydin, mutta näkyvissä vain pilvipeitteen yläosa
Jättiläisplaneetat Nimensä mukaisesti suuria Mahdollisesti pieni, kiinteä ydin, mutta näkyvissä vain pilvipeitteen yläosa Pyörivät nopeasti. Vuorovesivoimat eivät ole ehtineet jarruttaa massiivisia planeettoja
Komeetan pyrstö Kirkkonummen Komeetta ry:n jäsenlehti No 2/2009
Komeetan pyrstö Kirkkonummen Komeetta ry:n jäsenlehti No 2/2009 Kuvassa näkyy Orionin suuri emissiosumu M42 ja sitä huomattavasti pienempi M43. Lue modatun kameran ominaisuuksista Seppo Ritamäen artikkelista
Pienkappaleita läheltä ja kaukaa
Pienkappaleita läheltä ja kaukaa Karri Muinonen 1,2 1 Fysiikan laitos, Helsingin yliopisto 2 Geodeettinen laitos Planetaarinen geofysiikka, luento 7. 2. 2011 Johdantoa Tänään 7. 2. 2011 tunnetaan 7675
6. TAIVAANMEKANIIKKA. Antiikki: planeetat = vaeltavia tähtiä jotka liikkuvat kiintotähtien suhteen
6. TAIVAANMEKANIIKKA Antiikki: planeetat = vaeltavia tähtiä jotka liikkuvat kiintotähtien suhteen Näennäinen liike voi olla hyvinkin monimutkaista: esim. ulkoplaneetan suunta retrograadinen opposition
ja ilmakehän alkuaineista, jotka ravitsevat kaikki eliöitä ja uusiutuvat jatkuvassa aineiden kiertokulussa.
1 7 8 9 10 11 1 1 1 1 1 17 18 19 0 1 7 8 9 0 1 7 8 9 0 1 7 8 9 0 1 7 8 9 Maan ulkopuolista elämää etsitään läheltä ja kaukaa. Aurinkokunnassa on viisi paikkaa, joissa teoriassa voisi olla elämän edellytykset.
Keskeisvoimat. Huom. r voi olla vektori eli f eri suuri eri suuntiin!
Keskeisvoimat Huom. r voi olla vektori eli f eri suuri eri suuntiin! Historiallinen ja tärkeä esimerkki on planeetan liike Auringon ympäri. Se on 2 kappaleen ongelma, joka voidaan aina redusoida keskeisliikkeeksi
Jupiter-järjestelmä ja Galileo-luotain II
Jupiter-järjestelmä ja Galileo-luotain II Jupiter ja Galilein kuut Galileo-luotain luotain Jupiterissa NASA, laukaisu 18. 10. 1989 Gaspra 29. 10. 1991 Ida ja ja sen kuu Dactyl 8. 12. 1992 Jupiter 7. 12.
1. Kuinka paljon Maan kiertoaika Auringon ympäri muuttuu vuodessa, jos massa kasvaa meteoroidien vaikutuksesta 10 5 kg vuorokaudessa.
1. Kuinka paljon Maan kiertoaika Auringon ympäri muuttuu vuodessa, jos massa kasvaa meteoroidien vaikutuksesta 10 5 kg vuorokaudessa. Vuodessa Maahan satava massa on 3.7 10 7 kg. Maan massoina tämä on
Jupiterin kuut (1/2)
Jupiterin kuut (1/2) Jupiterin kuut (2/2) Jupiterin kuut: rakenne (1/2) Kuu, R=1738km Io, R = 1821 km Europa, R = 1565 km Ganymedes, R = 2634 km Callisto, R = 2403 km Jupiterin kuut: rakenne (2/2) sisäinen
Ajan osasia, päivien palasia
Ajan osasia, päivien palasia Ajan mittaamiseen tarvitaan liikettä. Elleivät taivaankappaleet olisi määrätyssä liikkeessä keskenään, ajan mittausta ei välttämättä olisi syntynyt. Säännöllinen, yhtäjaksoinen
Planetologia: Tietoa Aurinkokunnasta. Kuva space.com
Planetologia: Tietoa Aurinkokunnasta Kuva space.com Tieteen popularisointi Ilari Heikkinen 4.5.2016 Aurinkokunnan synty ja rakenne Aurinkokunta syntyi 4,5 miljardia vuotta sitten valtavan tähtienvälisen
aurinkokunnan kohteet (planeetat, kääpiöplaneetat, kuut, asteroidit, komeetat, meteoroidit)
Tähtitaivaan kohteet Mitä kaikkea taivaalla on: tähdet Aurinko, tavallinen tähti tähtien ryhmät (kaksoistähdet, avoimet joukot, pallomaiset joukot) tähtienvälinen aine Linnunrata muut galaksit galaksiryhmät
http://www.space.com/23595-ancient-mars-oceans-nasa-video.html
http://www.space.com/23595-ancient-mars-oceans-nasa-video.html Mars-planeetan olosuhteiden kehitys Heikki Sipilä 17.02.2015 /LFS Mitä mallit kertovat asiasta Mitä voimme päätellä havainnoista Mikä mahtaa
Aurinkokunta, yleisiä ominaisuuksia
Aurinkokunta, yleisiä ominaisuuksia Antiikin aikaan Auringon ja Kuun lisäksi tunnettiin viisi kappaletta, jotka liikkuivat tähtitaivaan suhteen: Merkurius, Venus, Mars, Jupiter ja Saturnus. Näitä kutsuttiin
ellipsirata II LAKI eli PINTA-ALALAKI: Planeetan liikkuessa sitä Aurinkoon yhdistävä jana pyyhkii yhtä pitkissä ajoissa yhtä suuret pinta-alat.
KEPLERIN LAI: (Ks. Physica 5, s. 5) Johannes Keple (57-60) yhtyi yko Bahen (546-60) havaintoaineiston pohjalta etsimään taivaanmekaniikan lainalaisuuksia. Keple tiivisti tutkimustyönsä kolmeen lakiinsa
Matematikka ja maailmankuva Matemaattis-luonnontieteellisten alojen akateemiset MAL 13.12.2013 Tapio Markkanen
Matematikka ja maailmankuva Matemaattis-luonnontieteellisten alojen akateemiset MAL 13.12.2013 Tapio Markkanen Maa on pallo Sacrobosco, 1550 Maan muodon vaikutus varjon muotoon kuunpimennyksessä Kuva Petrus
Taivaanmekaniikkaa Kahden kappaleen liikeyhtälö
Taivaanmekaniikkaa kaavojen johto, yksityiskohdat yms. ks. Kattunen, Johdatus taivaanmekaniikkaan tai Kattunen, Donne, Köge, Oja, Poutanen: Tähtitieteen peusteet tai joku muu tähtitieteen/taivaanmekaniikan
Suhteellinen nopeus. Matkustaja P kävelee nopeudella 1.0 m/s pitkin 3.0 m/s nopeudella etenevän junan B käytävää
3.5 Suhteellinen nopeus Matkustaja P kävelee nopeudella 1.0 m/s pitkin 3.0 m/s nopeudella etenevän junan B käytävää P:n nopeus junassa istuvan toisen matkustajan suhteen on v P/B-x = 1.0 m/s Intuitio :
Tähtitieteessä SI-yksiköissä ilmaistut luvut ovat usein hyvin isoja ja epähavainnollisia. Esimerkiksi
Tähtitieteen perusteet, harjoitus 2 Yleisiä huomioita: Tähtitieteessä SI-yksiköissä ilmaistut luvut ovat usein hyvin isoja ja epähavainnollisia. Esimerkiksi aurinkokunnan etäisyyksille kannattaa usein
PARADIGMOJEN VERTAILUPERUSTEET. Avril Styrman Luonnonfilosofian seura
PARADIGMOJEN VERTAILUPERUSTEET Avril Styrman Luonnonfilosofian seura 17.2.2015 KokonaisHede Koostuu paradigmoista Tieteen edistystä voidaan siten tarkastella prosessina missä paradigmat kehinyvät ja vaihtuvat
2/2014. Tähtitieteellinen yhdistys Tampereen Ursa ry.
Radiantti 2/2014 Tähtitieteellinen yhdistys Tampereen Ursa ry. Uusiutunut Radiantti Luet uudistunutta Radianttia. Kuten huomaat, lehdessä on säilytetty useita paperiversion piirteitä. Osa on kuitenkin
Jupiterin magnetosfääri. Pasi Pekonen 26. Tammikuuta 2009
Jupiterin magnetosfääri Pasi Pekonen 26. Tammikuuta 2009 Johdanto Magnetosfääri on planeetan magneettikentän luoma onkalo aurinkotuuleen. Magnetosfäärissä plasman liikettä hallitsee planeetan magneettikenttä.
JOHDATUS TÄHTITIETEESEEN
JOHDATUS TÄHTITIETEESEEN 765109P, 2OP HEIKKI SALO, SYKSY 2015 (heikki.salo@oulu.fi) Kurssin sisältö/aikataulu: 7 x 2h luentokertaa, perjantaisin 14-16 salissa L10 (ensimmäinen luento IT115) 11.9 1. Historiaa/Tähtitaivaan
Aurinkokunnan ylivoimaisesti suurin planeetta (2.5 kertaa massiivisempi kuin muut yhteensä) näennäinen läpimitta 50"
7.16 Jupiter Aurinkokunnan ylivoimaisesti suurin planeetta (2.5 kertaa massiivisempi kuin muut yhteensä) näennäinen läpimitta 50" Pilvimuodostelmat: vaaleat vyöhykkeet (zone) kaasun virtaus ulospäin tummat
En voi olla kirjoittamatta - Kirjoittamisen astrologia
En voi olla kirjoittamatta - Kirjoittamisen astrologia Ammatikseen kirjoittaville ja luovaa työtä tekeville kirjailijoille kauhistuttavin tilanne on tyhjän paperin pelko. Mitä tehdä silloin kun kirjoitustyö
ASTROFYSIIKAN TEHTÄVIÄ VI
ASTROFYSIIKAN TEHTÄVIÄ VI 622. Kun katsot tähtiä, niin niiden valo ei ole tasaista, vaan tähdet vilkkuvat. Miksi? Jos astronautti katsoo tähtiä Kuun pinnalla seisten, niin vilkkuvatko tähdet tällöinkin?
Lataa Aurinkokunta uusiksi - Heikki Oja. Lataa
Lataa Aurinkokunta uusiksi - Heikki Oja Lataa Kirjailija: Heikki Oja ISBN: 9789525329728 Sivumäärä: 263 Formaatti: PDF Tiedoston koko: 15.18 Mb Tiedot omasta aurinkokunnastamme ovat muuttuneet nopeasti.
Sputnikista universumin alkuhetkiin 50 vuotta avaruuslentoja
Sputnikista universumin alkuhetkiin 50 vuotta avaruuslentoja MAOL Syyspäivät 07 Muutoksen tuulet Hannu Koskinen Helsingin yliopisto, fysikaalisten tieteiden laitos Ilmatieteen laitos Kumpulan avaruuskeskus
6. Kaukoputken rakentaminen - Linssikaukoputken toimintaperiaatteeseen tutustuminen - Kaukoputken rakentaminen yksinkertaisista välineistä
Teemakokonaisuudessa Avaruus (7 tuntia) perehdytään avaruuden ilmiöihin ja käsitteisiin, kuten maailmankaikkeuden mittoihin, auringonpimennyksiin, Kuun vaiheisiin sekä planeettoihin. Jokaisella tunnilla
Planeetat. Planeetat Astrologisella kartalla 2 Aurinko 3 Kuu 4 Merkurius 5 Venus 6 Mars 7 Jupiter 8 Saturnus 9 Uranus 10 Neptunus 11 Pluto 12
Planeetat Planeetat Astrologisella kartalla 2 Aurinko 3 Kuu 4 Merkurius 5 Venus 6 Mars 7 Jupiter 8 Saturnus 9 Uranus 10 Neptunus 11 Pluto 12 Planeetat Astrologisella kartalla Aurinko, Kuu ja planeetat
Komeetan pyrstö Kirkkonummen Komeetta ry:n jäsenlehti No 1/2011
Komeetan pyrstö Kirkkonummen Komeetta ry:n jäsenlehti No 1/2011 Maisemakuva on Joutsenen pyrstösulkien alueelta. Kuva liittyy Seppo Ritamäen sivulta 8 alkavaan artikkeliin. KUVIA TAIVAALTA Kuvaaja on Antti
Kysymykset ovat sanallisia ja kuvallisia. Joukossa on myös kompia, pysy tarkkana!
Tietokilpailun finaali Kysymykset ovat sanallisia ja kuvallisia. Joukossa on myös kompia, pysy tarkkana! Mikä on kolmas kosminen nopeus? Pakonopeus luotaimelle, joka lähetetään Maan pinnalta ulos aurinkokunnasta.
5.9 Voiman momentti (moment of force, torque)
5.9 Voiman momentti (moment of force, torque) Voiman momentti määritellään ristitulona M = r F missä r on voiman F vaikutuspisteen paikkavektori tarkasteltavan pisteen suhteen Usean voiman tapauksessa
Albedot ja magnitudit
Albedot ja magnitudit Tähtien kirkkauden ilmoitetaan magnitudiasteikolla. Koska tähdet säteilevät (lähes) isotrooppisesti kaikkiin suuntiin, tähden näennäiseen kirkkautaan vaikuttavat vain: 1) Tähden todellinen
Aurinko. Havaintovälineet. Ilmakehän optiset ilmiöt. Tähtitieteellinen yhdistys Ursa Jaostojen toimintasuunnitelmat 2012 9.11.2011
Kannustetaan jaostoja osallistumaan aktiivisesti Cygnus-kesätapahtuman sekä Tähtipäivien ohjelmiston tuottamiseen. Aurinko Vetäjä: Jyri Lehtinen Jaosto kokoaa verkkosivuilleen jäsenten uusia kuvia Auringosta
L a = L l. rv a = Rv l v l = r R v a = v a 1, 5
Tehtävä a) Energia ja rataliikemäärämomentti säilyy. Maa on r = AU päässä auringosta. Mars on auringosta keskimäärin R =, 5AU päässä. Merkitään luotaimen massaa m(vaikka kuten tullaan huomaamaan sitä ei
S U H T E E L L I S U U S T E O R I AN P Ä Ä P I I R T E I T Ä
S U H T E E L L I S U U S T E O R I AN P Ä Ä P I I R T E I T Ä (ks. esim. http://www.kotiposti.net/ajnieminen/sutek.pdf). 1. a) Suppeamman suhteellisuusteorian perusolettamukset (Einsteinin suppeampi suhteellisuusteoria
7.10 Planeettojen magnitudit
7.10 Planeettojen magnitudit Edellä vuontiheyden kaava (*) F(α) = CA 4π Φ(α) L i 2 Sijoitetaan C = 4/q, A = pq, F = p π Φ(α) 1 2 L R 2 4r 2 L i = L R2 4r 2 Planeetasta heijastunut vuontiheys etäisyydellä
Pimennys- yms. lisäsivut Maailmankaikkeus nyt -kurssi
Pimennys- yms. lisäsivut Maailmankaikkeus nyt -kurssi Asko Palviainen Matemaattis-luonnontieteellinen tiedekunta Ajanlasku Kuukalenteri vuodessa 12 kuu-kuukautta ei noudata vuodenaikoja nykyisistä kalentereista
Yhdistyksen puheenjohtajana toimii hallituksen puheenjohtaja.
TOIMINTAKERTOMUS 2011 1. Hallituksen kokoonpano Puheenjohtaja Varapuheenjohtaja Sihteeri taloudenhoitaja Jäsen Pertti Pääkkönen Timo Hoikkala Jani Silvennoinen Väinö Piipponen Ismo Kuismin Yhdistyksen
Helsingin yliopiston Observatorio ja Ilmatieteen laitoksen geofysiikan osasto järjestävät tiedotustilaisuuden
KUTSU Helsingin yliopiston Observatorio ja Ilmatieteen laitoksen geofysiikan osasto järjestävät tiedotustilaisuuden SMART-1 kuuluotaimen instrumenttitoimituksesta maanantaina 3.6.2002 klo 13.30 alkaen
Tähtitaivaan alkeet Juha Ojanperä Harjavalta
Tähtitaivaan alkeet Juha Ojanperä Harjavalta 14.1.-10.3.2016 Kurssin sisältö 1. Kerta Taivaanpallo ja tähtitaivaan liike opitaan lukemaan ja ymmärtämään tähtikarttoja 2. kerta Tärkeimmät tähdet ja tähdistöt
YHTEYSTIEDOT SISÄLLYSLUETTELO ETU- JA TAKAKANSI LEHDEN TOIMITUS
YHTEYSTIEDOT Warkauden Kassiopeia ry. c/o Veli-Pekka Hentunen Varkauden lukio Osmajoentie 30 78210 Varkaus warkauden.kassiopeia@ursa.fi Yhdistyksen kotisivut: www.ursa.fi/yhd/kassiopeia Taurus Hill Observatory:
Fysiikan historia Luento 6 Kevät 2011
Fysiikan historia Luento 6 Kevät 2011 Newtonin perintö Tieteellinen vallankumous päättyi Newtoniin. Fysiikka siirtyi uuteen aikakauteen, jota luonnehtivat Fysiikan teorioiden esittäminen matematiikan kielellä
Tieteen popularisointi, planetologia: opettajan ohje
Tieteen popularisointi, planetologia: opettajan ohje Esitystä tukevat kohdat alleviivattu ja tietolähteet on ilmoitettu muussa yhteydessä. Diajako perustuu abien materiaalin jakoon. Dia 2: Aurinkokunta
Fysiikan historia kevät 2011 Luento 5
Fysiikan historia kevät 2011 Luento 5 Newtonin edeltäjiä Rene Descartes (1596-1650) ransk. filosofi, matemaatikko ja fyysikko Halusi selittää maailman rationaalisesti. Yhtä mieltä Galilein kanssa: matematiikka
Lataa Sibeliuksesta Tuonelaan - Heikki Oja. Lataa
Lataa Sibeliuksesta Tuonelaan - Heikki Oja Lataa Kirjailija: Heikki Oja ISBN: 9789525329254 Sivumäärä: 111 Formaatti: PDF Tiedoston koko: 39.71 Mb Maapallon tarinat ovat alkaneet levitä pallomme ulkopuolelle
Kaukoputkikurssin 2005 diat
Kaukoputkikurssin 2005 diat Järjestäjänä: Warkauden Kassiopeia ry. Kurssin vetäjät: Harri Haukka Jari Juutilainen Kurssin sisältö Kaukoputkien esittelyä mikä on kaukoputki ja mitä sillä näkee? kasaamme
CASIO-KOULULASKIMET CASIO. OPETTAJAOSIO JULKAISU 8 TEEMAOSIO: ASTRONOMIA: LASKENTAA TAIVAAN JA MAAN VÄLILLÄ. Astronomia ja astrologia SIVU 1
TEEMAOSIO: ASTRONOMIA: LASKENTAA TAIVAAN JA MAAN VÄLILLÄ Pilvettömänä yönä tähtitaivasta voi tarkastella loputtomiin: Silloin voi ymmärtää, kuinka loputtoman suuri maailmankaikkeus on. Yhtäkkiä maapallo
Havaitsevan tähtitieteen pk1 luento 12, Astrometria. Kalvot: Jyri Näränen, Mikael Granvik & Veli-Matti Pelkonen
Havaitsevan tähtitieteen pk1 luento 12, Astrometria Kalvot: Jyri Näränen, Mikael Granvik & Veli-Matti Pelkonen 12. Astrometria 1. 2. 3. 4. 5. Astrometria Meridiaanikone Suhteellinen astrometria Katalogit
Avaruuslentojen fysiikkaa (AstroKosmoTaikonautiikka)
Avaruuslentojen fysiikkaa (AstroKosmoTaikonautiikka) Astronautti Kosmonautti Taikonautti = länsimainen avaruuslentäjä = venäläinen avaruuslentäjä = kiinalainen avaruuslentäjä Juhani Kaukoranta Raahen lukio
Havaitseva tähtitiede 1
Havaitseva tähtitiede 1 19. elokuuta 2009 Leo Takalo puh. 3338229 email: takalo@utu.fi Kirjallisuutta Nilsson, Takalo, Piironen: Havaitseva tähtitiede I (kurssikirja) Kitchin: Astrophysical techniques
Havaitsevan tähtitieteen peruskurssi I
2. Ilmakehän vaikutus havaintoihin Lauri Jetsu Fysiikan laitos Helsingin yliopisto Ilmakehän vaikutus havaintoihin Ilmakehän häiriöt (kuva: @www.en.wikipedia.org) Sää: pilvet, sumu, sade, turbulenssi,
Fysiikkaa runoilijoille Osa 1: klassinen fysiikka
Fysiikkaa runoilijoille Osa 1: klassinen fysiikka Syksy Räsänen Helsingin yliopisto, fysiikan laitos ja fysiikan tutkimuslaitos www.helsinki.fi/yliopisto 1 Käytännöstä Luennot 6.9.-18.10. ma ja ti kello
Monimuotoinen Aurinko: Aurinkotutkimuksen juhlavuosi 2008-2009
Monimuotoinen Aurinko: Aurinkotutkimuksen juhlavuosi 2008-2009 Aurinko on tärkein elämään vaikuttava tekijä maapallolla, joka tuottaa eliö- ja kasvikunnalle sopivan ilmaston ja elinympäristön. Auringon
Tähtitieteen Peruskurssi, Salon Kansalaisopisto, syksy 2010: Valo ja muu säteily
Tähtitieteen Peruskurssi, Salon Kansalaisopisto, syksy 2010: Valo ja muu säteily FT Seppo Katajainen, Turun Yliopisto, Finnish Center for Astronomy with ESO (FINCA) Valo ja muu sähkömagneettinen säteily
Sisällysluettelo: asteroidit
Sisällysluettelo: asteroidit Kirkkausjakauma Havaintoesimerkki Oppositiot Havaintojen käsittely Kirkkaudet Karttaohjelmia Pallas perihelistä apheliin Valmiita karttoja Havaintojen tiedot Lehtiä ja vuosikirjoja
Kaupunkikarttoja. Turku
Kaupunkikarttoja Turku on Suomen vanha pääkaupunki, mutta mitä astrologia kertoo siitä kaupunkina juuri nyt? Miltä kaupunkikuva näyttää astrologisesti katsottuna? Helsinki perustettiin kolmisensataa vuotta
Havaitsevan tähtitieteen peruskurssi I, kevät 2007
Havaitsevan tähtitieteen peruskurssi I, kevät 2007 Luennoitsijat: FM J. Näränen ja FT T. Hackman Laskuharjoitusassistentti: M. Lindborg Luentoajat: To 12-14, periodit 3-4 Kotisivu: http://www.astro.helsinki.fi/opetus/kurssit/havaitseva
6. Taivaanmekaniikka. Vektorin r suuntainen yksikkövektori puolestaan on ˆr = r/r.
6. Taivaanmekaniikka Taivaanmekaniikka tutkii taivaankappaleiden liikkeitä. Lähdemme liikkeelle Newtonin laeista ja johdamme niistä liikelait. Planeettojen liikettä kuvaavat Keplerin lait tosin määritettiin
Ulottuva Aurinko Auringon hallitsema avaruus
Ulottuva Aurinko Auringon hallitsema avaruus Akatemiatutkija Rami Vainio 9.10.2008 Fysiikan laitos, Helsingin yliopisto Sisältö Aurinko ja sen havainnointi Maan pinnalta Auringon korona, sen muoto ja magneettikenttä
Copyright 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley.
Newtonin painovoimateoria Knight Ch. 13 Saturnuksen renkaat koostuvat lukemattomista pölyhiukkasista ja jääkappaleista, suurimmat rantapallon kokoisia. Lisäksi Saturnusta kiertää ainakin 60 kuuta. Niiden
7.6 Planeettojen sisärakenne
7.6 Planeettojen sisärakenne Luotaimien ratoihin kohdistuvat häiriöt planeetan gravitaatiokenttä Gravitaatiokenttä riippuu kappaleen muodosto ja sisäisestä massakajaumasta 1000 km ja suuremmat kappaleet:
1) Maan muodon selvittäminen. 2) Leveys- ja pituuspiirit. 3) Mittaaminen
1) Maan muodon selvittäminen Nykyään on helppo sanoa, että maa on pallon muotoinen olet todennäköisesti itsekin nähnyt kuvia maasta avaruudesta kuvattuna. Mutta onko maapallomme täydellinen pallo? Tutki
2 Keskeisvoimakenttä. 2.1 Newtonin gravitaatiolaki
2 Keskeisvoimakenttä 2.1 Newtonin gravitaatiolaki Newton oletti, että kappale, jolla on massa m 1, vaikuttaa etäisyydellä r 12 olevaan toiseen kappaleeseen, jonka massa on m 2, gravitaatiovoimalla, joka
Fysiikan menetelmät ja kvalitatiiviset mallit Rakenneyksiköt
Fysiikan menetelmät ja kvalitatiiviset mallit Rakenneyksiköt ISBN: Veera Kallunki, Jari Lavonen, Kalle Juuti, Veijo Meisalo, Anniina Mikama, Mika Suhonen, Jukka Lepikkö, Jyri Jokinen Verkkoversio: http://www.edu.helsinki.fi/astel-ope
Tähtitieteen Peruskurssi, Salon Kansalaisopisto, syksy 2010: HAVAINTOLAITTEET
Tähtitieteen Peruskurssi, Salon Kansalaisopisto, syksy 2010: HAVAINTOLAITTEET FT Seppo Katajainen, Turun Yliopisto, Finnish Center for Astronomy with ESO (FINCA) Havaintolaitteet Havaintolaitteet sähkömagneettisen
INSINÖÖRIN NÄKÖKULMA FYSIIKAN TEHTÄVÄÄN. Heikki Sipilä LF-Seura
INSINÖÖRIN NÄKÖKULMA FYSIIKAN TEHTÄVÄÄN Heikki Sipilä LF-Seura 18.9.2018 Sisältö Henkilökohtaista taustaa Insinööri ja fysiikka Dimensioanalyysi insinöörin menetelmänä Esimerkki havainnon ja teorian yhdistämisestä
Kolmiomittauksen historiaa
Maanmittaus 84:1 (2009) 65 Maanmittaus 84:1 (2009) Historiallinen tietoisku Kolmiomittauksen historiaa Jyrki Puupponen jyrki.puupponen@iki.fi Tiivistelmä. Vuonna 2008 Maanmittauslaitos juhlii 375-vuotistaivaltaan
11. Astrometria, ultravioletti, lähiinfrapuna
11. Astrometria, ultravioletti, lähiinfrapuna 1. Astrometria 2. Meridiaanikone 3. Suhteellinen astrometria 4. Katalogit 5. Astrometriasatelliitit 6. Ultravioletti 7. Lähi-infrapuna 13.1 Astrometria Taivaan
Analyyttinen mekaniikka I periodi 2012
Analyyttinen mekaniikka I periodi 2012 Luennot: Luennoitsija: Kurssin kotisivu: ma & to 10-12 (E204) Rami Vainio, Rami.Vainio@helsinki.fi http://theory.physics.helsinki.fi/~klmek/ Harjoitukset: to 16-18
Tähdet kertovat tulevaisuutesi vai kertovatko? Pohdintoja astrologiasta, horoskoopista ja taivaallisista suojelijoistamme
Tähdet kertovat tulevaisuutesi vai kertovatko? Pohdintoja astrologiasta, horoskoopista ja taivaallisista suojelijoistamme Ma klo 18.30 20 Opistotalo, Helsinginsali, Helsinginkatu 26, 22.10.-3.12.2012 FM
Toiminta. Jaostot. Aurinko (päivitetty) Havaintovälineet. Ilmakehän optiset ilmiöt. Kerho- ja yhdistystoiminta (päivitetty)
Toiminta Jaostot Kaikilla jaostoilla on ollut vuoden aikana aktiivista toimintaa. Kaikki eivät ole toiminnastaan kertomusta toimittaneet. Kevään aikana viimeisistäkin jaostoista kertomukset saadaan. Aurinko
Avoimet työpaikat 2016
Avoimet työpaikat 2016 Osa-aikaisen valmennuspäällikön paikan haku on avoinna 18.11.-2.12.2015 Valmennuspäällikön paikkaa haetaan avoimella hakemuksella, joka tulee lähettää 2.12. klo 16.00 mennessä osoitteisiin:
Luento 4: kertaus edelliseltä luennolta
Luento 4: kertaus edelliseltä luennolta Liikeyhtälön ratkaisu: kartioleikkaus (Kepler I r = k2 /µ + e cosf = a ǫ2 +ǫ cos f k = k ǫ < ellipsi, negativinen energia a = µ 2h ǫ = parabeli, nolla energia ǫ
Havaitsevan tähtitieteen peruskurssi I Johdanto
Havaitsevan tähtitieteen peruskurssi I Johdanto Helsingin yliopisto, Fysiikan laitos kevät 2013 Havaitsevan tähtitieteen peruskurssi I Luennoitsijat:, Veli-Matti Pelkonen Luentoajat: To 14 16 Laskuharjoitusassistentti: