Kaavioiden rakenne. Kaavioiden piirto symboleita yhdistelemällä. Kaavion osan valitseminen päätöksellä ja toistaminen silmukalla.

Save this PDF as:
 WORD  PNG  TXT  JPG

Koko: px
Aloita esitys sivulta:

Download "Kaavioiden rakenne. Kaavioiden piirto symboleita yhdistelemällä. Kaavion osan valitseminen päätöksellä ja toistaminen silmukalla."

Transkriptio

1 2. Vuokaaviot 2.1

2 Sisällys Kaavioiden rakenne. Kaavioiden piirto symbolta yhdistelemällä. Kaavion osan valitseminen päätöksellä ja toistaminen silmukalla. Esimerkkejä: algoritmi oven avaamiseen vuokaaviona, yksikkömuunnos, peli luvun arvaukseen ja keskiarvon laskeminen. 2.2

3 Vuokaaviot Graafinen kieli algoritmien kuvaamiseen. Ymmärrettäviä ja intuitiivisia. Soveltuvat monimutkaistenkin algoritmien esittämiseen. Muodostetaan yhdistelemällä symboleja nuolilla. Symbolissa algoritmin vaihe. Kaavio suoritetaan (ajetaan) seuraamalla nuolia alkusymbolista alkaen ja loppusymboliin päätyen. Esimerkki: Tartu kahvaan Toiminto Vedä kahvasta, kunnes ovi on auki Päätös 2.3

4 Vuokaaviot Etenevät yleensä ylhäältä alas ja vasemmalta oikealle: Suunta länsimaisesta kirjoituksesta. Tilan loppuessa voi piirtää muutenkin. Aina yksi alku- ja yksi loppusymboli. Symbolsta lähtevien nuolien lukumäärä on yksikäsittnen. Symbolhin tulevien nuolien lukumäärässä tulkinnan varaa. 2.4

5 Lähtevät nuolet symbolista lähtee aina vain yksi nuoli. symbolista lähde nuolia. Toimintosymbolista lähtee aina vain yksi nuoli. Päätössymbolista lähtee aina kaksi nuolta, jotka vastaavat - ja päätöksiä. 2.5

6 Tulevat nuolet symboliin tule nuolia. Muihin symbolhin tulee aina joko yksi tai useampi nuoli. Jos symboliin tulee useampi nuoli, voidaan nuolet piirtää suoraan kiinni symboliin tai symboliin piirtää yksi nuoli, johon muut nuolet liittyvät. Kalvoilla ja mallivastauksissa pyritään käyttämään selvyyden vuoksi jälkimmäistä piirtotapaa, jolloin tulevia nuolia on aina yksi. 2.6

7 Algoritmi oven avaamiseen Algoritmia voidaan tarkentaa päätöksen avulla: päätös mahdollistaa toisensa poissulkevat algoritmin suorituslinjat. Algoritmia tarkennetaan edelleen kuvaamalla toistuvat toiminnot päätöstä hyödyntäen. Vedä kahvasta Tartu kahvaan Vedettävä malli? Työnnä kahvasta 2.7

8 Silmukka Vuokaavion osa voidaan suorittaa silmukan (loop) avulla. Koostuu päätöksestä, joka liitetään nuolella toistettavaan vuokaavion osaan, josta palataan päätökseen joko suoraan tai epäsuorasti. Päätös sijoitetaan usn siten, että se on silmukan ensimmäiseksi suoritettava osa (esiehto). Toisinaan on luontevampaa sijoittaa päätös silmukan loppuun (jälkiehto). Silmukointi jatkuu niin kauan kuin päätös on silmukkaan johtavaan nuolen suuntainen. Jos päätös on muotoiltu virheellisesti, algoritmi saattaa joutua ikuiseen silmukkaan. 2.8

9 Algoritmi oven avaamiseen Algoritmin uuteen versioon on lisätty silmukat, joissa ovea joko vedetään tai työnnetään kahvasta kunnes ovi on auki. Avattava lisää? Vedä kahvasta Tartu kahvaan Vedettävä malli? Avattava lisää? Työnnä kahvasta 2.9

10 Yksikkömuunnos Esimerkiksi pituutta ja painoa mitataan maailmanlaajuisesti eri yksiköillä. Yksikkömuunnin on tyypillinen älylaittsta löytyvä sovellus. Ohessa on esitetty yksinkertainen algoritmi jaardna mitatun pituuden muuttamiseksi metrksi. Algoritmi on vuorovaikuttnen: jaardit luetaan käyttäjältä (user) ja metrit tulostetaan näytölle (screen). Lue jaardit käyttäjältä Muunna jaardit metrksi kertomalla luvulla 0,9144 Tulosta metrit näytölle 2.10

11 Peli luvun arvaukseen Peli arpoo kokonaisluvun käyttäjän tuntemalta väliltä. Käyttäjän tehtävänä on arvata lukua kunnes hän osuu oikeaan. Väärin menneen arvauksen osalta käyttäjälle kerrotaan oliko luku liian pieni tai suuri suhteessa arvattavaan lukuun. Oikeasta arvauksesta onnitellaan. Algoritmiin tarvitaan silmukka, koska on hyvin epätodennäköistä, että käyttäjä arvaa luvun heti. Jälkiehto on luonteva, koska käyttäjä arvaa aina vähintään kerran. Silmukassa luetaan arvaus ja tehdään päätöksiä, joiden avulla kerrotaan oliko arvaus mahdollisesti ali, yli tai oikn. Arpominen on tehtävä on ennen silmukkaa, jotta luvun arvaaminen on mahdollista vihjden avulla. 2.11

12 Peli luvun arvaukseen Arvo arvattava luku Liian pienestä ja suuresta arvauksesta ilmoittavista toiminnoista voitaisiin palata suoraan arvauksen lukemiseen, jolloin lukujen erisuuruutta tutkivaa päätöstä tarvittaisi. Päätös on mukana, koska algoritmssa pyritään yleensä selkeyden vuoksi palaamaan silmukan alkuun vain yhtä rttiä. Älä huolestu tästä! Voit käyttää harjoitustehtävissä lyhyempää tapaa. Pitemmän ja lyhyemmän vuokaavion ero selviää, kun silmukoihin palataan Javan merkssä. Lue arvaus Arvaus pienempi kuin arvattava? Arvaus suurempi kuin arvattava? Onnittele käyttäjää Kerro arvauksen olevan liian pieni Kerro arvauksen olevan liian suuri Arvaus eri suuri kuin arvattava? 2.12

13 Keskiarvon laskeminen Keskiarvon laskennan tapaiset tiedon analysointiin liittyvät tehtävät on usn luontevaa toteuttaa tietokoneella. Ohjelma kommunikoi käyttäjänsä kanssa: luvut luetaan yksi kerrallaan ennen keskiarvon laskemista ja keskiarvo tulostetaan käyttäjälle. Ohjelmaan tarvitaan silmukka, jonka kullakin kierroksella luetaan luku ja lisätään luku summaan. Silmukka on esiehtoinen, koska voidaan olettaa, että lukujen lukumäärä tiedetään ennen silmukkaa. Ohjelmassa on varauduttava tilanteeseen, jossa lukumäärä on virheellinen ( 0). 2.13

14 Keskiarvon laskeminen Lisää lukuja? Lue luku käyttäjältä Lisää luku summaan Lukuja? Tulosta virhlmoitus Jaa lukujen summa niiden lukumäärällä Tulosta keskiarvo näytölle 2.14

15 Pohdintaa Vuokaavioiden ongelmia: Graafinen esitys poikkeaa paljon usmmista ohjelmointikielistä. Algoritmin tarkentaminen kasvattaa kaaviota nopeasti. Kaavioiden piirtäminen on työlästä. Vapaamuotoisesti tekstillä kuvaillut algoritmin vaiheet ovat liian monikäsittsiä tietokoneelle. Kuinka algoritmin esitys voidaan tarkentaa tietokoneen ymmärtämälle tasolle? 2.15

Kaavioiden rakenne. Kaavioiden piirto symboleita yhdistelemällä. Kaavion osan toistaminen silmukalla. Esimerkkejä:

Kaavioiden rakenne. Kaavioiden piirto symboleita yhdistelemällä. Kaavion osan toistaminen silmukalla. Esimerkkejä: 2. Vuokaaviot 2.1 Sisällys Kaavioiden rakenne. Kaavioiden piirto symbolta yhdistelemällä. Kaavion osan toistaminen silmukalla. Esimerkkejä: algoritmi oven avaamiseen vuokaaviona, keskiarvon laskeminen

Lisätiedot

Sisällys. Kaavioiden rakenne. Kaavioiden piirto symboleita yhdistelemällä. Kaavion osan toistaminen silmukalla. Esimerkkejä. 2.2

Sisällys. Kaavioiden rakenne. Kaavioiden piirto symboleita yhdistelemällä. Kaavion osan toistaminen silmukalla. Esimerkkejä. 2.2 2. Vuokaaviot 2.1 Sisällys aavioiden rakenne. aavioiden piirto symboleita yhdistelemällä. aavion osan toistaminen silmukalla. simerkkejä. 2.2 Vuokaaviot Graafinen kieli algoritmien kuvaamiseen. Muodostetaan

Lisätiedot

Sisällys. 3. Muuttujat ja operaatiot. Muuttujat ja operaatiot. Muuttujat. Operaatiot. Imperatiivinen laskenta. Muuttujat. Esimerkkejä: Operaattorit.

Sisällys. 3. Muuttujat ja operaatiot. Muuttujat ja operaatiot. Muuttujat. Operaatiot. Imperatiivinen laskenta. Muuttujat. Esimerkkejä: Operaattorit. 3. Muuttujat ja operaatiot Sisällys Imperatiivinen laskenta. Muuttujat. Nimi ja arvo. Muuttujan nimeäminen. Muuttujan tyyppi.. Operandit. Arvon sijoitus muuttujaan. Aritmeettiset operaattorit. Arvojen

Lisätiedot

3. Muuttujat ja operaatiot 3.1

3. Muuttujat ja operaatiot 3.1 3. Muuttujat ja operaatiot 3.1 Sisällys Imperatiivinen laskenta. Muuttujat. Nimi ja arvo. Muuttujan nimeäminen. Muuttujan tyyppi. Operaattorit. Operandit. Arvon sijoitus muuttujaan. Aritmeettiset operaattorit.

Lisätiedot

Sisällys. 3. Muuttujat ja operaatiot. Muuttujat ja operaatiot. Muuttujat ja operaatiot

Sisällys. 3. Muuttujat ja operaatiot. Muuttujat ja operaatiot. Muuttujat ja operaatiot 3. Muuttujat ja operaatiot Sisällys Muuttujat. Nimi ja arvo. Algoritmin tila. Muuttujan nimeäminen. Muuttujan tyyppi. Muuttuja ja tietokone. Operaattorit. Operandit. Arvon sijoitus muuttujaan. Aritmeetiikka.

Lisätiedot

1. Algoritmi 1.1 Sisällys Algoritmin määritelmä. Aiheen pariin johdatteleva esimerkki. Muuttujat ja operaatiot (sijoitus, aritmetiikka ja vertailu). Algoritmista ohjelmaksi. 1.2 Algoritmin määritelmä Ohjelmointi

Lisätiedot

etunimi, sukunimi ja opiskelijanumero ja näillä

etunimi, sukunimi ja opiskelijanumero ja näillä Sisällys 1. Algoritmi Algoritmin määritelmä. Aiheen pariin johdatteleva esimerkki. ja operaatiot (sijoitus, aritmetiikka ja vertailu). Algoritmista ohjelmaksi. 1.1 1.2 Algoritmin määritelmä Ohjelmointi

Lisätiedot

11. Javan toistorakenteet 11.1

11. Javan toistorakenteet 11.1 11. Javan toistorakenteet 11.1 Sisällys Laskuri- ja lippumuuttujat. Sisäkkäiset silmukat. Tyypillisiä ohjelmointivirheitä: Silmukan rajat asetettu kierroksen verran väärin. Ikuinen silmukka. Silmukoinnin

Lisätiedot

Sisällys. 12. Javan toistorakenteet. Yleistä. Laskurimuuttujat

Sisällys. 12. Javan toistorakenteet. Yleistä. Laskurimuuttujat Sisällys 12. Javan toistorakenteet Ylstä toistorakentsta. Laskurimuuttujat. While-, do-while- ja for-lauseet. Laskuri- ja lippumuuttujat. Tyypillisiä ohjelmointivirhtä. Silmukan rajat asetettu kierroksen

Lisätiedot

Sisällys. 3. Pseudokoodi. Johdanto. Johdanto. Johdanto ja esimerkki. Pseudokoodi lauseina. Kommentointi ja sisentäminen.

Sisällys. 3. Pseudokoodi. Johdanto. Johdanto. Johdanto ja esimerkki. Pseudokoodi lauseina. Kommentointi ja sisentäminen. Sisällys 3. Pseudokoodi Johdanto ja esimerkki. Pseudokoodi lauseina. Kommentointi ja sisentäminen. Ohjausrakenteet: Valinta if- ja if--rakenteilla. oisto while-, do-while- ja for-rakenteilla. 3.1 3.2 Johdanto

Lisätiedot

12. Javan toistorakenteet 12.1

12. Javan toistorakenteet 12.1 12. Javan toistorakenteet 12.1 Sisällys Yleistä toistorakenteista. Laskurimuuttujat. While-, do-while- ja for-lauseet. Laskuri- ja lippumuuttujat. Tyypillisiä ohjelmointivirheitä. Silmukan rajat asetettu

Lisätiedot

Sisällys. 11. Javan toistorakenteet. Laskurimuuttujat. Yleistä

Sisällys. 11. Javan toistorakenteet. Laskurimuuttujat. Yleistä Sisällys 11. Javan toistorakenteet Laskuri- ja lippumuuttujat.. Tyypillisiä ohjelmointivirheitä: Silmukan rajat asetettu kierroksen verran väärin. Ikuinen silmukka. Silmukoinnin lopettaminen break-lauseella.

Lisätiedot

Seuraavassa on esimerkki for-, while- ja do-while -lauseesta:

Seuraavassa on esimerkki for-, while- ja do-while -lauseesta: Ilkka Kiistala 30.9.2004 tehtävät: http://www.cs.helsinki.fi/u/wikla/johdohj/ohpe/harjs04/3/ kurssisivu http://www.cs.helsinki.fi/u/wikla/johdohj/ohpe/indexs04.html materiaali: http://www.cs.helsinki.fi/u/wikla/johdohj/sisalto/index.htm

Lisätiedot

811312A Tietorakenteet ja algoritmit , Harjoitus 2 ratkaisu

811312A Tietorakenteet ja algoritmit , Harjoitus 2 ratkaisu 811312A Tietorakenteet ja algoritmit 2017-2018, Harjoitus 2 ratkaisu Harjoituksen aiheena on algoritmien oikeellisuus. Tehtävä 2.1 Kahvipurkkiongelma. Kahvipurkissa P on valkoisia ja mustia kahvipapuja,

Lisätiedot

Algoritmit 1. Demot Timo Männikkö

Algoritmit 1. Demot Timo Männikkö Algoritmit 1 Demot 1 25.-26.1.2017 Timo Männikkö Tehtävä 1 (a) Algoritmi, joka laskee kahden kokonaisluvun välisen jakojäännöksen käyttämättä lainkaan jakolaskuja Jaettava m, jakaja n Vähennetään luku

Lisätiedot

v 8 v 9 v 5 C v 3 v 4

v 8 v 9 v 5 C v 3 v 4 Verkot Verkko on (äärellinen) matemaattinen malli, joka koostuu pisteistä ja pisteitä toisiinsa yhdistävistä viivoista. Jokainen viiva yhdistää kaksi pistettä, jotka ovat viivan päätepisteitä. Esimerkiksi

Lisätiedot

Johdanto ja esimerkki. Pseudokoodi lauseina. Kommentointi ja sisentäminen. Ohjausrakenteet:

Johdanto ja esimerkki. Pseudokoodi lauseina. Kommentointi ja sisentäminen. Ohjausrakenteet: 3. Pseudokoodi 3.1 Sisällys Johdanto ja esimerkki. Pseudokoodi lauseina. Kommentointi ja sisentäminen. Ohjausrakenteet: Valinta if- ja if-else-rakenteilla. Toisto while-, do-while- ja for-rakenteilla.

Lisätiedot

Harjoitus 3 (viikko 39)

Harjoitus 3 (viikko 39) Mikäli tehtävissä on jotain epäselvää, laita sähköpostia vastuuopettajalle (jorma.laurikkala@uta.fi). Muista nimetä muuttujat hyvin sekä kommentoida ja sisentää koodisi. Vältä liian pitkiä rivejä. Ohjelmointitehtävien

Lisätiedot

KOODAUSPLÄJÄYS. Ohjelmoinnin perusteet

KOODAUSPLÄJÄYS. Ohjelmoinnin perusteet KOODUSPLÄJÄYS Ohjelmoinnin perusteet Korttien merkinnät Korttien yläreunaan on merkitty, mitä taitoja ja ohjelmoinnissa käytettyjä rakenteita korteista oppii. Merkkien määrä ( 4) kuvaa kortin vaikeustasoa.

Lisätiedot

Ohjelmassa on käytettävä funktiota laskeparkkimaksu laskemaan kunkin asiakkaan maksu. Funktio floor pyöristää luvun lähimmäksi kokonaisluvuksi.

Ohjelmassa on käytettävä funktiota laskeparkkimaksu laskemaan kunkin asiakkaan maksu. Funktio floor pyöristää luvun lähimmäksi kokonaisluvuksi. Tehtävä 24. Kallioparkki veloittaa 2 euroa kolmelta ensimmäiseltä pysäköintitunnilta. Yli kolmen tunnin pysäköinnistä veloitetaan lisäksi 0.5 euroa jokaiselta yli menevältä tunnilta. Kuitenkin maksimiveloitus

Lisätiedot

Scratch ohjeita. Perusteet

Scratch ohjeita. Perusteet Perusteet Scratch ohjeita Scratch on graafinen ohjelmointiympäristö koodauksen opetteluun. Se soveltuu hyvin alakouluista yläkouluunkin asti, sillä Scratchin käyttömahdollisuudet ovat monipuoliset. Scratch

Lisätiedot

Liite: Verkot. TKK (c) Ilkka Mellin (2004) 1

Liite: Verkot. TKK (c) Ilkka Mellin (2004) 1 Liite: Verkot TKK (c) Ilkka Mellin (2004) 1 : Mitä opimme? Verkkoteoria on hyödyllinen sovelletun matematiikan osa-alue, jolla on sovelluksia esimerkiksi logiikassa, operaatiotutkimuksessa, peli-ja päätösteoriassa

Lisätiedot

Lausekielinen ohjelmointi II Ensimmäinen harjoitustyö

Lausekielinen ohjelmointi II Ensimmäinen harjoitustyö Lausekielinen ohjelmointi II Ensimmäinen harjoitustyö Yleistä Tehtävä: Tee Javalla StringStats-ohjelma, joka laskee esikäsittelemästään merkkijonosta joitakin tunnuslukuja. Lausekielinen ohjelmointi II

Lisätiedot

Puzzle-SM 2000. Loppukilpailu 18.6.2000 Oulu

Puzzle-SM 2000. Loppukilpailu 18.6.2000 Oulu Puzzle-SM Loppukilpailu 8.6. Oulu Puzzle Ratkontaaikaa tunti Ratkontaaikaa tunti tsi palat 6 Varjokuva 7 Parinmuodostus 7 Paikallista 7 Metris 7 ominopalapeli Kerrostalot Pisteestä toiseen Heinäsirkka

Lisätiedot

Algoritmit. Ohjelman tekemisen hahmottamisessa käytetään

Algoritmit. Ohjelman tekemisen hahmottamisessa käytetään Ohjelmointi Ohjelmoinnissa koneelle annetaan tarkkoja käskyjä siitä, mitä koneen tulisi tehdä. Ohjelmointikieliä on olemassa useita satoja. Ohjelmoinnissa on oleellista asioiden hyvä suunnittelu etukäteen.

Lisätiedot

PERUSLASKUJA. Kirjoita muuten sama, mutta ota välilyönti 4:n jälkeen 3/4 +5^2

PERUSLASKUJA. Kirjoita muuten sama, mutta ota välilyönti 4:n jälkeen 3/4 +5^2 PERUSLASKUJA Matemaattisten lausekkeiden syöttäminen: Kirjoita ilman välilyöntejä /+^2 Kirjoita muuten sama, mutta ota välilyönti :n jälkeen / +^2 Kopioi molemmat matematiikka-alueet ja liiku alueen sisällä

Lisätiedot

Muistutus aikatauluista

Muistutus aikatauluista Muistutus aikatauluista (Nämä eivät välttämättä koske avoimen yo:n opiskelijoita Erkki Kailan rinnakkaisella kurssilla) Luento 1: kotitehtävät sulkeutuvat 20.9 12:00, ennen tutoriaalia Tutoriaali 1 sulkeutuu

Lisätiedot

Algoritmit 1. Luento 1 Ti Timo Männikkö

Algoritmit 1. Luento 1 Ti Timo Männikkö Algoritmit 1 Luento 1 Ti 10.1.2017 Timo Männikkö Luento 1 Algoritmi Algoritmin toteutus Ongelman ratkaiseminen Algoritmin tehokkuus Algoritmin suoritusaika Algoritmin analysointi Algoritmit 1 Kevät 2017

Lisätiedot

Ohjelmoinnin peruskurssi Y1

Ohjelmoinnin peruskurssi Y1 Ohjelmoinnin peruskurssi Y1 CSE-A1111 30.9.2015 CSE-A1111 Ohjelmoinnin peruskurssi Y1 30.9.2015 1 / 27 Mahdollisuus antaa luentopalautetta Goblinissa vasemmassa reunassa olevassa valikossa on valinta Luentopalaute.

Lisätiedot

TIEA241 Automaatit ja kieliopit, syksy Antti-Juhani Kaijanaho. 16. marraskuuta 2015

TIEA241 Automaatit ja kieliopit, syksy Antti-Juhani Kaijanaho. 16. marraskuuta 2015 ja ja TIEA241 Automaatit ja kieliopit, syksy 2015 Antti-Juhani Kaijanaho NFA:ksi TIETOTEKNIIKAN LAITOS 16. marraskuuta 2015 Sisällys ja NFA:ksi NFA:ksi Kohti säännöllisiä lausekkeita ja Nämä tiedetään:

Lisätiedot

Sisällys. 12. Näppäimistöltä lukeminen. Yleistä. Yleistä 12.1 12.2 12.3 12.4

Sisällys. 12. Näppäimistöltä lukeminen. Yleistä. Yleistä 12.1 12.2 12.3 12.4 Sisällys 12. Näppäimistöltä lukeminen Arvojen lukeminen näppäimistöltä yleisesti. Arvojen lukeminen näppäimistöltä Java-kielessä.. Luetun arvon tarkistaminen. Tietovirrat ja ohjausmerkit. Scanner-luokka.

Lisätiedot

Zeon PDF Driver Trial

Zeon PDF Driver Trial Matlab-harjoitus 2: Kuvaajien piirto, skriptit ja funktiot. Matlabohjelmoinnin perusteita Numeerinen integrointi trapezoidaalimenetelmällä voidaan tehdä komennolla trapz. Esimerkki: Vaimenevan eksponentiaalin

Lisätiedot

Lisää pysähtymisaiheisia ongelmia

Lisää pysähtymisaiheisia ongelmia Lisää pysähtymisaiheisia ongelmia Lause: Pysähtymättömyysongelma H missä H = { w111x w validi koodi, M w ei pysähdy syötteellä x } ei ole rekursiivisesti lueteltava. Todistus: Pysähtymisongelman komplementti

Lisätiedot

Vektorit. Kertausta 12.3.2013 Seppo Lustig (Lähde: avoinoppikirja.fi)

Vektorit. Kertausta 12.3.2013 Seppo Lustig (Lähde: avoinoppikirja.fi) Vektorit Kertausta 12.3.2013 Seppo Lustig (Lähde: avoinoppikirja.fi) Sisällys Vektorit Nimeäminen Vektorien kertolasku Vektorien yhteenlasku Suuntasopimus Esimerkki: laivan nopeus Vektorit Vektoreilla

Lisätiedot

Tynnyrisaunan asennusohje (1013)

Tynnyrisaunan asennusohje (1013) Tynnyrisaunan asennusohje (1013) 1 Asenna tynnyri suoralla alustalla Huom: Osa no: 1 ei kuulu toimitukseen. Asenna saunan tukiosa, osat sopivat jyrsittyihin uriin. Ruuvaa kiinni osat (ruuvien reijät merkittyinä,

Lisätiedot

A ja B pelaavat sarjan pelejä. Sarjan voittaja on se, joka ensin voittaa n peliä.

A ja B pelaavat sarjan pelejä. Sarjan voittaja on se, joka ensin voittaa n peliä. Esimerkki otteluvoiton todennäköisyys A ja B pelaavat sarjan pelejä. Sarjan voittaja on se, joka ensin voittaa n peliä. Yksittäisessä pelissä A voittaa todennäköisyydellä p ja B todennäköisyydellä q =

Lisätiedot

Partikkelit pallon pinnalla

Partikkelit pallon pinnalla Simo K. Kivelä, 14.7.2004 Partikkelit pallon pinnalla Tehtävänä on sijoittaa annettu määrä keskenään identtisiä partikkeleita mahdollisimman tasaisesti pallon pinnalle ja piirtää kuvio syntyvästä partikkelikonfiguraatiosta.

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 4 Supremum ja inmum Tarkastellaan aluksi avointa väliä, Tämä on joukko, johon kuuluvat kaikki reaaliluvut miinus yhdestä yhteen Kuitenkaan päätepisteet eli luvut ja

Lisätiedot

Ongelma(t): Mikä on Turingin kone? Miten Turingin kone liittyy funktioihin ja algoritmeihin? Miten Turingin kone liittyy tietokoneisiin?

Ongelma(t): Mikä on Turingin kone? Miten Turingin kone liittyy funktioihin ja algoritmeihin? Miten Turingin kone liittyy tietokoneisiin? Ongelma(t): Mikä on Turingin kone? Miten Turingin kone liittyy funktioihin ja algoritmeihin? Miten Turingin kone liittyy tietokoneisiin? 2013-2014 Lasse Lensu 2 Algoritmit ovat deterministisiä toimintaohjeita

Lisätiedot

Program matopeli; uses graph,grafiikka,crt; VAR. merkkiluettu,herkkutarkistettu : boolean;

Program matopeli; uses graph,grafiikka,crt; VAR. merkkiluettu,herkkutarkistettu : boolean; {Matopeli} {Yksinkertainen TurboPascalilla ohjelmoitu matopeli} {Julkaistu GPLv3 lisenssillã } {https://www.gnu.org/licenses/gpl-3.0.html} {Ilari Kuoppala 9D} Program matopeli; uses graph,grafiikka,crt;

Lisätiedot

Aurinkopaneelin lataussäädin 12/24V 30A. Käyttöohje

Aurinkopaneelin lataussäädin 12/24V 30A. Käyttöohje Aurinkopaneelin lataussäädin 12/24V 30A Käyttöohje 1 Asennuskaavio Aurinkopaneeli Matalajännitekuormitus Akku Sulake Sulake Invertterin liittäminen Seuraa yllä olevaa kytkentäkaaviota. Sulakkeet asennetaan

Lisätiedot

Vektorilla on suunta ja suuruus. Suunta kertoo minne päin ja suuruus kuinka paljon. Se on siinä.

Vektorilla on suunta ja suuruus. Suunta kertoo minne päin ja suuruus kuinka paljon. Se on siinä. Koska varsinkin toistensa suhteen liikkuvien kappaleiden liikkeen esittäminen suorastaan houkuttelee käyttämään vektoreita, mutta koska ne eivät kaikille ehkä ole kuitenkaan niin tuttuja kuin ansaitsisivat,

Lisätiedot

Ohjelmoinnin peruskurssi Y1

Ohjelmoinnin peruskurssi Y1 Ohjelmoinnin peruskurssi Y1 CSE-A1111 16.9.2015 CSE-A1111 Ohjelmoinnin peruskurssi Y1 16.9.2015 1 / 26 Mahdollisuus antaa luentopalautetta Goblinissa vasemmassa reunassa olevassa valikossa on valinta Luentopalaute.

Lisätiedot

8. Näppäimistöltä lukeminen 8.1

8. Näppäimistöltä lukeminen 8.1 8. Näppäimistöltä lukeminen 8.1 Sisällys Arvojen lukeminen näppäimistöltä Java-kielessä. In-luokka. In-luokka, käännös ja tulkinta Scanner-luokka. 8.2 Yleistä Näppäimistöltä annettujen arvojen (syötteiden)

Lisätiedot

Ohjelmoinnin perusteet Y Python

Ohjelmoinnin perusteet Y Python Ohjelmoinnin perusteet Y Python T-106.1208 2.3.2009 T-106.1208 Ohjelmoinnin perusteet Y 2.3.2009 1 / 28 Puhelinluettelo, koodi def lue_puhelinnumerot(): print "Anna lisattavat nimet ja numerot." print

Lisätiedot

Tilastolliset toiminnot

Tilastolliset toiminnot -59- Tilastolliset toiminnot 6.1 Aineiston esittäminen graafisesti Tilastollisen aineiston tallentamisvälineiksi TI-84 Plus tarjoaa erityiset listamuuttujat L1,, L6, jotka löytyvät 2nd -toimintoina vastaavilta

Lisätiedot

Ohjelmoinnin perusteet Y Python

Ohjelmoinnin perusteet Y Python Ohjelmoinnin perusteet Y Python T-106.1208 2.3.2011 T-106.1208 Ohjelmoinnin perusteet Y 2.3.2011 1 / 39 Kertausta: tiedoston avaaminen Kun ohjelma haluaa lukea tai kirjoittaa tekstitiedostoon, on ohjelmalle

Lisätiedot

Luku 6. Dynaaminen ohjelmointi. 6.1 Funktion muisti

Luku 6. Dynaaminen ohjelmointi. 6.1 Funktion muisti Luku 6 Dynaaminen ohjelmointi Dynaamisessa ohjelmoinnissa on ideana jakaa ongelman ratkaisu pienempiin osaongelmiin, jotka voidaan ratkaista toisistaan riippumattomasti. Jokaisen osaongelman ratkaisu tallennetaan

Lisätiedot

Algoritmit 2. Luento 2 Ke Timo Männikkö

Algoritmit 2. Luento 2 Ke Timo Männikkö Algoritmit 2 Luento 2 Ke 15.3.2017 Timo Männikkö Luento 2 Tietorakenteet Lineaarinen lista, binääripuu Prioriteettijono Kekorakenne Keko-operaatiot Keon toteutus taulukolla Algoritmit 2 Kevät 2017 Luento

Lisätiedot

LAINAUSJÄRJESTELMÄ. Kyllä. Vihermetsän lukion kirjastossa on samankaltainen, mutta monimutkaisempi lainausjärjestelmä:

LAINAUSJÄRJESTELMÄ. Kyllä. Vihermetsän lukion kirjastossa on samankaltainen, mutta monimutkaisempi lainausjärjestelmä: LAINAUSJÄRJESTELMÄ Holopaisten lukion kirjastossa on yksinkertainen kirjojen lainausjärjestelmä: henkilökunnalle laina-aika on 28 päivää, ja opiskelijoille laina-aika on 7 Alla on tätä yksinkertaista järjestelmää

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 2 Lisää osamurtoja Tutkitaan jälleen rationaalifunktion P(x)/Q(x) integrointia. Aiemmin käsittelimme tapauksen, jossa nimittäjä voidaan esittää muodossa Q(x) = a(x x

Lisätiedot

Täydentäviä muistiinpanoja kontekstittomien kielioppien jäsentämisestä

Täydentäviä muistiinpanoja kontekstittomien kielioppien jäsentämisestä Täydentäviä muistiinpanoja kontekstittomien kielioppien jäsentämisestä Antti-Juhani Kaijanaho 30. marraskuuta 2015 1 Yksiselitteiset operaattorikieliopit 1.1 Aritmeettiset lausekkeet Tällä kurssilla on

Lisätiedot

GeoGebra tutkivan oppimisen välineenä: havainto-hypoteesi-testaus

GeoGebra tutkivan oppimisen välineenä: havainto-hypoteesi-testaus GeoGebra tutkivan oppimisen välineenä: havainto-hypoteesi-testaus Mitä jäi mieleen viime viikosta? Mitä mieltä olet tehtävistä, joissa GeoGebralla työskentely yhdistetään paperilla jaettaviin ohjeisiin

Lisätiedot

Harjoitustehtäväkierros 1

Harjoitustehtäväkierros 1 T-06.50 kurssihenkilökunta deadline Tiistai 20.0.2009 2:5 Johdanto Tämä tehtäväkierros käsittelee pääasiassa toisen luennon sisältöä. Harjoituksia saa tehdä yksin tai yhdessä. Yhdessä tekeminen on suositeltavaa,

Lisätiedot

Tarkennamme geneeristä painamiskorotusalgoritmia

Tarkennamme geneeristä painamiskorotusalgoritmia Korotus-eteen-algoritmi (relabel-to-front) Tarkennamme geneeristä painamiskorotusalgoritmia kiinnittämällä tarkasti, missä järjestyksessä Push- ja Raise-operaatioita suoritetaan. Algoritmin peruskomponentiksi

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 3 Supremum ja infimum Tarkastellaan aluksi avointa väliä, ) = { : < < }. Tämä on joukko, johon kuuluvat kaikki reaaliluvut miinus yhdestä yhteen. Kuitenkaan päätepisteet

Lisätiedot

9.5. Turingin kone. Turingin koneen ohjeet. Turingin kone on järjestetty seitsikko

9.5. Turingin kone. Turingin koneen ohjeet. Turingin kone on järjestetty seitsikko 9.5. Turingin kone Turingin kone on järjestetty seitsikko TM = (S, I, Γ, O, B, s 0, H), missä S on tilojen joukko, I on syöttöaakkosto, Γ on nauha-aakkosto, I Γ, O on äärellinen ohjeiden joukko, O S Γ

Lisätiedot

Ohjelmoinnin perusteet Y Python

Ohjelmoinnin perusteet Y Python Ohjelmoinnin perusteet Y Python T-106.1208 1.4.2009 T-106.1208 Ohjelmoinnin perusteet Y 1.4.2009 1 / 56 Tentti Ensimmäinen tenttimahdollisuus on pe 8.5. klo 13:00 17:00 päärakennuksessa. Tämän jälkeen

Lisätiedot

Vaasan yliopisto (11) Tietotekniikan ja tuotantotalouden kandidaattiohjelma Valintakoe

Vaasan yliopisto (11) Tietotekniikan ja tuotantotalouden kandidaattiohjelma Valintakoe Vaasan yliopisto 1.6.2015 1(11) Valintakoe Vastaajan nimi: Tällä hetkellä olen kiinnostunut valitsemaan pääaineeksi Tietotekniikan Tuotantotalouden En tiedä vielä HUOM! Vastauksesi ei ole mitenkään sitova,

Lisätiedot

Mainosankkuri.fi-palvelun käyttöohjeita

Mainosankkuri.fi-palvelun käyttöohjeita Mainosankkuri.fi-palvelun käyttöohjeita Sisällys 1. Johdanto... 1 2. Sisäänkirjautuminen... 1 3. Palvelussa navigointi... 2 4. Laitteet... 2 5. Sisällönhallinta... 4 6. Soittolistat... 7 7. Aikataulut...

Lisätiedot

7 Uusia tarjouskilpailuja koskevien ilmoitusten tilaaminen

7 Uusia tarjouskilpailuja koskevien ilmoitusten tilaaminen 7 Uusia tarjouskilpailuja koskevien ilmoitusten tilaaminen Käyttäjä voi tilata sähköposti-ilmoituksen kaikista uusista tarjouskilpailuista valitsemallaan alalla CPV-luokituksen pohjalta. Euroopan komissio

Lisätiedot

Algoritmit 1. Luento 2 Ke Timo Männikkö

Algoritmit 1. Luento 2 Ke Timo Männikkö Algoritmit 1 Luento 2 Ke 11.1.2017 Timo Männikkö Luento 2 Algoritmin esitys Algoritmien analysointi Suoritusaika Asymptoottinen kertaluokka Peruskertaluokkia NP-täydelliset ongelmat Algoritmit 1 Kevät

Lisätiedot

KUVAN TUOMINEN, MUOKKAAMINEN, KOON MUUTTAMINEN JA TALLENTAMINEN PAINTISSA

KUVAN TUOMINEN, MUOKKAAMINEN, KOON MUUTTAMINEN JA TALLENTAMINEN PAINTISSA KUVAN TUOMINEN, MUOKKAAMINEN, KOON MUUTTAMINEN JA TALLENTAMINEN PAINTISSA SISÄLLYS 1. KUVAN TUOMINEN PAINTIIN...1 1.1. TALLENNETUN KUVAN HAKEMINEN...1 1.2. KUVAN KOPIOIMINEN JA LIITTÄMINEN...1 1.1. PRINT

Lisätiedot

Ongelma(t): Miten tietokoneen komponentteja voi ohjata siten, että ne tekevät yhdessä jotakin järkevää? Voiko tietokonetta ohjata (ohjelmoida) siten,

Ongelma(t): Miten tietokoneen komponentteja voi ohjata siten, että ne tekevät yhdessä jotakin järkevää? Voiko tietokonetta ohjata (ohjelmoida) siten, Ongelma(t): Miten tietokoneen komponentteja voi ohjata siten, että ne tekevät yhdessä jotakin järkevää? Voiko tietokonetta ohjata (ohjelmoida) siten, että se pystyy suorittamaan kaikki mahdolliset algoritmit?

Lisätiedot

PELTO-sukka on Rantalakeus -lehden ja kangas- ja käsityöliike Ippalan yhteistyössä toteuttaman sukkien suunnittelukilpailun voittajamalli.

PELTO-sukka on Rantalakeus -lehden ja kangas- ja käsityöliike Ippalan yhteistyössä toteuttaman sukkien suunnittelukilpailun voittajamalli. 1 Koko: S (L). Valmiin sukan jalkaterän ympärysmitta: 18cm (19cm). Jalkaterän pituutta voi muuttaa lisäämällä kerroksia. Tiheys: 34 silmukkaa ja 48 kerrosta = 10cm sileää neuletta Valmiin sukan mitat:

Lisätiedot

1. Universaaleja laskennan malleja

1. Universaaleja laskennan malleja 1. Universaaleja laskennan malleja Laskenta datan käsittely annettuja sääntöjä täsmällisesti seuraamalla kahden kokonaisluvun kertolasku tietokoneella, tai kynällä ja paperilla: selvästi laskentaa entä

Lisätiedot

Datatähti 2009 -alkukilpailu

Datatähti 2009 -alkukilpailu Datatähti 2009 -alkukilpailu Ohjelmointitehtävä 1/3: Hissimatka HUOM: Tutustuthan huolellisesti tehtävien sääntöihin ja palautusohjeisiin (sivu 7) Joukko ohjelmoijia on talon pohjakerroksessa, ja he haluavat

Lisätiedot

Nopea kertolasku, Karatsuban algoritmi

Nopea kertolasku, Karatsuban algoritmi Nopea kertolasku, Karatsuban algoritmi Mikko Männikkö 16.8.2004 Lähde: ((Gathen and Gerhard 1999) luku II.8) Esityksen kulku Algoritmien analysointia (1), (2), (3), (4) Klassinen kertolasku Parempi tapa

Lisätiedot

Museokartta 2015. Katselukäyttäjän ohje 8.6.2015, päivitetty 23.9.2015 Ohjeen sijainti: Intra/Ohjeet/Kulttuuriympäristö/Paikkatieto ohjeet

Museokartta 2015. Katselukäyttäjän ohje 8.6.2015, päivitetty 23.9.2015 Ohjeen sijainti: Intra/Ohjeet/Kulttuuriympäristö/Paikkatieto ohjeet Museokartta 2015 Katselukäyttäjän ohje 8.6.2015, päivitetty 23.9.2015 Ohjeen sijainti: Intra/Ohjeet/Kulttuuriympäristö/Paikkatieto ohjeet Kirjaudu Museoverkko tunnuksillasi linkistä http://museovirasto.maps.arcgis.com/apps/webappviewer/index.html?id=37851c99fc15421e9051a11b76e1c9ec

Lisätiedot

Lataussäädin 12/24V 10A. Käyttöohje

Lataussäädin 12/24V 10A. Käyttöohje Lataussäädin 12/24V 10A Käyttöohje 1 Yleistä Lataussäätimessä on näyttö ja sen latausmenetelmä on 3-vaiheinen PWM lataus. Siinä on myös kaksi USB liitintä pienten laitteiden lataamiseen. 2 Kytkentäkaavio

Lisätiedot

(0 1) 010(0 1) Koska kieli on yksinkertainen, muodostetaan sen tunnistava epädeterministinen q 0 q 1 q 2 q3

(0 1) 010(0 1) Koska kieli on yksinkertainen, muodostetaan sen tunnistava epädeterministinen q 0 q 1 q 2 q3 T-79.48 Tietojenkäsittelyteorian perusteet Tentti 25..23 mallivastaukset. Tehtävä: Kuvaa seuraavat kielet sekä säännölisten lausekkeiden että determinististen äärellisten automaattien avulla: (a) L = {w

Lisätiedot

Ohjelmoinnin peruskurssi Y1

Ohjelmoinnin peruskurssi Y1 Ohjelmoinnin peruskurssi Y1 CSE-A1111 21.9.2015 CSE-A1111 Ohjelmoinnin peruskurssi Y1 21.9.2015 1 / 25 Mahdollisuus antaa luentopalautetta Goblinissa vasemmassa reunassa olevassa valikossa on valinta Luentopalaute.

Lisätiedot

Liite 2: Verkot ja todennäköisyyslaskenta

Liite 2: Verkot ja todennäköisyyslaskenta Ilkka Mellin Todennäköisyyslaskenta Liite 2: Verkot ja todennäköisyyslaskenta Verkot TKK (c) Ilkka Mellin (2007) 1 Verkko eli graafi: Määritelmä 1/2 Verkko eli graafi muodostuu pisteiden joukosta V, särmien

Lisätiedot

5. HelloWorld-ohjelma 5.1

5. HelloWorld-ohjelma 5.1 5. HelloWorld-ohjelma 5.1 Sisällys Lähdekoodi. Lähdekoodin (osittainen) analyysi. Lähdekoodi tekstitiedostoon. Lähdekoodin kääntäminen tavukoodiksi. Tavukoodin suorittaminen. Virheiden korjaaminen 5.2

Lisätiedot

4. Funktion arvioimisesta eli approksimoimisesta

4. Funktion arvioimisesta eli approksimoimisesta 4. Funktion arvioimisesta eli approksimoimisesta Vaikka nykyaikaiset laskimet osaavatkin melkein kaiken muun välttämättömän paitsi kahvinkeiton, niin joskus, milloin mistäkin syystä, löytää itsensä tilanteessa,

Lisätiedot

Rekursiolause. Laskennan teorian opintopiiri. Sebastian Björkqvist. 23. helmikuuta Tiivistelmä

Rekursiolause. Laskennan teorian opintopiiri. Sebastian Björkqvist. 23. helmikuuta Tiivistelmä Rekursiolause Laskennan teorian opintopiiri Sebastian Björkqvist 23. helmikuuta 2014 Tiivistelmä Työssä käydään läpi itsereplikoituvien ohjelmien toimintaa sekä esitetään ja todistetaan rekursiolause,

Lisätiedot

Kirjoita oma versio funktioista strcpy ja strcat, jotka saavat parametrinaan kaksi merkkiosoitinta.

Kirjoita oma versio funktioista strcpy ja strcat, jotka saavat parametrinaan kaksi merkkiosoitinta. Tehtävä 63. Kirjoita oma versio funktiosta strcmp(),joka saa parametrinaan kaksi merkkiosoitinta. Tee ohjelma, jossa luetaan kaksi merkkijonoa, joita sitten verrataan ko. funktiolla. Tehtävä 64. Kirjoita

Lisätiedot

LOAD R1, =2 Sijoitetaan rekisteriin R1 arvo 2. LOAD R1, 100

LOAD R1, =2 Sijoitetaan rekisteriin R1 arvo 2. LOAD R1, 100 Tiedonsiirtokäskyt LOAD LOAD-käsky toimii jälkimmäisestä operandista ensimmäiseen. Ensimmäisen operandin pitää olla rekisteri, toinen voi olla rekisteri, vakio tai muistiosoite (myös muuttujat ovat muistiosoitteita).

Lisätiedot

2.3 Voiman jakaminen komponentteihin

2.3 Voiman jakaminen komponentteihin Seuraavissa kappaleissa tarvitaan aina silloin tällöin taitoa jakaa voima komponentteihin sekä myös taitoa suorittaa sille vastakkainen operaatio eli voimien resultantin eli kokonaisvoiman laskeminen.

Lisätiedot

10 Liiketaloudellisia algoritmeja

10 Liiketaloudellisia algoritmeja 218 Liiketaloudellisia algoritmeja 10 Liiketaloudellisia algoritmeja Tämä luku sisältää liiketaloudellisia laskelmia. Aiheita voi hyödyntää vaikkapa liiketalouden opetuksessa. 10.1 Investointien kannattavuuden

Lisätiedot

Toinen harjoitustyö. ASCII-grafiikkaa 2017

Toinen harjoitustyö. ASCII-grafiikkaa 2017 Toinen harjoitustyö ASCII-grafiikkaa 2017 Yleistä Tehtävä: tee Javalla ASCII-merkkeinä esitettyä grafiikkaa käsittelevä ASCIIArt17-ohjelma omia operaatioita ja taulukoita käyttäen. Työ tehdään pääosin

Lisätiedot

Ohjelmoinnin perusteet (Java)

Ohjelmoinnin perusteet (Java) Ohjelmoinnin perusteet (Java) HARJOITUKSIA Syksy 2012 / Auvo Häkkinen Jos et ehdi tehdä viikon tehtäviä labra-aikana, tee ne valmiiksi ennen seuraavaa kokoontumista. Tehtävät tulee kirjauttaa tehdyiksi

Lisätiedot

KOJELAUTA MITTARISTO. A Nopeusmittari B Polttoainemittari C Moottorin lämpömittari D Kierroslukumittari E Monitoiminäyttö (perus/laajennettu)

KOJELAUTA MITTARISTO. A Nopeusmittari B Polttoainemittari C Moottorin lämpömittari D Kierroslukumittari E Monitoiminäyttö (perus/laajennettu) F I A T C R O M A P I K A O P A S KOJELAUTA 1 Ohjauspyörän vasen vipu: ulkovalot - 2 Mittaristo - 3 Ohjauspyörän oikea vipu: tuuli- ja takalasin pyyhkijät sekä ajotietokoneen näppäimet - 4 Connect Nav+

Lisätiedot

3. Muuttujat ja operaatiot 3.1

3. Muuttujat ja operaatiot 3.1 3. Muuttujat ja operaatiot 3.1 Sisällys Muuttujat. Nimi ja arvo. Algoritmin tila. Muuttujan nimeäminen. Muuttujan tyyppi. Muuttuja ja tietokone. Operaattorit. Operandit. Arvon sijoitus muuttujaan. Aritmeetiikka.

Lisätiedot

Ehto- ja toistolauseet

Ehto- ja toistolauseet Ehto- ja toistolauseet 1 Ehto- ja toistolauseet Uutena asiana opetellaan ohjelmointilauseet / rakenteet, jotka mahdollistavat: Päätösten tekemisen ohjelman suorituksen aikana (esim. kyllä/ei) Samoja lauseiden

Lisätiedot

9. Vektorit. 9.1 Skalaarit ja vektorit. 9.2 Vektorit tasossa

9. Vektorit. 9.1 Skalaarit ja vektorit. 9.2 Vektorit tasossa 9. Vektorit 9.1 Skalaarit ja vektorit Skalaari on koon tai määrän mitta. Tyypillinen esimerkki skalaarista on massa. Lukumäärä on toinen hyvä esimerkki skalaarista. Vektorilla on taas suuruus ja suunta.

Lisätiedot

Partikkelit pallon pinnalla

Partikkelit pallon pinnalla Simo K. Kivelä, 14.7.2004 Partikkelit pallon pinnalla Tehtävänä on sijoittaa annettu määrä keskenään identtisiä partikkeleita mahdollisimman tasaisesti pallon pinnalle ja piirtää kuvio syntyvästä partikkelikonfiguraatiosta.

Lisätiedot

PERUSLASKUJA. Kirjoita muuten sama, mutta ota välilyönti 4:n jälkeen 3/4 +5^2 3

PERUSLASKUJA. Kirjoita muuten sama, mutta ota välilyönti 4:n jälkeen 3/4 +5^2 3 PERUSLASKUJA Matemaattisten lausekkeiden syöttäminen: Kirjoita ilman välilyöntejä 3/+^ 3 Kirjoita muuten sama, mutta ota välilyönti :n jälkeen 3/ +^ 3 Liiku matematiikka alueella nuolinäppäimin. Kokeile

Lisätiedot

ABT PUNNITSEVA HAARUKKAVAUNU ECONOMY

ABT PUNNITSEVA HAARUKKAVAUNU ECONOMY ABT PUNNITSEVA HAARUKKAVAUNU ECONOMY Lue käyttöohje ennen vaunun käyttöönottoa! Sisällys 1. Johdanto 2. Erittely 3. Varoitukset ja turvaohjeet 4. Haarukkavaunun käyttäminen 4.1 Käyttö 4.2 Näytön toiminnot

Lisätiedot

Tasohyppelypeli. Piirrä grafiikat. Toteuta pelihahmon putoaminen ja alustalle jääminen:

Tasohyppelypeli. Piirrä grafiikat. Toteuta pelihahmon putoaminen ja alustalle jääminen: Tasohyppelypeli 1 Pelissä ohjaat liikkuvaa ja hyppivää hahmoa vaihtelevanmuotoisessa maastossa tavoitteenasi päästä maaliin. Mallipelinä Yhden levelin tasohyppely, tekijänä Antonbury Piirrä grafiikat Pelaajan

Lisätiedot

Harjoitus 3 (3.4.2014)

Harjoitus 3 (3.4.2014) Harjoitus 3 (3..) Tehtävä Olkoon kaaren paino c ij suurin sallittu korkeus tieosuudella (i, j). Etsitään reitti solmusta s solmuun t siten, että reitin suurin sallittu korkeus pienimmillään olisi mahdollisimman

Lisätiedot

SMG-4500 Tuulivoima. Kuudennen luennon aihepiirit. Tuulivoimalan energiantuotanto-odotukset AIHEESEEN LIITTYVÄ TERMISTÖ (1/2)

SMG-4500 Tuulivoima. Kuudennen luennon aihepiirit. Tuulivoimalan energiantuotanto-odotukset AIHEESEEN LIITTYVÄ TERMISTÖ (1/2) SMG-4500 Tuulivoima Kuudennen luennon aihepiirit Tuulivoimalan energiantuotanto-odotukset Aiheeseen liittyvä termistö Pinta-alamenetelmä Tehokäyrämenetelmä Suomen tuulivoimatuotanto 1 AIHEESEEN LIITTYVÄ

Lisätiedot

Ohjelmoinnin perusteet Y Python

Ohjelmoinnin perusteet Y Python Ohjelmoinnin perusteet Y Python T-106.1208 28.2.2011 T-106.1208 Ohjelmoinnin perusteet Y 28.2.2011 1 / 46 Ohjelmointiprojektin vaiheet 1. Määrittely 2. Ohjelman suunnittelu (ohjelman rakenne ja ohjelman

Lisätiedot

11. Javan valintarakenteet 11.1

11. Javan valintarakenteet 11.1 11. Javan valintarakenteet 11.1 Sisällys If- ja if--lauseet. Orpo. Valintaa toisin: switch-lause. 11.2 Valintarakenteet Valintarakenteilla ilmaistaan formaalisti, kuinka algoritmin suoritus voi haarautua

Lisätiedot

Perinteiset tietokoneohjelmat alkavat pääohjelmasta, c:ssä main(), jossa edetään rivi riviltä ja käsky käskyltä.

Perinteiset tietokoneohjelmat alkavat pääohjelmasta, c:ssä main(), jossa edetään rivi riviltä ja käsky käskyltä. TIETOKONEOHJELMIEN RAKENNE Perinteiset tietokoneohjelmat alkavat pääohjelmasta, c:ssä main(), jossa edetään rivi riviltä ja käsky käskyltä. Teollisuusautomaation ohjelmiin on lainattu runsaasti perinteisen

Lisätiedot

Tietorakenteet ja algoritmit syksy Laskuharjoitus 1

Tietorakenteet ja algoritmit syksy Laskuharjoitus 1 Tietorakenteet ja algoritmit syksy 2012 Laskuharjoitus 1 1. Tietojenkäsittelijä voi ajatella logaritmia usein seuraavasti: a-kantainen logaritmi log a n kertoo, kuinka monta kertaa luku n pitää jakaa a:lla,

Lisätiedot

2.1. Tehtävänä on osoittaa induktiolla, että kaikille n N pätee n = 1 n(n + 1). (1)

2.1. Tehtävänä on osoittaa induktiolla, että kaikille n N pätee n = 1 n(n + 1). (1) Approbatur 3, demo, ratkaisut Sovitaan, että 0 ei ole luonnollinen luku. Tällöin oletusta n 0 ei tarvitse toistaa alla olevissa ratkaisuissa. Se, pidetäänkö nollaa luonnollisena lukuna vai ei, vaihtelee

Lisätiedot

12. Näppäimistöltä lukeminen 12.1

12. Näppäimistöltä lukeminen 12.1 12. Näppäimistöltä lukeminen 12.1 Sisällys Arvojen lukeminen näppäimistöltä yleisesti. Arvojen lukeminen näppäimistöltä Java-kielessä. In-luokka. Luetun arvon tarkistaminen. Tietovirrat ja ohjausmerkit.

Lisätiedot

Algoritmit 1. Luento 10 Ke 11.2.2015. Timo Männikkö

Algoritmit 1. Luento 10 Ke 11.2.2015. Timo Männikkö Algoritmit 1 Luento 10 Ke 11.2.2015 Timo Männikkö Luento 10 Algoritminen ongelman ratkaisu Suunnittelumenetelmät Raaka voima Järjestäminen eli lajittelu Kuplalajittelu Väliinsijoituslajittelu Valintalajittelu

Lisätiedot

Kertaustehtävien ratkaisut

Kertaustehtävien ratkaisut Kertaustehtävien ratkaisut. x y = x + 6 (x, y) 0 0 + 6 = 6 (0, 6) + 6 = (, ) + 6 = 0 (, 0) y-akselin leikkauspiste on (0, 6) ja x-akselin (, 0).. x y = x (x, y) 0 0 (0, 0) (, ) (, ) x y = x + (x, y) 0

Lisätiedot