GA & robot path planning. Janne Haapsaari AUTO Geneettiset algoritmit
|
|
- Elisabet Virtanen
- 8 vuotta sitten
- Katselukertoja:
Transkriptio
1 GA & robot path planning Janne Haapsaari AUTO Geneettiset algoritmit
2 GA robotiikassa Sovelluksia liikkeen optimoinnissa: * eri vapausasteisten robottien liikeratojen optimointi * autonomisten robottien reittihaku * muuttuvaan ympäristöön reagoiminen
3 Miksi GA? * Polunmääritys usein laskennallisesti vaativa ongelma jollaisista GA:n todettu selviävän monessa tapuksessa kiitettävästi. * Polunmäärityksen parametreja voidaan muuttaa erilaisia polkuvaihtoehtoja varten ilman algoritmin muuttamista. * Opettaminen / ohjaaminen ilman ihmistä. * Robustimpi kuin monet perinteiset menetelmät
4 Reitinhaun käsitteitä Ympäristö * Staattinen * Dynaaminen Agloritmi * Global * Local Suoritustilanne * Offline * Online
5 Yleiset ominaisuudet reitinhaussa Alkupopulaatio / geenit Luodaan joukko jonkinlaisia reittejä alkupisteen ja päätepisteen välille satunnaisista pisteistä. Yksittäisissä reiteissä voi olla eri määrä solmuja. Solmujen koodaus yhdenmukainen. (samanpituisia) Populaatioiden yleinen ongelma liiallinen konvergenssi joka johtaa ratkaisujoukkojen supistumiseen ja todennäköiseen umpikujaan.
6 Yleiset ominaisuudet reitinhaussa Hyvyysfunktio Yksinkertaisimmillaan pisteiden euklidisten etäisyyksien summa. Esteet reitillä korkeammalla painokertoimella siten että paras toteutuskelvoton reitti saa aina huonomman hyvyysarvon kuin huonoin toeteutuskelpoinen reitti. Muita yleisiä parametrejä solmujen määrä, kuluva aika ja reitin muoto joita painottamalla saadaan helutessa erilaisia reittejä. Elitismi huomattavasti yleisempää staattisissa ympäristöissä kuin dynaamisissa joissa kattavan perimän ylläpito tärkeää.
7 Yleiset ominaisuudet reitinhaussa Geneettiset operaatiot Yleisesti käytetyt risteytys ja mutaatio usein riittämättömiä reitinhaussa. Parhaiden reittien optimointiin vaaditaan usein lisäksi erilliset silotus- ja korjausfunktiot jotka korjaavat reittiä optimaalisemmaksi ja kiertävät esteitä.
8 Yleiset ominaisuudet reitinhaussa Risteytys Yleisin käytetty risteytysmuoto oli alijoukkojen risteytys joka saattoi muuttaa reitin solmujen määrää. Ongelmatyypistä riipuen risteytys vain reittien leikkauspisteiden väleillä oli suosittu menetelmä. Harvemmin käytetyssä risteytysmuodossa risteytyksessä käytettiin isäntäsolmujen keskiarvoja joihin lisättiin vähäistä satunnaisuutta. Risteytys aiheutti monissa tapauksissa liiallista ratkaisujoukon kutistumista josta oli haittaa erityisesti dynaamisessa ympäristössä.
9 Yleiset ominaisuudet reitinhaussa Mutaatio Yleisesti käytetty mutaatio on vaihtaa satunnainen polun solmu ratkaisuavaruuden ulkopuoliseen solmuun. Staattisissa ympäristöissä mutaatioiden todennäköisyys pieneni yleisesti sukupolvien kasvaessa. Dynaamisissa ympäristöissä huomattavan korkea mutaatioaste. Vähemmän käytettyjä mutaatioita: osajoukon kääntäminen kupera -> kovera, solmujen vähäinen siirtäminen lähemmäs optimia kasvavalla todennäköisyydellä.
10 Yleiset ominaisuudet reitinhaussa Silotus ja oikopolku Yleisesti käytettyjä hienosäätöfunktioita joita käytetään toimiviin reitteihin paikallisessa reitinhaussa. Silotusfunktiolla siirretään solmua lähemmäs optimia tai opistetaan koko solmu mikäli näin päästään parempaan tulokseen. Oikopolussa toimivien yhteyksien lisätään välisolmut jotka yhdistetään ja poistetaan näiden väliin jäävät solmut kuten silotusfunktiossa.
11 Korjaus Varsinkin dynaamisessa ympäristössä paikallista algoritmia suoritettaessa tulee vastaan tilanteita jolloin reitillä oleva este pysäyttää funktion etenemisen. Yleisin korjausfunktion toteutus on luoda esteen ympäristöön yksi tai useampi satunnainen piste jotka yhdistetään polkuun.
12 Esim. Salvatore Candino Solmujen arvot tallennetaan kahden pisteen välisenä kulmana binääripuuhun. Polun resoluutiota voidaan säätää puun syvyydellä.
13 Esim. Salvatore Candino Hyvyysfunktio: Hyvyysfunktio laskee yhteen solmujen euklidiset etäisyydet ja lisää rangaistuksen jokaisesta esteeseen törmäävästä reitistä. Valinta: Käytettiin kahdensuuruista turnajaisvaintaa.
14 Esim. Salvatore Candino Risteytys: Alipuuristeytys Yksipisteristeytys jossa pisteiden alipuut vaihdetaan keskenään. Mutaatio: Satunnaismutaatio - Yhden solmun kulma vaihdetaan satunnaisesti. Tn 0.05 laski sukupolvien myötä. Pieni mutaatio - Yhden solmun kulmaa pienennetään vähän. Kääntömutaatio Kääntää kuperan osan koveraksi. Voidaan käyttää kääntämään reitti esteen ohi. Näiden tn ja kasvoi sukupolvien myötä hienosäätöä varten.
15 Esim. Salvatore Candino Hybridi: Lopuksi kelvollisiin reitteihin sovellettiin paikallishakua jossa solmuja poistettiin ja tarkistettiin saavutettiinko lyhyempää reittiä. Näin saatiin parannettua suoritusta huomattavasti.
16 Esim. Salvatore Candino Ilman hybridiä Hybridillä
17 Lähteet * Autonomous Robot Path Planning using a Genetic Algorithm - Salvatore Candido * Using genetic algorithms to learn reactive control parameters for autonomous robotic navigation - A Ram, G Boone, R Arkin * Genetic path planning for mobile robots Gerke M. tp=&arnumber= * Genetic Algorithm for Dynamic Path Planning - A Elshamli
TIES592 Monitavoiteoptimointi ja teollisten prosessien hallinta. Yliassistentti Jussi Hakanen syksy 2010
TIES592 Monitavoiteoptimointi ja teollisten prosessien hallinta Yliassistentti Jussi Hakanen jussi.hakanen@jyu.fi syksy 2010 Evoluutiopohjainen monitavoiteoptimointi MCDM ja EMO Monitavoiteoptimointi kuuluu
LisätiedotGeneettiset algoritmit
Geneettiset algoritmit Evoluution piirteitä laskennassa Optimoinnin perusteet - Kevät 2002 / 1 Sisältö Geneettisten algoritmien sovelluskenttä Peruskäsitteitä Esimerkkejä funktion ääriarvon etsintä vangin
LisätiedotAlgoritmit 2. Luento 12 Ke Timo Männikkö
Algoritmit 2 Luento 12 Ke 26.4.2017 Timo Männikkö Luento 12 Rajoitehaku Kauppamatkustajan ongelma Lyhin virittävä puu Paikallinen etsintä Vaihtoalgoritmit Geneettiset algoritmit Simuloitu jäähdytys Algoritmit
LisätiedotAlgoritmit 2. Luento 12 To Timo Männikkö
Algoritmit 2 Luento 12 To 3.5.2018 Timo Männikkö Luento 12 Geneettiset algoritmit Simuloitu jäähdytys Merkkijonon sovitus Horspoolin algoritmi Algoritmit 2 Kevät 2018 Luento 12 To 3.5.2018 2/35 Algoritmien
LisätiedotAS Automaation signaalinkäsittelymenetelmät. Tehtävä 1. Käynnistä fuzzy-toolboxi matlabin komentoikkunasta käskyllä fuzzy.
AS-84.161 Automaation signaalinkäsittelymenetelmät Tehtävä 1. Käynnistä fuzzy-toolboxi matlabin komentoikkunasta käskyllä fuzzy. Tämän jälkeen täytyy: 1. Lisätä uusi sisääntulo edit->add input 2. nimetä
LisätiedotImplementation of Selected Metaheuristics to the Travelling Salesman Problem (valmiin työn esittely)
Implementation of Selected Metaheuristics to the Travelling Salesman Problem (valmiin työn esittely) Jari Hast xx.12.2013 Ohjaaja: Harri Ehtamo Valvoja: Hari Ehtamo Työn saa tallentaa ja julkistaa Aalto-yliopiston
LisätiedotArkkitehtuurien tutkimus Outi Räihä. OHJ-3200 Ohjelmistoarkkitehtuurit. Darwin-projekti. Johdanto
OHJ-3200 Ohjelmistoarkkitehtuurit 1 Arkkitehtuurien tutkimus Outi Räihä 2 Darwin-projekti Darwin-projekti: Akatemian rahoitus 2009-2011 Arkkitehtuurisuunnittelu etsintäongelmana Geneettiset algoritmit
LisätiedotOHJ-3100 Ohjelmien ylläpito ja evoluutio. Harjoitustyö. Ohjaaja: Outi Sievi-Korte outi.sievi-korte@tut.fi TE213 Päivystys ti klo 14-16
OHJ-3100 Ohjelmien ylläpito ja evoluutio 1 Harjoitustyö Ohjaaja: Outi Sievi-Korte outi.sievi-korte@tut.fi TE213 Päivystys ti klo 14-16 2 Yleiskatsaus Yleisesittely Geneettiset algoritmit Ohjelmistoarkkitehtuurit
LisätiedotKombinatorinen optimointi
Kombinatorinen optimointi Sallittujen pisteiden lukumäärä on äärellinen Periaatteessa ratkaisu löydetään käymällä läpi kaikki pisteet Käytännössä lukumäärä on niin suuri, että tämä on mahdotonta Usein
LisätiedotAlgoritmit 2. Luento 13 Ti Timo Männikkö
Algoritmit 2 Luento 13 Ti 30.4.2019 Timo Männikkö Luento 13 Simuloitu jäähdytys Merkkijonon sovitus Horspoolin algoritmi Ositus ja rekursio Rekursion toteutus Algoritmit 2 Kevät 2019 Luento 13 Ti 30.4.2019
LisätiedotLuku 8. Aluekyselyt. 8.1 Summataulukko
Luku 8 Aluekyselyt Aluekysely on tiettyä taulukon väliä koskeva kysely. Tyypillisiä aluekyselyitä ovat, mikä on taulukon välin lukujen summa tai pienin luku välillä. Esimerkiksi seuraavassa taulukossa
LisätiedotKatkonnanohjaus evoluutiolaskennan keinoin
Katkonnanohjaus evoluutiolaskennan keinoin Askel kohti optimaalista tavaralajijakoa Veli-Pekka Kivinen HY, Metsävarojen käytön laitos Katkonnanohjauksen problematiikkaa Miten arvo-/tavoitematriisit tulisi
LisätiedotLuento 13: Geneettiset Algoritmit
Luento 13: Geneettiset Algoritmit Geneettiset algoritmit ovat luonnon evoluutiomekanismeja imitoivia heuristisia optimointimenetelmiä. Ne soveltuvat tehtäviin, joissa ratkaisuavaruus on hyvin suuri (esim.
LisätiedotJoonas Haapala Ohjaaja: DI Heikki Puustinen Valvoja: Prof. Kai Virtanen
Hävittäjälentokoneen reitin suunnittelussa käytettävän dynaamisen ja monitavoitteisen verkko-optimointitehtävän ratkaiseminen A*-algoritmilla (valmiin työn esittely) Joonas Haapala 8.6.2015 Ohjaaja: DI
LisätiedotA ja B pelaavat sarjan pelejä. Sarjan voittaja on se, joka ensin voittaa n peliä.
Esimerkki otteluvoiton todennäköisyys A ja B pelaavat sarjan pelejä. Sarjan voittaja on se, joka ensin voittaa n peliä. Yksittäisessä pelissä A voittaa todennäköisyydellä p ja B todennäköisyydellä q =
LisätiedotMonitavoitteiseen optimointiin soveltuvan evoluutioalgoritmin tarkastelu
Monitavoitteiseen optimointiin soveltuvan evoluutioalgoritmin tarkastelu (Valmiin työn esittely) 11.4.2011 Ohjaaja: Ville Mattila Valvoja: Raimo Hämäläinen Työn tavoite Tutkia evoluutioalgoritmia (Lee
LisätiedotNeuroverkkojen soveltaminen vakuutusdatojen luokitteluun
Neuroverkkojen soveltaminen vakuutusdatojen luokitteluun Sami Hokuni 12 Syyskuuta, 2012 1/ 54 Sami Hokuni Neuroverkkojen soveltaminen vakuutusdatojen luokitteluun Turun Yliopisto. Gradu tehty 2012 kevään
LisätiedotAlgoritmit 1. Luento 7 Ti Timo Männikkö
Algoritmit 1 Luento 7 Ti 31.1.2017 Timo Männikkö Luento 7 Järjestetty binääripuu Binääripuiden termejä Binääripuiden operaatiot Solmun haku, lisäys, poisto Algoritmit 1 Kevät 2017 Luento 7 Ti 31.1.2017
LisätiedotTIES592 Monitavoiteoptimointi ja teollisten prosessien hallinta. Yliassistentti Jussi Hakanen jussi.hakanen@jyu.fi syksy 2010
TIES592 Monitavoiteoptimointi ja teollisten prosessien hallinta Yliassistentti Jussi Hakanen jussi.hakanen@jyu.fi syksy 2010 NSGA-II Non-dominated Sorting Genetic Algorithm (NSGA) Ehkä tunnetuin EMO-menetelmä
LisätiedotAlgoritmit 2. Luento 7 Ti Timo Männikkö
Algoritmit 2 Luento 7 Ti 4.4.2017 Timo Männikkö Luento 7 Joukot Joukko-operaatioita Joukkojen esitystapoja Alkiovieraat osajoukot Toteutus puurakenteena Algoritmit 2 Kevät 2017 Luento 7 Ti 4.4.2017 2/26
LisätiedotGeneettiset algoritmit joukkoliikennelinjastojen suunnittelussa
Mat-2.4108 Sovelletun matematiikan erikoistyöt Geneettiset algoritmit joukkoliikennelinjastojen suunnittelussa Osmo Salomaa 58584J 3. tammikuuta 2008 Sisältö 1 Johdanto 2 2 Optimointitehtävän kuvaus 3
Lisätiedot58131 Tietorakenteet (kevät 2009) Harjoitus 11, ratkaisuja (Topi Musto)
811 Tietorakenteet (kevät 9) Harjoitus 11, ratkaisuja (Topi Musto) 1. Bellmanin-Fordin algoritmin alustusvaiheen jälkeen aloitussolmussa on arvo ja muissa solmuissa on arvo ääretön. Kunkin solmun arvo
Lisätiedot58131 Tietorakenteet ja algoritmit (kevät 2013) Kurssikoe 2, , vastauksia
58131 Tietorakenteet ja algoritmit (kevät 2013) Kurssikoe 2, 652013, vastauksia 1 [6 pistettä] Vastaa jokaisesta alla olevasta väittämästä onko se tosi vai epätosi ja anna lyhyt perustelu Jokaisesta kohdasta
LisätiedotLuetteloivat ja heuristiset menetelmät. Mat , Sovelletun matematiikan tutkijaseminaari, kevät 2008, Janne Karimäki
Luetteloivat ja heuristiset menetelmät Mat-2.4191, Sovelletun matematiikan tutkijaseminaari, kevät 2008, Janne Karimäki Sisältö Branch and Bound sekä sen variaatiot (Branch and Cut, Lemken menetelmä) Optimointiin
LisätiedotAlgoritmit 2. Luento 9 Ti Timo Männikkö
Algoritmit 2 Luento 9 Ti 17.4.2018 Timo Männikkö Luento 9 Merkkitiedon tiivistäminen Huffmanin koodi LZW-menetelmä Taulukointi Editointietäisyys Algoritmit 2 Kevät 2018 Luento 9 Ti 17.4.2018 2/29 Merkkitiedon
Lisätiedotv 8 v 9 v 5 C v 3 v 4
Verkot Verkko on (äärellinen) matemaattinen malli, joka koostuu pisteistä ja pisteitä toisiinsa yhdistävistä viivoista. Jokainen viiva yhdistää kaksi pistettä, jotka ovat viivan päätepisteitä. Esimerkiksi
Lisätiedot811312A Tietorakenteet ja algoritmit Kertausta jälkiosasta
811312A Tietorakenteet ja algoritmit 2018-2019 Kertausta jälkiosasta V Hashtaulukot ja binääriset etsintäpuut Hashtaulukot Perusajatus tunnettava Tiedettävä mikä on tiivistefunktio Törmäysongelman hallinta:
LisätiedotMinimilatenssiongelman ratkaisualgoritmeja (valmiin työn esittely)
Minimilatenssiongelman ratkaisualgoritmeja (valmiin työn esittely) Antti Salmela 03.03.2014 Ohjaaja: Harri Ehtamo Valvoja: Harri Ehtamo Työn saa tallentaa ja julkistaa Aalto-yliopiston avoimilla verkkosivuilla.
Lisätiedot19.10.2011. Harjoitustyö Ohjaaja: Outi Räihä outi.raiha@tut.fi TE213. OHJ-3100 Ohjelmien ylläpito ja evoluutio. Yleiskatsaus.
OHJ-3100 Ohjelmien ylläpito ja evoluutio 1 Yleiskatsaus 2 Harjoitustyö Ohjaaja: Outi Räihä outi.raiha@tut.fi TE213 Yleisesittely Geneettiset algoritmit Ohjelmistoarkkitehtuurit Darwin-työkalu Tehtävänanto
LisätiedotAlgoritmit 2. Luento 2 To Timo Männikkö
Algoritmit 2 Luento 2 To 14.3.2019 Timo Männikkö Luento 2 Tietorakenteet Lineaarinen lista, binääripuu Prioriteettijono Kekorakenne Keko-operaatiot Keon toteutus taulukolla Algoritmit 2 Kevät 2019 Luento
LisätiedotKysyntäohjautuva joukkoliikenne ja dynaaminen matkansuunnittelu. Lauri Häme
Kysyntäohjautuva joukkoliikenne ja dynaaminen matkansuunnittelu Lauri Häme 25.1.2017 Tausta Kysyntäohjautuvan joukkoliikenteen tutkimusprojekti Metropol 2008-2012 Aalto-yliopisto, Tekes, Liikenne- ja viestintäministeriö,
LisätiedotRobotiikan tulevaisuus ja turvallisuus
Robotiikan tulevaisuus ja turvallisuus NWE 2014 Satelliittiseminaari 4.11.2014 Jyrki Latokartano TTY Kone- ja Tuotantotekniikan laitos Suomen Robotiikkayhdistys ry Robottiturvallisuus? Kohti ihmisen ja
LisätiedotLuku 6. Dynaaminen ohjelmointi. 6.1 Funktion muisti
Luku 6 Dynaaminen ohjelmointi Dynaamisessa ohjelmoinnissa on ideana jakaa ongelman ratkaisu pienempiin osaongelmiin, jotka voidaan ratkaista toisistaan riippumattomasti. Jokaisen osaongelman ratkaisu tallennetaan
LisätiedotTiivistelmä artikkelista Constrained Random Walks on Random Graphs: Routing Algorithms for Large Scale Wireless Sensor Networks
Tiivistelmä artikkelista Constrained Random Walks on Random Graphs: Routing Algorithms for Large Scale Wireless Sensor Networks Heikki Tikanmäki 20.02.2005 1 Johdanto Paperissa [1] tarkastellaan reititysongelmaa
LisätiedotInformaation leviäminen väkijoukossa matemaattinen mallinnus
Informaation leviäminen väkijoukossa matemaattinen mallinnus Tony Nysten 11.4.2011 Ohjaaja: DI Simo Heliövaara Valvoja: Prof. Harri Ehtamo Väkijoukon toiminta evakuointitilanteessa Uhkaavan tilanteen huomanneen
Lisätiedot58131 Tietorakenteet ja algoritmit (kevät 2014) Uusinta- ja erilliskoe, , vastauksia
58131 Tietorakenteet ja algoritmit (kevät 2014) Uusinta- ja erilliskoe, 10..2014, vastauksia 1. [9 pistettä] (a) Todistetaan 2n 2 + n + 5 = O(n 2 ): Kun n 1 on 2n 2 + n + 5 2n 2 + n 2 +5n 2 = 8n 2. Eli
LisätiedotDBN Mitä sillä tekee? Dynaamisten Bayes-verkkojen määrittely aikasarja-analyysissä Janne Toivola jtoivola@iki.fi
DBN Mitä sillä tekee? Dynaamisten Bayes-verkkojen määrittely aikasarja-analyysissä Janne Toivola jtoivola@iki.fi Historiaa Bayesin kaavan hyödyntäminen BN-ohjelmistoja ollut ennenkin Tanskalaisten Hugin
LisätiedotGraafit ja verkot. Joukko solmuja ja joukko järjestämättömiä solmupareja. eli haaroja. Joukko solmuja ja joukko järjestettyjä solmupareja eli kaaria
Graafit ja verkot Suuntamaton graafi: eli haaroja Joukko solmuja ja joukko järjestämättömiä solmupareja Suunnattu graafi: Joukko solmuja ja joukko järjestettyjä solmupareja eli kaaria Haaran päätesolmut:
LisätiedotAlgoritmit 2. Luento 6 Ke Timo Männikkö
Algoritmit 2 Luento 6 Ke 29.3.2017 Timo Männikkö Luento 6 B-puun operaatiot B-puun muunnelmia Nelipuu Trie-rakenteet Standarditrie Pakattu trie Algoritmit 2 Kevät 2017 Luento 6 Ke 29.3.2017 2/31 B-puu
LisätiedotAvainsanojen poimiminen Eeva Ahonen
Avainsanojen poimiminen 5.10.2004 Eeva Ahonen Sisältö Avainsanat Menetelmät C4.5 päätöspuut GenEx algoritmi Bayes malli Testit Tulokset Avainsanat Tiivistä tietoa dokumentin sisällöstä ihmislukijalle hakukoneelle
Lisätiedot811312A Tietorakenteet ja algoritmit, 2014-2015, Harjoitus 7, ratkaisu
832A Tietorakenteet ja algoritmit, 204-205, Harjoitus 7, ratkaisu Hajota ja hallitse-menetelmä: Tehtävä 7.. Muodosta hajota ja hallitse-menetelmää käyttäen algoritmi TULOSTA_PUU_LASKEVA, joka tulostaa
Lisätiedot3.4 Peruutus (backtracking)
3.4 Peruutus (backtracking) Tarkastellaan kahta esimerkkiongelmaa: Kahdeksan kuningattaren ongelma: sijoitettava 8 8 ruudun pelilaudalle 8 nappulaa siten, että millekään vaaka-, pysty- tai viistoriville
LisätiedotTIIVISTELMÄ. Poikselkä (2011) Pietsorakenteiden optimointi geneettisillä algoritmeilla. Oulun yliopisto, tietotekniikan osasto. Diplomityö, 59 s.
Poikselkä (2011) Optimization of piezo structures with genetic algorithms. Department of Information Engineering, University of Oulu, Oulu, Finland. Master s thesis, 59 p. ABSTRACT The meaning of this
Lisätiedot58131 Tietorakenteet ja algoritmit (syksy 2015) Toinen välikoe, malliratkaisut
Tietorakenteet ja algoritmit (syksy 0) Toinen välikoe, malliratkaisut. (a) Alussa puu näyttää tältä: Lisätään 4: 4 Tasapaino rikkoutuu solmussa. Tehdään kaksoiskierto ensin oikealle solmusta ja sitten
LisätiedotAlgoritmit 1. Luento 1 Ti Timo Männikkö
Algoritmit 1 Luento 1 Ti 10.1.2017 Timo Männikkö Luento 1 Algoritmi Algoritmin toteutus Ongelman ratkaiseminen Algoritmin tehokkuus Algoritmin suoritusaika Algoritmin analysointi Algoritmit 1 Kevät 2017
LisätiedotAlgoritmit 2. Luento 6 To Timo Männikkö
Algoritmit 2 Luento 6 To 28.3.2019 Timo Männikkö Luento 6 B-puun operaatiot Nelipuu Trie-rakenteet Standarditrie Pakattu trie Algoritmit 2 Kevät 2019 Luento 6 To 28.3.2019 2/30 B-puu 40 60 80 130 90 100
LisätiedotAlgoritmit 2. Luento 2 Ke Timo Männikkö
Algoritmit 2 Luento 2 Ke 15.3.2017 Timo Männikkö Luento 2 Tietorakenteet Lineaarinen lista, binääripuu Prioriteettijono Kekorakenne Keko-operaatiot Keon toteutus taulukolla Algoritmit 2 Kevät 2017 Luento
LisätiedotRelevanttien sivujen etsintä verkosta: satunnaiskulut verkossa Linkkikeskukset ja auktoriteetit (hubs and authorities) -algoritmi
Kurssin loppuosa Diskreettejä menetelmiä laajojen 0-1 datajoukkojen analyysiin Kattavat joukot ja niiden etsintä tasoittaisella algoritmilla Relevanttien sivujen etsintä verkosta: satunnaiskulut verkossa
LisätiedotAlgoritmit 2. Luento 5 Ti Timo Männikkö
Algoritmit 2 Luento 5 Ti 28.3.2017 Timo Männikkö Luento 5 Puurakenteet B-puu B-puun korkeus B-puun operaatiot Algoritmit 2 Kevät 2017 Luento 5 Ti 28.3.2017 2/29 B-puu Algoritmit 2 Kevät 2017 Luento 5 Ti
LisätiedotAlgoritmit 1. Luento 13 Ti 23.2.2016. Timo Männikkö
Algoritmit 1 Luento 13 Ti 23.2.2016 Timo Männikkö Luento 13 Suunnittelumenetelmät Taulukointi Kapsäkkiongelma Ahne menetelmä Verkon lyhimmät polut Dijkstran menetelmä Verkon lyhin virittävä puu Kruskalin
LisätiedotHarjoitus 6 ( )
Harjoitus 6 (21.4.2015) Tehtävä 1 Määritelmän (ks. luentomoniste s. 109) mukaan yleisen, muotoa min f(x) s. t. g(x) 0 h(x) = 0 x X olevan optimointitehtävän Lagrangen duaali on missä max θ(u, v) s. t.
Lisätiedot10. Painotetut graafit
10. Painotetut graafit Esiintyy monesti sovelluksia, joita on kätevä esittää graafeina. Tällaisia ovat esim. tietoverkko tai maantieverkko. Näihin liittyy erinäisiä tekijöitä. Tietoverkkoja käytettäessä
LisätiedotAlgoritmit 1. Luento 13 Ma Timo Männikkö
Algoritmit 1 Luento 13 Ma 26.2.2018 Timo Männikkö Luento 13 Suunnittelumenetelmät Taulukointi Kapsäkkiongelma Ahne menetelmä Verkon lyhimmät polut Dijkstran menetelmä Verkon lyhin virittävä puu Kruskalin
LisätiedotLentotiedustelutietoon perustuva tykistön tulenkäytön optimointi (valmiin työn esittely)
Lentotiedustelutietoon perustuva tykistön tulenkäytön optimointi (valmiin työn esittely) Tuukka Stewen 1.9.2017 Ohjaaja: DI Juho Roponen Valvoja: prof. Ahti Salo Työn saa tallentaa ja julkistaa Aalto-yliopiston
LisätiedotAlgoritmit 2. Luento 4 Ke Timo Männikkö
Algoritmit 2 Luento 4 Ke 22.3.2017 Timo Männikkö Luento 4 Hajautus Yhteentörmäysten käsittely Avoin osoitteenmuodostus Hajautusfunktiot Puurakenteet Solmujen läpikäynti Algoritmit 2 Kevät 2017 Luento 4
Lisätiedot1. (a) Seuraava algoritmi tutkii, onko jokin luku taulukossa monta kertaa:
Tietorakenteet, laskuharjoitus 10, ratkaisuja 1. (a) Seuraava algoritmi tutkii, onko jokin luku taulukossa monta kertaa: SamaLuku(T ) 2 for i = 1 to T.length 1 3 if T [i] == T [i + 1] 4 return True 5 return
LisätiedotAlgoritmit 2. Luento 11 Ti Timo Männikkö
Algoritmit 2 Luento 11 Ti 24.4.2018 Timo Männikkö Luento 11 Rajoitehaku Kapsäkkiongelma Kauppamatkustajan ongelma Paikallinen etsintä Lyhin virittävä puu Vaihtoalgoritmit Algoritmit 2 Kevät 2018 Luento
LisätiedotRata A / L-1 Kanneltie kasin pihalle
Rata A / L-1 Kanneltie kasin pihalle B on nopeampi kunhan K- pisteestä osaa siirtyä lumikasaa kiertäen Kanneltielle. Jos valitset A:n, on osattava kulkea talon päädystä - reitti jää helposti lumikasojen
LisätiedotKognitiivinen mallintaminen 1
Kognitiivinen mallintaminen 1 Uutta infoa: Kurssin kotisivut wikissä: http://wiki.helsinki.fi/display/kognitiotiede/cog241 Suorittaminen tentillä ja laskareilla (ei välikoetta 1. periodissa) Ongelmanratkaisu
LisätiedotIlkka Mellin Todennäköisyyslaskenta. Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat. Kertymäfunktio. TKK (c) Ilkka Mellin (2007) 1
Ilkka Mellin Todennäköisyyslaskenta Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat Kertymäfunktio TKK (c) Ilkka Mellin (2007) 1 Kertymäfunktio >> Kertymäfunktio: Määritelmä Diskreettien jakaumien
Lisätiedot58131 Tietorakenteet ja algoritmit (kevät 2016) Ensimmäinen välikoe, malliratkaisut
58131 Tietorakenteet ja algoritmit (kevät 2016) Ensimmäinen välikoe, malliratkaisut 1. Palautetaan vielä mieleen O-notaation määritelmä. Olkoon f ja g funktioita luonnollisilta luvuilta positiivisille
LisätiedotTestaus käsite. Sekalaista testausasiaa. Testauksen käsitteestä. Kattavuusmitat. Jos ajatellaan, että testaus = V&V, voidaan erottaa:
Testaus käsite Sekalaista asiaa Sami Kollanus 15.11.2006 Jos ajatellaan, että = V&V, voidaan erottaa: Staattinen Dynaaminen Toisaalta voidaan määritellä Myersin (1979) mukaan: Testaus on ohjelman suoritusta,
Lisätiedotj n j a b a c a d b c c d m j b a c a d a c b d c c j
TEKNILLINEN KORKEAKOULU Tietoliikenne- ja tietoverkkotekniikan laitos S-38.115 Liikenneteorian perusteet, Kevät 2008 Demonstraatiot Luento 12 29.2.2008 D12/1 Tarkastellaan verkkoa, jossa on solmua ja linkkiä.
LisätiedotPiiri K 1 K 2 K 3 K 4 R R
Lineaarinen optimointi vastaus, harj 1, Syksy 2016. 1. Teollisuuslaitos valmistaa piirejä R 1 ja R 2, joissa on neljää eri komponenttia seuraavat määrät: Piiri K 1 K 2 K 3 K 4 R 1 3 1 2 2 R 2 4 2 3 0 Päivittäistä
LisätiedotTIES592 Monitavoiteoptimointi ja teollisten prosessien hallinta. Yliassistentti Jussi Hakanen syksy 2010
TIES592 Monitavoiteoptimointi ja teollisten prosessien hallinta Yliassistentti Jussi Hakanen jussi.hakanen@jyu.fi syksy 2010 Optimaalisuus: objektiavaruus f 2 min Z = f(s) Parhaat arvot alhaalla ja vasemmalla
Lisätiedot13 Lyhimmät painotetut polut
TIE-20100 Tietorakenteet ja algoritmit 297 13 Lyhimmät painotetut polut BFS löytää lyhimmän polun lähtösolmusta graafin saavutettaviin solmuihin. Se ei kuitenkaan enää suoriudu tehtävästä, jos kaarien
Lisätiedot811312A Tietorakenteet ja algoritmit Kertausta jälkiosasta
811312A Tietorakenteet ja algoritmit 2016-2017 Kertausta jälkiosasta IV Perustietorakenteet Pino, jono ja listat tunnettava Osattava soveltaa rakenteita algoritmeissa Osattava päätellä operaatioiden aikakompleksisuus
LisätiedotAlgoritmit 2. Luento 4 To Timo Männikkö
Algoritmit 2 Luento 4 To 21.3.2019 Timo Männikkö Luento 4 Hajautus Yhteentörmäysten käsittely Avoin osoitteenmuodostus Hajautusfunktiot Puurakenteet Solmujen läpikäynti Algoritmit 2 Kevät 2019 Luento 4
LisätiedotTekoälykokeiluprojekti. Henkilökohtaisen kalenterin optimointi tekoälyllä Skycode Oy (ent. Suomen Mediatoimisto Oy)
Tekoälykokeiluprojekti Henkilökohtaisen kalenterin optimointi tekoälyllä Skycode Oy (ent. Suomen Mediatoimisto Oy) 9.11.2018 Alkuperäinen idea Järjestelmän ideana on toimia yhdessä oman kalenterisi kanssa
LisätiedotMatriisit ja optimointi kauppatieteilijöille
Matriisit ja optimointi kauppatieteilijöille Harjoitus 4, kevät 2019 1. a) f(x) = x 3 6x 2 + 9x + 1, 3 x 3 Funktio f(x) on jatkuva ja derivoituva. Funktio f(x) saavuttaa suurimman ja pienimmän arvonsa
LisätiedotAlgoritmit 2. Luento 10 To Timo Männikkö
Algoritmit 2 Luento 10 To 11.4.2019 Timo Männikkö Luento 10 Merkkitiedon tiivistäminen LZW-menetelmä Taulukointi Editointietäisyys Peruutusmenetelmä Osajoukon summa Algoritmit 2 Kevät 2019 Luento 10 To
LisätiedotHarjoitus 6 ( )
Harjoitus 6 (30.4.2014) Tehtävä 1 Määritelmän (ks. luentomoniste s. 109) mukaan yleisen, muotoa min f(x) s.t. g(x) 0 h(x) = 0 x X (1) olevan optimointitehtävän Lagrangen duaali on max θ(u,v) s.t. u 0,
LisätiedotVastakkainasettelullinen riskianalyysi asejärjestelmien vaikuttavuusarvioinnissa
1 Vastakkainasettelullinen riskianalyysi asejärjestelmien vaikuttavuusarvioinnissa Toteuttaja: Aalto-yliopisto Johtaja: Ahti Salo Hankkeelle myönnetty MATINE-rahoitus: 69 204 2 Tutkimusryhmä Aalto-yliopisto
LisätiedotOsakesalkun optimointi
Osakesalkun optimointi Anni Halkola Epäsileä optimointi Turun yliopisto Huhtikuu 2016 Sisältö 1 Johdanto 1 2 Taustatietoja 2 3 Laskumetodit 3 3.1 Optimointiongelmat........................ 4 4 Epäsileän
LisätiedotHaku osittaisen informaation vallitessa
136 Haun merkittävä ongelma on mahdollisuus laajentaa uudelleen jo kertaalleen tutkittu tila Näin äärellinen tila-avaruus voi johtaa äärettömään hakupuuhun Ratkeava ongelma voi muuttua käytännössä ratkeamattomaksi
LisätiedotMat Sovelletun matematiikan erikoistyöt. Geneettiset algoritmit ja sukupuolten taistelu
Mat-2.108 Sovelletun matematiikan erikoistyöt Geneettiset algoritmit ja sukupuolten taistelu Pasi Virtanen 45787U 17.08.2005 1. Johdanto... 4 2. Perusteet... 5 2.1 Geneettiset algoritmit... 5 2.1.1 Geneettisten
LisätiedotSovellettu todennäköisyyslaskenta B
Sovellettu todennäköisyyslaskenta B Antti Rasila 20. syyskuuta 2007 Antti Rasila () TodB 20. syyskuuta 2007 1 / 17 1 Kolmogorovin aksioomat σ-algebra Tapahtuman todennäköisyys 2 Satunnaismuuttujat Todennäköisyysjakauma
Lisätiedot811312A Tietorakenteet ja algoritmit, 2015-2016. VI Algoritmien suunnitteluparadigmoja
811312A Tietorakenteet ja algoritmit, 2015-2016 VI Algoritmien suunnitteluparadigmoja Sisältö 1. Hajota ja hallitse-menetelmä 2. Dynaaminen taulukointi 3. Ahneet algoritmit 4. Peruuttavat algoritmit 811312A
LisätiedotMediaanisuodattimet. Tähän asti käsitellyt suodattimet ovat olleet lineaarisia. Niille on tyypillistä, että. niiden ominaisuudet tunnetaan hyvin
Mediaanisuodattimet Tähän asti käsitellyt suodattimet ovat olleet lineaarisia. Niille on tyypillistä, että niiden ominaisuudet tunnetaan hyvin niiden analysointiin on olemassa vakiintuneita menetelmiä
LisätiedotDemo 1: Simplex-menetelmä
MS-C2105 Optimoinnin perusteet Malliratkaisut 3 Ehtamo Demo 1: Simplex-menetelmä Muodosta lineaarisen tehtävän standardimuoto ja ratkaise tehtävä taulukkomuotoisella Simplex-algoritmilla. max 5x 1 + 4x
LisätiedotAlgoritmit 1. Luento 8 Ke Timo Männikkö
Algoritmit 1 Luento 8 Ke 1.2.2017 Timo Männikkö Luento 8 Järjestetty binääripuu Solmujen läpikäynti Binääripuun korkeus Binääripuun tasapainottaminen Graafit ja verkot Verkon lyhimmät polut Fordin ja Fulkersonin
LisätiedotJohdatus todennäköisyyslaskentaan Kertymäfunktio. TKK (c) Ilkka Mellin (2005) 1
Johdatus todennäköisyyslaskentaan Kertymäfunktio TKK (c) Ilkka Mellin (2005) 1 Kertymäfunktio Kertymäfunktio: Määritelmä Diskreettien jakaumien kertymäfunktiot Jatkuvien jakaumien kertymäfunktiot TKK (c)
LisätiedotV. V. Vazirani: Approximation Algorithms, luvut 3-4 Matti Kääriäinen
V. V. Vazirani: Approximation Algorithms, luvut 3-4 Matti Kääriäinen Luento omatoimisen luennan tueksi algoritmiikan tutkimusseminaarissa 23.9.2002. 1 Sisältö Esitellään ongelmat Steiner-puu Kauppamatkustajan
Lisätiedot3.3 Paraabeli toisen asteen polynomifunktion kuvaajana. Toisen asteen epäyhtälö
3.3 Paraabeli toisen asteen polynomifunktion kuvaajana. Toisen asteen epäyhtälö Yhtälön (tai funktion) y = a + b + c, missä a 0, kuvaaja ei ole suora, mutta ei ole yhtälökään ensimmäistä astetta. Funktioiden
LisätiedotKuvioton metsäsuunnittelu Paikkatietomarkkinat, Helsinki Tero Heinonen
Paikkatietomarkkinat, Helsinki 3.11.2009 Tero Heinonen Sisältö Kuvioton metsäsuunnittelu Optimointi leimikon suunnittelumenetelmänä Verrataan optimointi lähestymistapaa diffuusiomenetelmään Muuttuvat käsittely-yksiköt
LisätiedotOnline-oppiva ilmavalvontajärjestelmän suorituskykymalli
Online-oppiva ilmavalvontajärjestelmän suorituskykymalli MATINE:n tutkimusseminaari 16.11.2017 Juha Jylhä ja Marja Ruotsalainen Tampereen teknillinen yliopisto Signaalinkäsittelyn laboratorio Hankkeelle
LisätiedotSearch space traversal using metaheuristics
Search space traversal using metaheuristics Mika Juuti 11.06.2012 Ohjaaja: Ville Mattila Valvoja: Harri Ehtamo Työn saa tallentaa ja julkistaa Aalto-yliopiston avoimilla verkkosivuilla. Muilta osin kaikki
LisätiedotLuku 7. Verkkoalgoritmit. 7.1 Määritelmiä
Luku 7 Verkkoalgoritmit Verkot soveltuvat monenlaisten ohjelmointiongelmien mallintamiseen. Tyypillinen esimerkki verkosta on tieverkosto, jonka rakenne muistuttaa luonnostaan verkkoa. Joskus taas verkko
LisätiedotJohdatus graafiteoriaan
Johdatus graafiteoriaan Syksy 2017 Lauri Hella Tampereen yliopisto Luonnontieteiden tiedekunta 62 Luku 2 Yhtenäisyys 2.1 Polku 2.2 Lyhin painotettu polku 2.3 Yhtenäinen graafi 2.4 Komponentti 2.5 Aste
Lisätiedot811312A Tietorakenteet ja algoritmit 2015-2016. V Verkkojen algoritmeja Osa 2 : Kruskalin ja Dijkstran algoritmit
811312A Tietorakenteet ja algoritmit 2015-2016 V Verkkojen algoritmeja Osa 2 : Kruskalin ja Dijkstran algoritmit Sisältö 1. Johdanto 2. Leveyshaku 3. Syvyyshaku 4. Kruskalin algoritmi 5. Dijkstran algoritmi
LisätiedotPieniä tietojenkäsittelytieteellisiä tutkimuksia Syksy 2008
Erkki Mäkinen (toim.) Pieniä tietojenkäsittelytieteellisiä tutkimuksia Syksy 2008 TIETOJENKÄSITTELYTIETEIDEN LAITOS TAMPEREEN YLIOPISTO D 2008 12 TAMPERE 2008 TAMPEREEN YLIOPISTO TIETOJENKÄSITTELYTIETEIDEN
LisätiedotAlgoritmit 1. Luento 6 Ke Timo Männikkö
Algoritmit 1 Luento 6 Ke 25.1.2017 Timo Männikkö Luento 6 Järjestetty lista Listan toteutus dynaamisesti Linkitetyn listan operaatiot Vaihtoehtoisia listarakenteita Puurakenteet Binääripuu Järjestetty
LisätiedotLiite: Verkot. TKK (c) Ilkka Mellin (2004) 1
Liite: Verkot TKK (c) Ilkka Mellin (2004) 1 : Mitä opimme? Verkkoteoria on hyödyllinen sovelletun matematiikan osa-alue, jolla on sovelluksia esimerkiksi logiikassa, operaatiotutkimuksessa, peli-ja päätösteoriassa
Lisätiedot7. Satunnaisalgoritmit (randomized algorithms)
7. Satunnaisalgoritmit (randomized algorithms) Satunnaisuudella on laskentaongelmien ratkaisemisessa moninaisia käyttötapoja. Tässä tarkastellaan lähinnä perinteisten algoritmien nopeuttamista, ja sitäkin
Lisätiedot0 v i v j / E, M ij = 1 v i v j E.
Vieruspistematriisi Graafi esitetään tietokoneessa useimmiten matriisin avulla. Graafin G = (V, E), V = {v 1, v 2,..., v n } vieruspistematriisi (adjacency matrix)on n n matriisi M = (M ij ), missä n on
Lisätiedot815338A Ohjelmointikielten periaatteet Harjoitus 3 vastaukset
815338A Ohjelmointikielten periaatteet 2015-2016. Harjoitus 3 vastaukset Harjoituksen aiheena ovat imperatiivisten kielten muuttujiin liittyvät kysymykset. Tehtävä 1. Määritä muuttujien max_num, lista,
LisätiedotDiskreettiaikainen dynaaminen optimointi
Diskreettiaikainen dynaaminen optimointi Usean kauden tapaus 2 kauden yleistys Ääretön loppuaika Optimaalinen pysäytys Optimointiopin seminaari - Syksy 2000 / Ongelma t 0 x 0 t- t T x t- + x t + x T u
LisätiedotTutkimustiedonhallinnan peruskurssi
Tutkimustiedonhallinnan peruskurssi Hannu Toivonen, Marko Salmenkivi, Inkeri Verkamo hannu.toivonen, marko.salmenkivi, inkeri.verkamo@cs.helsinki.fi Helsingin yliopisto Hannu Toivonen, Marko Salmenkivi,
LisätiedotDarwin: Tutkimusprojektin esittely
1 Darwin: Tutkimusprojektin esittely Tutkimusongelma: voidaanko ohjelmistoarkkitehtuuri generoida automaattisesti? Suomen Akatemian rahoittama tutkimusprojekti 2009-2011 TTY & TaY yhteistyö Ks. http://practise.cs.tut.fi/project.php?project=darwin
LisätiedotPaikkatietoa metsäbiomassan määrästä tarvitaan
Biomassan estimointi laseraineiston, ilmakuvien ja maastomittausten perusteella Esitys Metsätieteen Päivän Taksaattorisessiossa 26.10.2011 Reija Haapanen, Sakari Tuominen ja Risto Viitala Paikkatietoa
Lisätiedot