Katkonnanohjaus evoluutiolaskennan keinoin
|
|
- Kalevi Saarnio
- 9 vuotta sitten
- Katselukertoja:
Transkriptio
1 Katkonnanohjaus evoluutiolaskennan keinoin Askel kohti optimaalista tavaralajijakoa Veli-Pekka Kivinen HY, Metsävarojen käytön laitos
2 Katkonnanohjauksen problematiikkaa Miten arvo-/tavoitematriisit tulisi asettaa? - Samat matriisit jokaiseen leimikkoon vai leimikkokohtaisesti säädetyt matriisit? - Miten säätää/optimoida tavoitejakaumia? Miten tavoitejakauman ja toteutuneen tukkijakauman välistä yhteensopivuutta (goodness-of-fit) tulisi mitata? Tavaralajien optimaalinen allokointi?
3 Evoluutiolaskenta - Heikot sortuu elon tiellä... Evoluutiostrategiat Rechenberg, Schwefel 196 Evoluutio-ohjelmointi Fogel, Owens,Walsh 1965 Geneettiset algoritmit (GA) Holland 196
4 Geneettinen algoritmi (GA) Luo joukko aloitusratkaisuja Arvioi jokaisen ratkaisuehdotuksen hyvyys eli optimaalisuus Lopeta Kyllä Riittävän hyvä ratkaisu löytynyt tai aika loppunut Ei Luo uusi joukko ratkaisuyritteitä Valinta Yhdistely Mutaatio
5 Geneettinen algoritmi (GA) arvoja/tai tavoitematriisien optimointiin Yksitavoiteoptimointia - Tavoitteena maksimoida toteutuneen tukkijakauman ja tavoitejakauman välinen yhteensopivuus etsimällä optimaalisia matriisikombinaatioita Kokonaisoptimointia (forest level) - Usean leimikon rinnakkainen käsittely - Usean tukkitavaralajin rinnakkainen käsittely tavaralajiallokointi mukana Rajoittamatonta optimointia - Ei määrä tms. rajoitteita
6 Ratkaisuyritteiden koodaus LEIMIKKO 1 LEIMIKKO 2... LEIMIKKO n 1 Arvomatriismatriisi 111 Arvo- Arvomatriisi k Arvomatriismatriisi 121 Arvo- Arvomatriisi k... Arvomatriismatriisi 1n1 Arvo- Arvomatriisi 1n2 1nk 2 Arvomatriismatriisi 211 Arvo- Arvomatriisi k Arvomatriismatriisi 221 Arvo- Arvomatriisi k... Arvomatriismatriisi 2n1 Arvo- Arvomatriisi 2n2 2nk M M M M m Arvomatriismatriisi m11 Arvo- Arvomatriisi m12 m1k... Arvomatriismatriisi m21 Arvo- Arvomatriisi m22 m2k Arvomatriismatriisi mn1 Arvo- Arvomatriisi mn2 mnk Tukkilaji 1 Tukkilaji 2 Tukkilaji k
7 Stem data stand 1 Price matrix Log type 1 string 1 Log type 2 Stem data stand 2 M Stem data stand n-1 BUCKING PROCEDURE Price matrix string 2 M Price matrix string m-1 Log type k Apply mutation Stem data stand n Price matrix string m Log output matrix 1 Log output matrix 2... Log output matrix m-1 Log output matrix m Apply crossover Global target matrix Log type 1 Calculate the fitness of each price matrix string Log type k Log type 2 Has the maximum iteration number been reached? Yes End No Apply selection
8 Geneettinen optimointialgoritmi Lähtötiedot 1. Leimikoiden runkotiedot - Runkokäyrät STM-formaatissa - Valmius lukea laaturajat (mänty); ei vielä mukana optimoinnissa - Optimointitesteissä sekä todelliset (moto) että estimoidut (ennakkomittaus) puustotiedot 2. Tavaralajeittaiset tavoitejakaumat - Tavoite yli koko matriisin tai - Läpimittaluokittainen pituustavoite
9 Geneettinen optimointialgoritmi Lähtöpopulaation ratkaisuyritteet - Generoidaan satunnaisesti annetulta lukualueelta Ratkaisuyritteiden hyvyyden mittaaminen - Tavoitejakaumien ja toteutuneiden tukkijakaumien vertailu summatasolla: Tukki 1: Tav.jak. Tot.Kok.Jak. Hyv.arvo 1 Tukki 2: Tav.jak. Tot.Kok.Jak. Hyv.arvo 2 Tukki k: Tav.jak. Tot.Kok.Jak. Hyv.arvo k Kokonaishyvyysarvo
10 Katkontatuloksen hyvyyden mittaaminen Jakauma-aste Tavoitejakauma (%) Toteutunut jakauma (%) Lpm Tukin pituus (cm) Lpm Tukin pituus (cm) (mm) (mm) Jakauma-aste = min(.2,.) + min(.5,.) + min(.1,.) + min(.15,.) =.2 (2%)
11 Katkontatuloksen hyvyyden mittaaminen Khi-toiseen (χ2) testistatistiikka 2 χ = m n ( o ) ij e ij i= 1 j= 1 2 /e ij o ij = Havaittu frekvenssi (tukkien lkm) tukkiluokassa (i,j) e ij = Odotettu (tavoite) frekvenssi tukkiluokassa (i,j). - Hyvä yhteensopivuus: χ 2 - Huono yhteensopivuus: χ 2 Tulkinta? Skaalaus välille [,1] kontingenssikertoilla (C): 1 C = 1 [χ2/(χ2+n)]1/2
12 Katkontatuloksen hyvyyden mittaaminen Khi-toiseen (χ2) testistatistiikka Tavoitejakauma (%) Toteutunut jakauma (kpl) Lpm Tukin pituus (cm) Lpm Tukin pituus (cm) (mm) (mm) χ 2 = (-2) 2 /2 + (-2) 2 / (-15) 2 /15 + (-15) 2 /15 = Kontingenssikerroin (C) = [ /( )].5 =.9 1 C =.97
13 Katkontatuloksen hyvyyden mittaaminen Indeksiteoria: Laspeyresin volyymi-indeksi - Aggregoitu, painotettu määränmuutoksen mittari -- painoina perus- tai vertailuajankohdan hinnat Q L m n i= 1 j= 1 = m n i= 1 j= 1 p p ij ij o e ij ij - Hyvä yhteensopivuus: Q L 1 ( 1) - Huono yhteensopivuus: Q L o ij = Havaittu frekvenssi (tukkien lkm) tukkiluokassa (i,j) e ij = Odotettu (tavoite) frekvenssi tukkiluokalle (i,j) p ij = Tukin (suht.) (jalostus)arvo tukkiluokassa (i, j)
14 Katkontatuloksen hyvyyden mittaaminen Laspeyresin volyymi-indeksi Toteutunut jakauma (o ij ) Jalostusarvomatriisi (P ij ) Lpm Tukin pituus (cm) Lpm Tukin pituus (cm) (mm) (mm) pij x oij = 1x + 128x + 164x + 17x = 14 1 pij x eij = Q L =.919
15 Geneettinen optimointialgoritmi Ratkaisuyritteiden hyvyyden mittaus - Khi-toiseen statistiikka Seuraavan yritesukupolven muodostaminen 1. Valinta: Elitismi - Hyvyysarvoltaan parhaimmat jatkoon 2. Risteytys: Uniform crossover - Matriisien satunnainen rekombinaatio leimikoittain ja tavaralajeittain. Mutaatio: Korvaus satunnaisluvulla - Kunkin matriisin jokaisella solulla mahdollisuus mutatoitua
16 Geneettinen optimointialgoritmi Uniform crossover Vanhempi 1 Jälkeläinen Vanhempi 2 lpm/pit lpm/pit lpm/pit Crossover maski lpm/pit
17 Tavoitejakauman optimointi GA:lla Miten säätää/optimoida tavoitejakaumia? - Tavallisesti epäsuorasti arvomatriisien kautta: GA:lla toteutuneet pölkytykset tavoitteiksi Tavoitejakauma on prioriteettilista - Tulkitaan tukkiluokkien prioriteetit hintoina Ohjataan pölkytystä pelkällä tavoitejakaumalla ns. greedy algorithm (ahne algoritmi): Eniten puutetta suurin prioriteetti
18 Tavoitejakauman optimointi GA:lla Pölkytysalgoritmi: 1. Valitse katkontavaihtoehto, joka maksimoi rungon arvon (arvoapteeraus) 2. Päivitä prioriteetti(tavoite)matriisi vertaamalla toteutunutta kumulatiivista tukkijakaumaa tavoitejakaumaan: ( 1+ n) p(priority) = m n ( 1+ m) missä m = Tukkien tavoitemäärä tukkiluokassa (i, j) n = Tukkien todellinen kumulatiivinen lukumäärä tukkiluokassa (i, j). Palaa kohtaan 1
19 Kantoja riittää kaskessa... Rajoitevapaa optimointi ei vastaa todellisuutta - Tavaralajeilla määrätavoitteita/-rajoitteita - Pieniä tavaralajieriä kallista keräillä ja kuljettaa Yksitavoiteoptimointi vain osaoptimointia - Katkontatulos vain yksi kriteeri muiden joukossa - Esim. kuljetusetäisyys keskeinen tekijä tavaralajivalinnassa Rajoitettu monitavoitteinen optimointiongelma Miten saada luotettavaa ennakkotietoa? - Totaalimittaus ilmakuvilta?
Katkonta - ensimmäinen jalostuspäätös vai raaka-aineen hinnan määritystä?
Katkonta - ensimmäinen jalostuspäätös vai raaka-aineen hinnan määritystä? Puupäivä, torstaina 27.10.2011 Jukka Malinen Metla / Joensuu Metsäntutkimuslaitos Skogsforskningsinstitutet Finnish Forest Research
LisätiedotTIES592 Monitavoiteoptimointi ja teollisten prosessien hallinta. Yliassistentti Jussi Hakanen syksy 2010
TIES592 Monitavoiteoptimointi ja teollisten prosessien hallinta Yliassistentti Jussi Hakanen jussi.hakanen@jyu.fi syksy 2010 Evoluutiopohjainen monitavoiteoptimointi MCDM ja EMO Monitavoiteoptimointi kuuluu
LisätiedotLeimikoiden apteerausvaihtoehtojen optimointi esitutkimus. Vesa Imponen. Metsätehon raportti 48 24.2.1998
Leimikoiden apteerausvaihtoehtojen optimointi esitutkimus Vesa Imponen Metsätehon raportti 48 24.2.1998 Konsortiohanke: A.Ahlström Osakeyhtiö, Aureskoski Oy, Enso Oy, Koskitukki Oy, Kuhmo Oy, Metsähallitus,
LisätiedotMonitavoitteiseen optimointiin soveltuvan evoluutioalgoritmin tarkastelu
Monitavoitteiseen optimointiin soveltuvan evoluutioalgoritmin tarkastelu (Valmiin työn esittely) 11.4.2011 Ohjaaja: Ville Mattila Valvoja: Raimo Hämäläinen Työn tavoite Tutkia evoluutioalgoritmia (Lee
LisätiedotAlgoritmit 2. Luento 12 To Timo Männikkö
Algoritmit 2 Luento 12 To 3.5.2018 Timo Männikkö Luento 12 Geneettiset algoritmit Simuloitu jäähdytys Merkkijonon sovitus Horspoolin algoritmi Algoritmit 2 Kevät 2018 Luento 12 To 3.5.2018 2/35 Algoritmien
LisätiedotTilastotieteellisiä malleja välimatka- ja suhdeasteikollisten preferenssien mittaamiseen. Pekka Leskinen ja Tuomo Kainulainen Metla
\esitelm\hki0506.ppt 18.5.2006 Tilastotieteellisiä malleja välimatka- ja suhdeasteikollisten preferenssien mittaamiseen Pekka Leskinen ja Tuomo Kainulainen Metla FORS-iltapäiväseminaari 24.5.2006: Operaatiotutkimus
LisätiedotPetri Hannuksela. Tukkien tavoite- ja toteutuneiden jakaumien vertailua
PRO GRADU -TUTKIELMA Matematiikan, tilastotieteen ja filosofian laitos Tilastotiede Marraskuu 2006 Petri Hannuksela Tukkien tavoite- ja toteutuneiden jakaumien vertailua Tampereen Yliopisto Matematiikan,
LisätiedotArkkitehtuurien tutkimus Outi Räihä. OHJ-3200 Ohjelmistoarkkitehtuurit. Darwin-projekti. Johdanto
OHJ-3200 Ohjelmistoarkkitehtuurit 1 Arkkitehtuurien tutkimus Outi Räihä 2 Darwin-projekti Darwin-projekti: Akatemian rahoitus 2009-2011 Arkkitehtuurisuunnittelu etsintäongelmana Geneettiset algoritmit
LisätiedotGA & robot path planning. Janne Haapsaari AUTO Geneettiset algoritmit
GA & robot path planning Janne Haapsaari AUTO3070 - Geneettiset algoritmit GA robotiikassa Sovelluksia liikkeen optimoinnissa: * eri vapausasteisten robottien liikeratojen optimointi * autonomisten robottien
LisätiedotDarwin: Tutkimusprojektin esittely
1 Darwin: Tutkimusprojektin esittely Tutkimusongelma: voidaanko ohjelmistoarkkitehtuuri generoida automaattisesti? Suomen Akatemian rahoittama tutkimusprojekti 2009-2011 TTY & TaY yhteistyö Ks. http://practise.cs.tut.fi/project.php?project=darwin
LisätiedotKuvioton metsäsuunnittelu Paikkatietomarkkinat, Helsinki Tero Heinonen
Paikkatietomarkkinat, Helsinki 3.11.2009 Tero Heinonen Sisältö Kuvioton metsäsuunnittelu Optimointi leimikon suunnittelumenetelmänä Verrataan optimointi lähestymistapaa diffuusiomenetelmään Muuttuvat käsittely-yksiköt
LisätiedotVaihtoehtoisia malleja puuston kokojakauman muodostamiseen
Vaihtoehtoisia malleja puuston kokojakauman muodostamiseen Jouni Siipilehto, Harri Lindeman, Jori Uusitalo, Xiaowei Yu, Mikko Vastaranta Luonnonvarakeskus Geodeettinen laitos Helsingin yliopisto Vertailtavat
LisätiedotPaikkatietoa metsäbiomassan määrästä tarvitaan
Biomassan estimointi laseraineiston, ilmakuvien ja maastomittausten perusteella Esitys Metsätieteen Päivän Taksaattorisessiossa 26.10.2011 Reija Haapanen, Sakari Tuominen ja Risto Viitala Paikkatietoa
LisätiedotMännyn laaturajojen integrointi runkokäyrän ennustamisessa. Laura Koskela Tampereen yliopisto 9.6.2003
Männyn laaturajojen integrointi runkokäyrän ennustamisessa Laura Koskela Tampereen yliopisto 9.6.2003 Johdantoa Pohjoismaisen käytännön mukaan rungot katkaistaan tukeiksi jo metsässä. Katkonnan ohjauksessa
LisätiedotTukkijakauman ohjaus. Tuomo Vuorenpää Anna Aaltonen Vesa Imponen Eero Lukkarinen
Tukkijakauman ohjaus Tuomo Vuorenpää Anna Aaltonen Vesa Imponen Eero Lukkarinen Metsätehon raportti 38 23.12.1997 Konsortiohanke: A.Ahlström Osakeyhtiö, Aureskoski Oy, Enso Oyj, Koskitukki Oy, Kuhmo Oy,
LisätiedotVoidaanko laatu huomioida männyn katkonnassa? Jori Uusitalo Joensuun yliopisto
Voidaanko laatu huomioida männyn katkonnassa? Jori Uusitalo Joensuun yliopisto Esityksen sisältö Katkonnan ohjauksen perusteet Tutkimustuloksia Laadun huomioon ottaminen katkonnassa Katkonnan ohjauksen
LisätiedotPuunkorjuun tulevaisuus. Aluejohtaja Jori Uusitalo 21.5.2014
Aluejohtaja 21.5.2014 Puunkorjuun kehittämisen painopisteet Puunkorjuun kausivaihtelun vähentäminen Puun jalostamisen ja katkonnan optimointi 1000 m3 Kausivaihtelun vähentäminen 6000 Puunkorjuun kausivaihtelu
Lisätiedot10. Painotetut graafit
10. Painotetut graafit Esiintyy monesti sovelluksia, joita on kätevä esittää graafeina. Tällaisia ovat esim. tietoverkko tai maantieverkko. Näihin liittyy erinäisiä tekijöitä. Tietoverkkoja käytettäessä
LisätiedotA ja B pelaavat sarjan pelejä. Sarjan voittaja on se, joka ensin voittaa n peliä.
Esimerkki otteluvoiton todennäköisyys A ja B pelaavat sarjan pelejä. Sarjan voittaja on se, joka ensin voittaa n peliä. Yksittäisessä pelissä A voittaa todennäköisyydellä p ja B todennäköisyydellä q =
Lisätiedothinnoitteluun ja puukauppaan
Työkaluja puutavaran hinnoitteluun ja puukauppaan PUU tutkimus ja kehittämisohjelman väliseminaari 6.9.2012 Sokos Hotel Vaakuna, Hämeenlinna Jukka Malinen Metla / Joensuu Metsäntutkimuslaitos Skogsforskningsinstitutet
LisätiedotLuento 4: Lineaarisen tehtävän duaali
Luento 4: Lineaarisen tehtävän duaali Käsittelemme seuraavaksi lineaarisen optimoinnin duaaliteoriaa. Kuten luennossa 2 esitettiin, kohdefunktion optimiarvon herkkyys z, kun rajoitusyhtälön i, 1 i m, oikea
LisätiedotAlgoritmit 2. Luento 12 Ke Timo Männikkö
Algoritmit 2 Luento 12 Ke 26.4.2017 Timo Männikkö Luento 12 Rajoitehaku Kauppamatkustajan ongelma Lyhin virittävä puu Paikallinen etsintä Vaihtoalgoritmit Geneettiset algoritmit Simuloitu jäähdytys Algoritmit
LisätiedotTTY Porin laitoksen optimointipalvelut yrityksille
TTY Porin laitoksen optimointipalvelut yrityksille Timo Ranta, TkT Frank Cameron, TkT timo.ranta@tut.fi frank.cameron@tut.fi Automaation aamukahvit 28.8.2013 Optimointi Tarkoittaa parhaan ratkaisun valintaa
LisätiedotOptimoinnin sovellukset
Optimoinnin sovellukset Timo Ranta Tutkijatohtori TTY Porin laitos OPTIMI 4.12.2014 Mitä optimointi on? Parhaan ratkaisun systemaattinen etsintä kaikkien mahdollisten ratkaisujen joukosta Tieteellinen
LisätiedotPuun kasvu ja runkomuodon muutokset
Puun kasvu ja runkomuodon muutokset Laserkeilaus metsätieteissä 6.10.2017 Ville Luoma Helsingin yliopisto Centre of Excellence in Laser Scanning Research Taustaa Päätöksentekijät tarvitsevat tarkkaa tietoa
LisätiedotImplementation of Selected Metaheuristics to the Travelling Salesman Problem (valmiin työn esittely)
Implementation of Selected Metaheuristics to the Travelling Salesman Problem (valmiin työn esittely) Jari Hast xx.12.2013 Ohjaaja: Harri Ehtamo Valvoja: Hari Ehtamo Työn saa tallentaa ja julkistaa Aalto-yliopiston
LisätiedotLineaaristen monitavoiteoptimointitehtävien
Lineaaristen monitavoiteoptimointitehtävien ratkaiseminen Jerri Nummenpalo 17.09.2012 Ohjaaja: TkT Juuso Liesiö Valvoja: Prof. Ahti Salo Työn saa tallentaa ja julkistaa Aalto-yliopiston avoimilla verkkosivuilla.
LisätiedotTulevaisuuden Saha seminaari. SisuPUUN tavoitteet 27.05.2009 Jouko Silen
Tulevaisuuden Saha seminaari SisuPUUN tavoitteet 27.05.2009 Jouko Silen SisuPUU, miksi? Lähtökohtana projektissa: 2004 2005 vuosien tappiolliset tulokset Sahateollisuuden kehitysvaihtoehdot 1. Keskittyminen
LisätiedotKynä-paperi -harjoitukset. Taina Lehtinen Taina I Lehtinen Helsingin yliopisto
Kynä-paperi -harjoitukset Taina Lehtinen 43 Loput ratkaisut harjoitustehtäviin 44 Stressitestin = 40 s = 8 Kalle = 34 pistettä Ville = 5 pistettä Z Kalle 34 8 40 0.75 Z Ville 5 8 40 1.5 Kalle sijoittuu
LisätiedotAlgoritmit 1. Demot Timo Männikkö
Algoritmit 1 Demot 1 25.-26.1.2017 Timo Männikkö Tehtävä 1 (a) Algoritmi, joka laskee kahden kokonaisluvun välisen jakojäännöksen käyttämättä lainkaan jakolaskuja Jaettava m, jakaja n Vähennetään luku
Lisätiedotχ = Mat Sovellettu todennäköisyyslasku 11. harjoitukset/ratkaisut
Mat-2.091 Sovellettu todennäköisyyslasku /Ratkaisut Aiheet: Yhteensopivuuden testaaminen Homogeenisuuden testaaminen Riippumattomuuden testaaminen Avainsanat: Estimointi, Havaittu frekvenssi, Homogeenisuus,
LisätiedotVuoden 2005 eläkeuudistuksen
Vuoden 2005 eläkeuudistuksen vaikutus eläkkeelle siirtymiseen Roope Uusitalo HECER, Helsingin yliopisto Aktuaariyhdistys 23.10. 2013 Tutkimuksen tavoite Arvioidaan vuoden 2005 uudistusten kokonaisvaikutus
LisätiedotOsakesalkun optimointi. Anni Halkola Turun yliopisto 2016
Osakesalkun optimointi Anni Halkola Turun yliopisto 2016 Artikkeli Gleb Beliakov & Adil Bagirov (2006) Non-smooth optimization methods for computation of the Conditional Value-at-risk and portfolio optimization.
LisätiedotPOHJOIS-KARJALAN AMMATTIKORKEAKOULU KATKONTAOHJEIDEN KEHITTÄMINEN SIMULOINNIN AVULLA KUUSITUKKIJAKAUMAN PARANTAMISEKSI
POHJOIS-KARJALAN AMMATTIKORKEAKOULU Metsätalouden koulutusohjelma Mikko Anttilainen KATKONTAOHJEIDEN KEHITTÄMINEN SIMULOINNIN AVULLA KUUSITUKKIJAKAUMAN PARANTAMISEKSI Opinnäytetyö Toukokuu 2012 OPINNÄYTETYÖ
LisätiedotParempaa äänenvaimennusta simuloinnilla ja optimoinnilla
Parempaa äänenvaimennusta simuloinnilla ja optimoinnilla Erkki Heikkola Numerola Oy, Jyväskylä Laskennallisten tieteiden päivä 29.9.2010, Itä-Suomen yliopisto, Kuopio Putkistojen äänenvaimentimien suunnittelu
Lisätiedotklusteroi data haluttuun määrään klustereita tee n-gram -mallit klustereista (tasoitus) estimoi sekoitteiden painokertoimet λ k
/DXU6HWVRH /DXU6HWVRH#KXWI 5XP0,\HUDG0DU2VWHGRUI0RGHJ/RJ'VWDH'HHGHH /DJXDJH7R0[WXUHV9HUVXV'\DP&DKH0RGHV,7UDV VHHKDGDXGRURHVVJ-DXDU\ $KHVHRWHPDGHD.l\WlW l.rhhvdwxrvd
LisätiedotMetsätiedon lähteitä ja soveltamismahdollisuuksia
Metsätiedon lähteitä ja soveltamismahdollisuuksia Tapio Räsänen Metsäteho Oy FOREST BIG DATA hankkeen tulosseminaari 8.3.2016 Heureka, Vantaa Tietojärjestelmät ja sovellukset Sovellus X Sovellus X Sovellus
LisätiedotARVO ohjelmisto. Tausta
ARVO ohjelmisto Tausta Jukka Malinen, Metla Metsäntutkimuslaitos Skogsforskningsinstitutet Finnish Forest Research Institute www.metla.fi Ennakkotiedon tarve - Metsänomistaja 25.1.2010 2 Ennakkotiedon
LisätiedotAS Automaation signaalinkäsittelymenetelmät. Tehtävä 1. Käynnistä fuzzy-toolboxi matlabin komentoikkunasta käskyllä fuzzy.
AS-84.161 Automaation signaalinkäsittelymenetelmät Tehtävä 1. Käynnistä fuzzy-toolboxi matlabin komentoikkunasta käskyllä fuzzy. Tämän jälkeen täytyy: 1. Lisätä uusi sisääntulo edit->add input 2. nimetä
LisätiedotAircraft Maintenance Scheduling with Multi- Objective Simulation- Optimization
Aircraft Maintenance Scheduling with Multi- Objective Simulation- Optimization 7.5.2011 Ohjaaja: Ville Mattila Valvoja: Raimo Hämäläinen Tausta Ilmavoimilla tärkeä rooli maanpuolustuksessa Rauhan aikana
LisätiedotSIMO-seminaari. 23.3.2007 Helsinki
SIMO-seminaari 23.3.2007 Helsinki Ohjelma Tässä ollaan nyt: SIMO-demo Kahvi Jotain erilaistakin: Tapion Suokanta Jatkokuviot SIMO-demo Datana Metsähallituksen H_alueelta 240, T_piiristä 5, osastosta 181
LisätiedotSearch space traversal using metaheuristics
Search space traversal using metaheuristics Mika Juuti 11.06.2012 Ohjaaja: Ville Mattila Valvoja: Harri Ehtamo Työn saa tallentaa ja julkistaa Aalto-yliopiston avoimilla verkkosivuilla. Muilta osin kaikki
LisätiedotTiedonsiirron kokonaisoptimointi erilaisten tietoverkkojen yhteiskäytössä
Tiedonsiirron kokonaisoptimointi erilaisten tietoverkkojen yhteiskäytössä Juuso Meriläinen 27.11.2015 Juuso Meriläinen Tiedonsiirron kokonaisoptimointi erilaisten tietoverkkojen yhteiskäytössä 1 / 11 Johdanto
LisätiedotLuento 6: Monitavoitteinen optimointi
Luento 6: Monitavoitteinen optimointi Monitavoitteisessa optimointitehtävässä on useita optimoitavia kohdefunktioita eli ns kriteereitä: f,,f m Esimerkki ortfolion eli arvopaperijoukon optimoinnissa: f
LisätiedotAlgoritmit 2. Luento 13 Ti Timo Männikkö
Algoritmit 2 Luento 13 Ti 30.4.2019 Timo Männikkö Luento 13 Simuloitu jäähdytys Merkkijonon sovitus Horspoolin algoritmi Ositus ja rekursio Rekursion toteutus Algoritmit 2 Kevät 2019 Luento 13 Ti 30.4.2019
LisätiedotPURO Puuraaka-aineen määrän ja laadun optimointi metsänkasvatuksessa ja teollisuuden prosesseissa. Annikki Mäkelä HY Metsäekologian laitos
PURO Puuraaka-aineen määrän ja laadun optimointi metsänkasvatuksessa ja teollisuuden prosesseissa Annikki Mäkelä HY Metsäekologian laitos Tausta» Kilpailu kiristynyt - miten saada metsätalous kannattavammaksi
LisätiedotGeneettiset algoritmit
Geneettiset algoritmit Evoluution piirteitä laskennassa Optimoinnin perusteet - Kevät 2002 / 1 Sisältö Geneettisten algoritmien sovelluskenttä Peruskäsitteitä Esimerkkejä funktion ääriarvon etsintä vangin
LisätiedotTilastolliset mallit hakkuukoneen katkonnan ohjauksessa. Tapio Nummi Tampereen yliopisto
Tilastolliset mallit hakkuukoneen katkonnan ohjauksessa Tapio Nummi Tampereen yliopisto Runkokäyrän ennustaminen Jotta runko voitaisiin katkaista optimaalisesti pitäisi koko runko mitata etukäteen. Käytännössä
LisätiedotLuento 6: Monitavoiteoptimointi
Luento 6: Monitavoiteoptimointi Monitavoiteoptimointitehtävässä on useita optimoitavia kohdefunktioita eli ns kriteereitä: f 1,, f m Esimerkiksi opiskelija haluaa oppia mahdollisimman hyvin ja paljon mahdollisimman
LisätiedotIT / PC LISÄOMINAISUUDET
Motomit IT / PC Arvoapteeraus Tiedonsiirto Saksikalibrointi Satunnaisrunko-otanta SISÄLLYSLUETTELO: Motomit PC Hakkuukoneen apteeraus- ja ohjausjärjestelmä 1 ARVO- JA JAKAUMA-APTEERAUS...3 1.1 Arvoapteeraus...3
LisätiedotARVO ohjelmisto. Tausta
ARVO ohjelmisto Tausta Jukka Malinen, Metla Metsäntutkimuslaitos Skogsforskningsinstitutet Finnish Forest Research Institute www.metla.fi Ennakkotiedon tarve - Metsänomistaja 11.2.2010 2 Ennakkotiedon
LisätiedotTUTKIMUSAINEISTON ANALYYSI. LTKY012 Timo Törmäkangas
TUTKIMUSAINEISTON ANALYYSI LTKY012 Timo Törmäkangas KURSSIN SISÄLTÖ Johdanto Mittaaminen ja aineiston hankinta Mitta-asteikot Otanta Aineiston esittäminen ja data-analyysi Havaintomatriisi Yksiulotteisen
LisätiedotPuuraaka-aineen hinnoittelumenetelmät
Puuraaka-aineen hinnoittelumenetelmät Vesa Berg, Harri Kilpeläinen & Jukka Malinen Metsäntutkimuslaitos Joensuun yksikkö Männyn hankinta ja käyttö puutuotealalla Kehityshankkeen tiedonsiirtoseminaari Pohjois-Karjalassa
LisätiedotÄÄNENVAIMENTIMIEN MALLINNUSPOHJAINEN MONITAVOITTEINEN MUODONOPTIMOINTI 1 JOHDANTO. Tuomas Airaksinen 1, Erkki Heikkola 2
ÄÄNENVAIMENTIMIEN MALLINNUSPOHJAINEN MONITAVOITTEINEN MUODONOPTIMOINTI Tuomas Airaksinen 1, Erkki Heikkola 2 1 Jyväskylän yliopisto PL 35 (Agora), 40014 Jyväskylän yliopisto tuomas.a.airaksinen@jyu.fi
LisätiedotAvainsanojen poimiminen Eeva Ahonen
Avainsanojen poimiminen 5.10.2004 Eeva Ahonen Sisältö Avainsanat Menetelmät C4.5 päätöspuut GenEx algoritmi Bayes malli Testit Tulokset Avainsanat Tiivistä tietoa dokumentin sisällöstä ihmislukijalle hakukoneelle
LisätiedotTEKNILLINEN TIEDEKUNTA, MATEMATIIKAN JAOS
1. Suorakaiteen muotoisen lämmönvaraajan korkeus on K, leveys L ja syvyys S yksikköä. Konvektiosta ja säteilystä johtuvat lämpöhäviöt ovat verrannollisia lämmönvaraajan lämpötilan T ja ympäristön lämpötilan
Lisätiedot(p j b (i, j) + p i b (j, i)) (p j b (i, j) + p i (1 b (i, j)) p i. tähän. Palaamme sanakirjaongelmaan vielä tasoitetun analyysin yhteydessä.
Loppu seuraa suoralla laskulla: n n Tave TR = p j (1 + b (i, j)) j=1 = 1 + 1 i
LisätiedotKUUSEN OMINAISUUSPOTENTIAALI
KUUSEN OMINAISUUSPOTENTIAALI Marketta Sipi ja Antti Rissanen Helsingin yliopisto Metsävarojen käytön laitos Taustaa» Puuaineen ja kuitujen ominaisuudet vaihtelevat» Runkojen sisällä» Runkojen välillä»
LisätiedotSIMO-pilotointi Metsähallituksessa. SIMO-seminaari
SIMO-pilotointi Metsähallituksessa SIMO-seminaari Hakkuiden optimointi tiimitasolla Metsähallituksen metsissä Heli Virtasen Pro gradu -tutkielma Tutkimusalue ja aineisto Metsätalouden Kainuun alue Kuhmon
Lisätiedot11. laskuharjoituskierros, vko 15, ratkaisut
11. laskuharjoituskierros vko 15 ratkaisut D1. Geiger-mittari laskee radioaktiivisen aineen emissioiden lukumääriä. Emissioiden lukumäärä on lyhyellä aikavälillä satunnaismuuttuja jonka voidaan olettaa
LisätiedotOHJ-3100 Ohjelmien ylläpito ja evoluutio. Harjoitustyö. Ohjaaja: Outi Sievi-Korte outi.sievi-korte@tut.fi TE213 Päivystys ti klo 14-16
OHJ-3100 Ohjelmien ylläpito ja evoluutio 1 Harjoitustyö Ohjaaja: Outi Sievi-Korte outi.sievi-korte@tut.fi TE213 Päivystys ti klo 14-16 2 Yleiskatsaus Yleisesittely Geneettiset algoritmit Ohjelmistoarkkitehtuurit
Lisätiedot12. Algoritminsuunnittelun perusmenetelmiä
12. Algoritminsuunnittelun perusmenetelmiä Ei vain toteuteta tietorakenteita algoritmeilla, vaan myös tietorakenteita käytetään tyypillisesti erilaisten algoritmien yhteydessä. Kun nämä tietojenkäsittelytieteen
Lisätiedot12. Algoritminsuunnittelun perusmenetelmiä
12. Algoritminsuunnittelun perusmenetelmiä Ei vain toteuteta tietorakenteita algoritmeilla, vaan myös tietorakenteita käytetään tyypillisesti erilaisten algoritmien yhteydessä. Kun nämä tietojenkäsittelytieteen
LisätiedotKeskeiset aihepiirit
TkT Harri Eskelinen Keskeiset aihepiirit 1 Perusmääritelmät geometrisiä toleransseja varten 2 Toleroitavat ominaisuudet ja niiden määritelmät 3 Teknisiin dokumentteihin tehtävät merkinnät 4 Geometriset
LisätiedotMännyn oksaisuuslaadun vaihtelu ja sen ennustaminen katkonnan yhteydessä. Jarkko Isotalo Tampereen yliopisto
Männyn oksaisuuslaadun vaihtelu ja sen ennustaminen katkonnan yhteydessä Jarkko Isotalo Tampereen yliopisto 9.6.2003 Laatuaineisto Laatuaineisto koostuu kuuden eri leimikon mäntyrungoista: 1) Ryösä (20
LisätiedotSovelluksia additiivisen arvofunktion käytöstä projektiportfolion valinnassa
Sovelluksia additiivisen arvofunktion käytöstä projektiportfolion valinnassa Mat-2.4142 Optimointiopin seminaari kevät 2011 Kleinmuntz ja Kleinmuntz1999 TEHTÄVÄ Sairaalan strategisen investointibudjetin
LisätiedotAlgoritmit 1. Luento 12 Ke Timo Männikkö
Algoritmit 1 Luento 12 Ke 15.2.2017 Timo Männikkö Luento 12 Pikalajittelu Pikalajittelun vaativuus Osittamisen tasapainoisuus Lajittelumenetelmien vaativuus Laskentalajittelu Lokerolajittelu Kantalukulajittelu
Lisätiedot5.11.2009. www.metsateho.fi. 5.11.2009 Kalle Kärhä: Integroituna vai ilman? 5.11.2009 2
Integroituna vai ilman? Kalle Kärhä, Metsäteho Oy Metsätieteen päivä 2009 Näkökulmia puunkorjuun kehitykseen ja kehittämiseen 4.11.2009, Tieteiden talo, Helsinki Tuotantoketjuja tehostettava pieniläpimittaisen,
LisätiedotTentin materiaali. Sivia: luvut 1,2, , ,5. MacKay: luku 30. Gelman, 1995: Inference and monitoring convergence
Tentin materiaali Sivia: luvut 1,2,3.1-3.3,4.1-4.2,5 MacKay: luku 30 Gelman, 1995: Inference and monitoring convergence Gelman & Meng, 1995: Model checking and model improvement Kalvot Harjoitustyöt Tentin
LisätiedotHarjoitus 4: Matlab - Optimization Toolbox
Harjoitus 4: Matlab - Optimization Toolbox Mat-2.2107 Sovelletun matematiikan tietokonetyöt Syksy 2006 Mat-2.2107 Sovelletun matematiikan tietokonetyöt 1 Harjoituksen aiheita Optimointimallin muodostaminen
LisätiedotAki Taanila LINEAARINEN OPTIMOINTI
Aki Taanila LINEAARINEN OPTIMOINTI 26.4.2011 JOHDANTO Tässä monisteessa esitetään lineaarisen optimoinnin alkeet. Moniste sisältää tarvittavat Excel ohjeet. Viimeisin versio tästä monisteesta ja siihen
LisätiedotRUNKOPANKIN KÄYTTÖSOVELLUKSET
RUNKOPANKIN KÄYTTÖSOVELLUKSET Projektit Projekti 202 Leimikoiden korjuuohjelman ja apteerausvaihtoehtojen optimointi suunnattiin runkopankin käyttösovellusten kehittämistä tukevaksi ja toteutettiin yhdessä
LisätiedotOsakesalkun optimointi
Osakesalkun optimointi Anni Halkola Epäsileä optimointi Turun yliopisto Huhtikuu 2016 Sisältö 1 Johdanto 1 2 Taustatietoja 2 3 Laskumetodit 3 3.1 Optimointiongelmat........................ 4 4 Epäsileän
LisätiedotAlgoritmit 1. Demot Timo Männikkö
Algoritmit 1 Demot 1 31.1.-1.2.2018 Timo Männikkö Tehtävä 1 (a) Algoritmi, joka tutkii onko kokonaisluku tasan jaollinen jollain toisella kokonaisluvulla siten, että ei käytetä lainkaan jakolaskuja Jaettava
Lisätiedot811312A Tietorakenteet ja algoritmit, 2015-2016. VI Algoritmien suunnitteluparadigmoja
811312A Tietorakenteet ja algoritmit, 2015-2016 VI Algoritmien suunnitteluparadigmoja Sisältö 1. Hajota ja hallitse-menetelmä 2. Dynaaminen taulukointi 3. Ahneet algoritmit 4. Peruuttavat algoritmit 811312A
LisätiedotPuutavaran tukkimittarimittauksessa käytettävä tyvisylinterin pituus ja tarkastusmittauksen mittaussuunta
Puutavaran tukkimittarimittauksessa käytettävä tyvisylinterin pituus ja tarkastusmittauksen mittaussuunta Puutavaranmittauksen neuvottelukunnan suosituksen 12.10.2017 taustamateriaali Suositusta muutettu
LisätiedotH0: otos peräisin normaalijakaumasta H0: otos peräisin tasajakaumasta
22.1.2019/1 MTTTA1 Tilastomenetelmien perusteet Luento 22.1.2019 Luku 3 2 -yhteensopivuus- ja riippumattomuustestit 3.1 2 -yhteensopivuustesti H0: otos peräisin tietystä jakaumasta H1: otos ei peräisin
LisätiedotTree map system in harvester
Tree map system in harvester Fibic seminar 12.6.2013 Lahti Timo Melkas, Metsäteho Oy Mikko Miettinen, Argone Oy Kalle Einola, Ponsse Oyj Project goals EffFibre project 2011-2013 (WP3) To evaluate the accuracy
Lisätiedot4. Luennon sisältö. Lineaarisen optimointitehtävän ratkaiseminen Simplex-menetelmä
JYVÄSKYLÄN YLIOPISTO 4. Luennon sisältö Lineaarisen optimointitehtävän ratkaiseminen Simplex-menetelmä kevät 2012 TIEA382 Lineaarinen ja diskreetti optimointi Lineaarinen optimointitehtävä Minimointitehtävä
LisätiedotAlgoritmit 1. Luento 12 Ti Timo Männikkö
Algoritmit 1 Luento 12 Ti 19.2.2019 Timo Männikkö Luento 12 Osittamisen tasapainoisuus Pikalajittelun vaativuus Lajittelumenetelmien vaativuus Laskentalajittelu Lokerolajittelu Kantalukulajittelu Algoritmit
LisätiedotTALOTEHTAAN SAHAUKSEN RAAKA- AINEHANKINNAN OPTIMOINTI
TALOTEHTAAN SAHAUKSEN RAAKA- AINEHANKINNAN OPTIMOINTI Perttu Kemppanen Opinnäytetyö Metsätalouden koulutusohjelma Metsätalousinsinööri (AMK) 2014 LAPIN AMMATTIKORKEAKOULU Luonnonvara-ala Metsätalousinsinööri
LisätiedotSisällysluettelo SISÄLLYSLUETTELO...6 LYHYT SANASTO VASTA-ALKAJILLE...7 1. JOHDATUS PARAMETRITTOMIIN MENETELMIIN...9
Sisällysluettelo SISÄLLYSLUETTELO...6 LYHYT SANASTO VASTA-ALKAJILLE...7 1. JOHDATUS PARAMETRITTOMIIN MENETELMIIN...9 1.1 PARAMETRITTOMIEN MENETELMIEN LYHYT HISTORIA 11 1.2 PARAMETRITTOMAT MENETELMÄT IHMISTIETEISSÄ
LisätiedotTUTKIMUSAINEISTON KVANTITATIIVINEN ANALYYSI LTKY012. Timo Törmäkangas
TUTKIMUSAINEISTON KVANTITATIIVINEN ANALYYSI LTKY012 Timo Törmäkangas KURSSIN SISÄLTÖ Johdanto Mittaaminen ja aineiston hankinta Mitta-asteikot Otanta Aineiston esittäminen ja data-analyysi Havaintomatriisi
LisätiedotNeuroverkkojen soveltaminen vakuutusdatojen luokitteluun
Neuroverkkojen soveltaminen vakuutusdatojen luokitteluun Sami Hokuni 12 Syyskuuta, 2012 1/ 54 Sami Hokuni Neuroverkkojen soveltaminen vakuutusdatojen luokitteluun Turun Yliopisto. Gradu tehty 2012 kevään
Lisätiedottehostamisvaraa? WOODVALUE hankkeen tuloksia Heikki Korpunen Hämeenlinna 6.9.2012
Onko puun hankinnan ja käytön ketjuissa tehostamisvaraa? WOODVALUE hankkeen tuloksia PUUvastaa haasteisiin: Puutametsästä markkinoille Heikki Korpunen Hämeenlinna 6.9.2012 Esityksen sisältö Puun arvoketjututkimuksen
LisätiedotKuljetustehtävä. Materiaalia kuljetetaan m:stä lähtöpaikasta n:ään tarvepaikkaan. Kuljetuskustannukset lähtöpaikasta i tarvepaikkaan j ovat c ij
Kuljetustehtävä Materiaalia kuljetetaan m:stä lähtöpaikasta n:ään tarvepaikkaan Kuljetuskustannukset lähtöpaikasta i tarvepaikkaan j ovat c ij Lähtöpaikan i kapasiteetti on a i (oletetaan, että a i > 0
LisätiedotHarjoitus 9: Optimointi I (Matlab)
Harjoitus 9: Optimointi I (Matlab) MS-C2107 Sovelletun matematiikan tietokonetyöt MS-C2107 Sovelletun matematiikan tietokonetyöt 1 Harjoituksen aiheita Optimointimallin muodostaminen Optimointitehtävien
LisätiedotSuomenhevosten askelja hyppyominaisuuksien periytyvyys. Suomenhevosten jalostuspäivät 10.2.2016 Aino Aminoff
Suomenhevosten askelja hyppyominaisuuksien periytyvyys Suomenhevosten jalostuspäivät 10.2.2016 Aino Aminoff Suomenhevosten laatuarvostelu Suomenhevosten laatuarvostelu on 3-5 v. suomenhevosille suunnattu
LisätiedotKantokäsittelyliuoksen kulutus juurikäävän torjunnassa
Kantokäsittelyliuoksen kulutus juurikäävän torjunnassa Metsätehon tuloskalvosarja 5/2018 Kalle Kärhä, Ville Koivusalo & Matti Ronkanen, Stora Enso Oyj Metsä Teijo Palander, Itä-Suomen yliopisto Asko Poikela,
LisätiedotDepartment of Mathematics, Hypermedia Laboratory Tampere University of Technology. Roolit Verkostoissa: HITS. Idea.
Roolit Tommi Perälä Department of Mathematics, Hypermedia Laboratory Tampere University of Technology 25.3.2011 J. Kleinberg kehitti -algoritmin (Hypertext Induced Topic Search) hakukoneen osaksi. n taustalla
LisätiedotKorrelaatiokerroin. Hanna Heikkinen. Matemaattisten tieteiden laitos. 23. toukokuuta 2012
Korrelaatiokerroin Hanna Heikkinen 23. toukokuuta 2012 Matemaattisten tieteiden laitos Esimerkki 1: opiskelijoiden ja heidän äitiensä pituuksien sirontakuvio, n = 61 tyttären pituus (cm) 155 160 165 170
LisätiedotLaboratorioanalyysit, vertailunäytteet ja tilastolliset menetelmät
Jarmo Koskiniemi Maataloustieteiden laitos Helsingin yliopisto 0504151624 jarmo.koskiniemi@helsinki.fi 03.12.2015 Kolkunjoen taimenten geneettinen analyysi Näytteet Mika Oraluoma (Vesi-Visio osk) toimitti
Lisätiedot1. OHJAAMATON OPPIMINEN JA KLUSTEROINTI
1. OHJAAMATON OPPIMINEN JA KLUSTEROINTI 1 1.1 Funktion optimointiin perustuvat klusterointialgoritmit Klusteroinnin onnistumista mittaavan funktion J optimointiin perustuvissa klusterointialgoritmeissä
Lisätiedot1 Johdanto LP tehtävän luonteen tarkastelua Johdanto herkkyysanalyysiin Optimiarvon funktio ja marginaalihinta
Sisältö Johdanto 2 LP tehtävän luonteen tarkastelua 3 Johdanto herkkyysanalyysiin 5 2 Optimiarvon funktio ja marginaalihinta 5 3 Johdanto duaaliteoriaan 6 2 LP-tehtävän standardimuoto 9 Johdanto Optimoinnista
LisätiedotItseoppivat ja joustavat tuotantojärjestelmät puutuoteteollisuudessa (SisuPUU) Teollisuusseminaari 27. toukokuuta 2009
Itseoppivat ja joustavat tuotantojärjestelmät puutuoteteollisuudessa (SisuPUU) Teollisuusseminaari 7. toukokuuta 009 Tukkien lajittelun optimointi Arto Usenius ja Antti Heikkilä Laatu Latvaläpimitta Pituus
LisätiedotYhtälöryhmä matriisimuodossa. MS-A0007 Matriisilaskenta. Tarkastellaan esimerkkinä lineaarista yhtälöparia. 2x1 x 2 = 1 x 1 + x 2 = 5.
2. MS-A000 Matriisilaskenta 2. Nuutti Hyvönen, c Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2..205 Tarkastellaan esimerkkinä lineaarista yhtälöparia { 2x x 2 = x x 2 =
LisätiedotTILASTOLLINEN OPPIMINEN
301 TILASTOLLINEN OPPIMINEN Salmiakki- ja hedelmämakeisia on pakattu samanlaisiin käärepapereihin suurissa säkeissä, joissa on seuraavat sekoitussuhteet h 1 : 100% salmiakkia h 2 : 75% salmiakkia + 25%
LisätiedotLaskennallinen data-analyysi II
Laskennallinen data-analyysi II Saara Hyvönen, Saara.Hyvonen@cs.helsinki.fi Kevät 2007 Ulottuvuuksien vähentäminen, SVD, PCA Laskennallinen data-analyysi II, kevät 2007, Helsingin yliopisto visualisointi
LisätiedotMonitavoiteoptimointi
Monitavoiteoptimointi Useita erilaisia tavoitteita, eli useita objektifunktioita Tavoitteet yleensä ristiriitaisia ja yhteismitattomia Optimaalisuus tarkoittaa yleensä eri asiaa kuin yksitavoitteisessa
LisätiedotHämeenlinna 6.9.2012. Jari Lindblad Jukka Antikainen. Jukka.antikainen@metla.fi 040 801 5051
Puutavaran mittaus Hämeenlinna 6.9.2012 Jari Lindblad Jukka Antikainen Metsäntutkimuslaitos, Itä Suomen alueyksikkö, Joensuu Jukka.antikainen@metla.fi 040 801 5051 SISÄLTÖ 1. Puutavaran mittaustarkkuus
Lisätiedot