ABTEKNILLINEN KORKEAKOULU Tietoverkkolaboratorio

Koko: px
Aloita esitys sivulta:

Download "ABTEKNILLINEN KORKEAKOULU Tietoverkkolaboratorio"

Transkriptio

1 ABTEKNILLINEN KORKEAKOULU Tietoverkkolaboratorio. Johdanto luento0.ppt S Liikenneteorian perusteet - Kevät 2004

2 . Johdanto Sisältö Liikenneteorian tehtävä Liikenneteoreettiset mallit Puhelinliikenteen mallinnus puhtaana menetysjärjestelmänä Dataliikenteen mallinnus puhtaana jonotusjärjestelmänä 2

3 . Johdanto Liikenteellinen näkökulma Tietoliikennejärjestelmä liikenteellisestä näkökulmasta: käyttäjät tuleva liikenne järjestelmä lähtevä liikenne Idea: järjestelmän käyttäjät generoivat liikennettä, jota järjestelmä palvelee 3

4 . Johdanto Mielenkiintoisia kysymyksiä Millainen on käyttäjän kokema palvelun laatu annetussa järjestelmässä ja annetulla liikenteellä? Miten järjestelmä tulee mitoittaa, jotta annetulla liikenteellä saavutetaan haluttu palvelun laatu? Millaisella liikenteellä järjestelmää voidaan kuormittaa niin, ettei palvelun laatu siitä kärsi? käyttäjät tuleva liikenne järjestelmä lähtevä liikenne 4

5 . Johdanto Liikenneteorian tehtävä () Tehtävänä on määrätä seuraavan kolmen tekijän väliset riippuvuudet: palvelun laatu järjestelmän kapasiteetti liikenteen voimakkuus palvelun laatu järjestelmä liikenne 5

6 . Johdanto Liikenneteorian tehtävä (2) Järjestelmänä voi olla yksittäinen laite (esim. keskusten välinen yhdysjohto puhelinverkossa, pakettien reititystä tekevä prosessori dataverkossa, ATM-verkon statistinen multiplekseri) tai kokonainen tietoliikenneverkko (esim. puhelin- tai dataverkko) tai sen osa Järjestelmä koostuu tyypillisesti varsinaisesta laitteesta (hardware) ja sitä ohjaavasta logiikasta (software) Liikenne taas muodostuu (tapauksesta riippuen) kutsuista, paketeista, purskeista, soluista tms. 6

7 . Johdanto Liikenneteorian tehtävä (3) Palvelun laatua voidaan kuvata käyttäjän kannalta esim. kutsuesto, pakettivirran kokeman viiveen jakauma järjestelmän kannalta jolloin usein puhutaan järjestelmän suorituskyvystä (performance) esim. käyttöaste Toisaalta palvelun laatua voidaan kuvata järjestelmälle tarjotun liikenteen kannalta esim. ATM-yhteyspyyntöjen kokema kutsuesto tai jokin muu yhteystason laatua kuvaava suure; grade of service (GOS) järjestelmän palveleman liikenteen kannalta esim. hyväksytyn ATM-yhteyden aikana menetetyt solut tai jokin muu yhteydenaikaista laatua kuvaava suure; quality of service (QOS) 7

8 . Johdanto Esimerkki Puhelinliikenne liikenne = puhelut järjestelmä = puhelinverkko palvelun laatu = todennäköisyys, että linja ei ole varattu PRRRR!!! 8

9 . Johdanto Eri tekijöiden väliset riippuvuudet Riippuvuuksien kvalitatiivinen kuvaus: kapasiteetti palvelun laatu palvelun laatu liikenne liikenne kapasiteetti annetulla palvelun laadulla annetulla kapasiteetilla annetulla liikenteellä Riippuvuuksien kvantitatiivisten kuvaamiseen tarvitaan matemaattisia malleja 9

10 . Johdanto Liikenneteoreettiset mallit Liikenneteoreettiset mallit ovat yleensä luonteeltaan tilastollisia (siis stokastisia vastakohtana deterministiselle) Vaikka järjestelmät itsessään ovat useimmiten deterministisiä, liikenne on tyypillisesti luonteeltaan stokastista Perimmäisenä syynä on siis liikenteen tilastollinen luonne Koskaan et voi tietää, milloin joku soittaa sinulle Tästä taas seuraa, että myös palvelun laadun kuvaamisessa tarvittavat muuttujat ovat luonteeltaan tilastollisia, siis satunnaismuuttujia: käynnissä olevien kutsujen lkm pakettien lkm puskurissa Satunnaismuuttujaa kuvaa sen jakauma todennäköisyys, että käynnissä olevien yhteyksien lkm on n todennäköisyys, että puskurissa olevien pakettien lkm on n Stokastinen prosessi kuvaa ajan myötä tapahtuvaa satunnaista vaihtelua 0

11 . Johdanto Läheiset osaamisalueet Todennäköisyyslaskenta Stokastisten prosessien teoria Jonoteoria Tilastolliset analyysit (mittausdatan käsittely) Operaatiotutkimus Optimointiteoria Päätösteoria (Markov päätösprosessit) Simulointitekniikat (oliopohjainen ohjelmointi)

12 . Johdanto Todellinen järjestelmä ja sitä kuvaava malli On hyvä pitää mielessä todellisen järjestelmän ja sitä kuvaavan mallin ero: Mallilla kuvataan (ja pitääkin kuvata) vain jotakin tiettyä, kiinnostuksen kohteena olevaa osaa tai ominaisuutta todellisesta järjestelmästä Eri syistä johtuen kuvaus ei useinkaan ole edes kovin tarkka vaan hyvinkin approksimatiivinen varovaisuus johtopäätösten teossa 2

13 . Johdanto Käytännölliset päämäärät Verkonsuunnittelu mitoitus optimointi suorituskykyanalyysi Verkon- ja liikenteenhallinta verkon tehokas operointi vikatilanteista toipuminen liikenteenhallinta reititys laskutus 3

14 . Johdanto Kirjallisuutta Teleliikenneteoria V. B. Iversen, Teletraffic Engineering Handbook, Teletronikk (995) Vol. 9, Nr. 2/3, Special Issue on Teletraffic COST 242, Final report (996) Broadband Network Teletraffic, Eds. J. Roberts, U. Mocci, J. Virtamo, Springer J.M. Pitts and J.A. Schormans (996) Introduction to ATM Design and Performance, Wiley J. Roberts, Traffic Theory and the Internet, Jonoteoria L. Kleinrock (975) Queueing Systems, Vol. I: Theory, Wiley L. Kleinrock (976) Queueing Systems, Vol. II: Computer Applications, Wiley D. Bertsekas and R. Gallager (992) Data Networks, 2nd ed., Prentice-Hall P.G. Harrison and N.M. Patel (993) Performance Modelling of Communication Networks and Computer Architectures, Addison-Wesley 4

15 . Johdanto Sisältö Liikenneteorian tehtävä Liikenneteoreettiset mallit Puhelinliikenteen mallinnus puhtaana menetysjärjestelmänä Dataliikenteen mallinnus puhtaana jonotusjärjestelmänä 5

16 . Johdanto Liikenneteoreettiset mallit Liikenneteoreettisessa mallinnuksessa on periaatteessa kaksi vaihetta liikenteen mallinnus liikennemalli tutkittavan järjestelmän mallinnus järjestelmämalli Karkeasti ottaen liikenneteoreettiset mallit voidaan jakaa käytetyn järjestelmämallin perusteella kahteen osaan: menetysjärjestelmät (estomallit) jonotusjärjestelmät (jonomallit) Jatkossa esittelemme joitakin yksinkertaisia liikenneteoreettisia malleja, joilla voidaan mallintaa joitakin yksittäisiä tietoliikenneverkon laitteita Kokonaisia verkkoja voidaan mallintaa yhdistelemällä tällaisia yksinkertaisia malleja verkoksi estoverkot jonoverkot 6

17 . Johdanto Yksinkertainen liikenneteoreettinen malli Asiakkaita saapuu keskimäärin nopeudella λ (asiakasta per aikayks.) /λ = keskimääräinen asiakkaiden väliaika Asiakkaita palvellaan n:llä rinnakkaisella palvelijalla Palvelija palvelee keskimäärin nopeudella µ (asiakasta per aikayks.) /µ = keskimääräinen asiakkaan palveluaika Lisäksi järjestelmässä on m odotuspaikkaa Estyvät asiakkaat (joiden saapuessa järjestelmä on täysi) menetetään λ m µ n 7

18 . Johdanto Tehtävä Tarkastele edellä esitettyä yksinkertaista liikenneteoreettista mallia Mikä on käytetty liikennemalli? Mikä on käytetty järjestelmämalli? λ m µ n 8

19 . Johdanto Puhdas menetysjärjestelmä Ei yhtään odotuspaikkaa (m = 0) Jos asiakkaan saapuessa kaikki palvelijat ovat käytössä eli järjestelmä on ns. estotilassa (usein puhutaan myös täydestä järjestelmästä), kyseinen asiakas poistuu koko järjestelmästä pääsemättä palveluun ollenkaan. Järjestelmä on siis estollinen. Käyttäjän kokeman palvelun laadun kannalta kiinnostava suure on esim todennäköisyys, että järjestelmä on täysi asiakkaan saapuessa Järjestelmän kannalta taas kiinnostavia suureita ovat esim. palvelijoiden käyttöaste ja käytössä olevien palvelijoiden lkm:n jakauma λ µ n 9

20 . Johdanto Puhdas jonotusjärjestelmä Ääretön määrä odotuspaikkoja (m = ) Yhtäkään asiakasta ei menetetä, vaan jos asiakkaan saapuessa kaikki palvelijat ovat käytössä, ko. asiakas jää odottamaan järjestelmän sisälle palveluun pääsyä. Järjestelmä on siis estoton. Käyttäjän kokeman palvelun laadun kannalta kiinnostava suure on esim todennäköisyys, että asiakas joutuu odottamaan kauemmin kuin jokin annettu referenssiaika (ts. liian kauan ) Järjestelmän kannalta taas kiinnostava suureita ovat esim. palvelijoiden käyttöaste ja käytössä olevien palvelijoiden lkm:n jakauma λ µ n 20

21 . Johdanto Sekajärjestelmä Äärellinen määrä odotuspaikkoja (0 < m < ) Jos asiakkaan saapuessa kaikki palvelijat ovat käytössä mutta osa odotuspaikoista on vapaana, kyseinen asiakas jää odottamaan palveluun pääsyä. Jos taas kaikki odotuspaikatkin ovat käytössä, asiakas menetetään. Osa asiakkaista siis joutuu odottamaan palveluun pääsyä, ja osa jopa jää kokonaan vaille palvelua. Tämäkin järjestelmä on siis estollinen. λ m µ n 2

22 . Johdanto Ääretön järjestelmä Ääretön määrä palvelijoita (n = ) Yhtäkään asiakasta ei menetetä, eikä kenenkään tarvitse edes odottaa palveluun pääsyä. Estoton järjestelmä. Tällaisen (hypotettisen) järjestelmän analyysi on tyypillisesti huomattavasti helpompaa kuin vastaavan todellisen järjestelmän, jossa voi olla vain äärellinen määrä palvelijoita. Joskus tämä on ainoa tapa saada edes approksimatiivista tietoa vastaavasta todellisesta järjestelmästä. λ µ 22

23 . Johdanto Littlen kaava Tarkastellaan systeemiä, johon saapuu uusia asiakkaita intensiteetillä λ Stabiilisuusoletus: Systeemiin ei kerry asiakkaita, vaan se tyhjenee aika ajoin Seuraus: Asiakkaita myös poistuu intensiteetillä λ Merkitään N T = keskimäärin systeemissä olevien asiakkaiden lkm = keskimääräinen asiakkaan systeemissä viettämä aika Littlen kaava: N = λt λ λ 23

24 . Johdanto Sisältö Liikenneteorian tehtävä Liikenneteoreettiset mallit Puhelinliikenteen mallinnus puhtaana menetysjärjestelmänä Dataliikenteen mallinnus puhtaana jonotusjärjestelmänä 24

25 . Johdanto Klassinen puhelinliikenteen mallinnus () Menetysjärjestelmiä on perinteisesti käytetty puhelinliikenteen kuvaamiseen Uranuurtajana oli tanskalainen matemaatikko A.K. Erlang ( ). Tarkastellaan kahden keskuksen välisellä linkillä kulkevaa puhelinliikennettä (klassinen liikenneteoreettinen ongelma) Liikenne koostuu käynnissä olevista puheluista, jotka käyttävät ko. linkkiä 25

26 . Johdanto Klassinen puhelinliikenteen mallinnus (2) Erlang käytti mallina puhdasta menetysjärjestelmää (m = 0) asiakas = kutsu = puhelu λ = uusien kutsujen saapumisintensiteetti palveluaika = (kutsun) pitoaika h = /µ = keskimääräinen pitoaika palvelija = yksittäinen linkin kanava n = linkillä olevien rinnakkaisten kanavien lkm λ µ n 26

27 . Johdanto Liikenneprosessi kanavat kanavakohtainen miehitystila kutsun pitoaika kanavien lkm kutsujen saapumishetket estynyt kutsu varattujen kanavien lkm aika aika 27

28 . Johdanto Liikenneintensiteetti Puhelinverkoissa: Liikenne Kutsut Liikenteen voimakkuutta kuvaa liikenneintensiteetti a Määritelmä: Liikenneintensiteetti a on saapumisintensiteetin λ ja keskimääräisen pitoajan h tulo: a = λh Liikenneintensiteetti on paljas luku, mutta asiayhteyden korostamiseksi sen yksiköksi usein merkitään erlang (erl) Littlen kaavan nojalla: liikenneintensiteetti kertoo keskimäärin käynnissä olevien kutsujen lkm:n vastaavassa (hypoteettisessa) äärettömässä systeemissä 28

29 . Johdanto Esimerkki Tarkastellaan paikalliskeskusta. Oletetaan, että uusia puheluita tulee tunnissa keskimäärin 800 kpl ja puhelun keskimääräinen pitoaika on 3 min. Tällöin liikenneintensiteetiksi tulee a = 800 3/ 60 = 90 erlang Jos keskimääräinen pitoaika kasvaa 3:sta 0:een minuuttiin, niin a = / 60 = 300 erlang 29

30 . Johdanto Ominaisliikenne Eri lähteiden synnyttämiä tyypillisiä liikenneintensiteettejä ovat: yksityinen tilaaja: erlang yritystilaaja: erlang yrityksen vaihde (PBX): erlang maksupuhelin: 0.07 erlang Näin ollen esimerkiksi tyypillinen yksityistilaaja käyttää ajastaan -4 % puhumalla puhelimessa (niin sanotun kiiretunnin aikana) Jatkoa edellisen kalvon esimerkkiin: 90 erlangin liikenteen synnyttämiseen tarvitaan noin yksityistilaajaa 30

31 . Johdanto Esto Menetysjärjestelmässä osa kutsuista menetetään: Saapuva kutsu menetetään, jos kaikki kanavat on varattu (so. systeemi on täysi) ko. kutsun saapuessa Termi esto viittaa tähän tapahtumaan Menetysjärjestelmissä voidaan määritellä useita eri estosuureita: Kutsuesto B c = tn, että saapuva kutsu menetetään = niiden saapuvien kutsujen osuus, jotka menetetään Aikaesto B t = tn, että systeemi on täysi (mielivaltaisena ajanhetkenä) = se osuus ajasta, jolloin systeemi on täysi Nämä suureet eivät välttämättä ole samoja; tosin jos uudet kutsut saapuvat Poisson-prosessin mukaisesti, niin B c = B t Sovellutusten kannalta ollaan yleensä kiinnostuneita kutsuestosta, joka kuvaa käyttäjien kokemaa palvelun laatua Aikaesto taas on usein helpommin laskettavissa oleva suure 3

32 . Johdanto Kutsuintensiteetit Menetysjärjestelmässä voidaan erottaa seuraavat kutsuintensiteetit: λ offered = kaikkien saapuvien kutsujen saapumisintensiteetti λ carried = palveluun päässeiden kutsujen saapumisintensiteetti λ lost = menetettyjen kutsujen saapumisintensiteetti λ offered λ carried Huom: λ λ λ offered carried lost = λ = λb c λ lost carried = λ( B c + λ ) lost = λ 32

33 . Johdanto Liikennevirrat Eri kutsuintensiteettien avulla voidaan määritellä seuraavat liikennevirrat: Tarjottu liikenne a offered = λ offered h Kuljetettu liikenne a carried = λ carried h Menetetty liikenne a lost = λ lost h Huom: a a a offered carried lost = a c carried = a( B = ab c + a ) lost = a λ offered λ lost λ carried Tarjottu ja menetetty liikenne ovat hypoteettisia suureita, mutta kuljetettu liikenne on mitattavissa, sillä Littlen kaavan mukaan se kertoo keskimäärin käynnissä olevien kutsujen lkm:n 33

34 . Johdanto Liikenneteoreettinen analyysi () Järjestelmän kapasiteetti n = linkissä olevien rinnakkaisten kanavien lkm Liikenne a = (tarjottu) liikenneintensiteetti Palvelun laatu (käyttäjän näkökulmasta) B c = kutsuesto = tn, että saapuva kutsu menetetään Tarkastellaan tyyppiä M/G/n/n olevaa puhdasta menetysjärjestelmää, ts. oletetaan, että uudet kutsut saapuvat Poisson-prosessin mukaisesti (intensiteetillä λ) ja kutsujen pitoajat ovat riippumattomia ja samoin jakautuneita noudattaen mitä tahansa jakaumaa, jonka odotusarvo on h 34

35 . Johdanto Liikenneteoreettinen analyysi (2) Tällöin eri tekijöiden (järjestelmä, liikenne ja palvelun laatu) välisen yhteyden kertoo ns. Erlangin kaava Huom: Bc = Erl( n, a) : = n a n! n a i i i= 0! n! = n ( n ) 2, 0! = Vaihtoehtoisia nimiä: Erlangin B-kaava Erlangin estokaava (blocking formula) Erlangin menetyskaava (loss formula) Erlangin ensimmäinen kaava 35

36 . Johdanto Esimerkki Tarkastellaan esimerkinomaisesti hyvin pientä systeemiä. Oletetaan, että rinnakkaisten kanavien lkm on n = 4 ja liikenneintensiteeetti a = 2.0 erlang. Tällöin kutsuestoksi B c tulee B 2 4 Erl( 4,2) 4! c = = ! 3! 4! = + 2 Jos linkin kapasiteetti kasvatetaan n = 6 kanavaan, niin B c pienenee arvoon = % B 2 6 Erl( 6,2) 6! c = = ! 3! 4! 5! 6!.2% 36

37 . Johdanto Tarvittava kapasiteetti liikenteen funktiona Asetetaan palvelun laatuvaatimukseksi, että kutsuesto B c < 20% Tarvittava kapasiteetti n liikenteen a funktiona saadaan kaavalla: n( a) = min{ N =,2, Erl( N, a) < 0.2} kapasiteetti n liikenne a 37

38 . Johdanto Palvelun laatu liikenteen funktiona Oletetaan sitten, että rinnakkaisten kanavien lkm eli kapasiteetti n = 0 Palvelun laatu B c liikenteen a funktiona saadaan kaavalla: palvelun laatu B c Bc ( a) = Erl(0, a) liikenne a 38

39 . Johdanto Palvelun laatu kapasiteetin funktiona Oletetaan lopuksi, että tarjotun liikenteen intensiteetti a = 0.0 erlang Palvelun laatu B c kapasiteetin n funktiona saadaan kaavalla: Bc ( n) = Erl( n,0.0) palvelun laatu B c kapasiteetti n 39

40 . Johdanto Sisältö Liikenneteorian tehtävä Liikenneteoreettiset mallit Puhelinliikenteen mallinnus puhtaana menetysjärjestelmänä Dataliikenteen mallinnus puhtaana jonotusjärjestelmänä 40

41 . Johdanto Klassinen dataliikenteen mallinnus () Jonotusjärjestelmät taas soveltuvat hyvin (pakettikytketyn) dataliikenteen kuvaamiseen Uranuurtajina 60- ja 70-luvuilla ARPANET:in tutkijat, eritoten L. Kleinrock ( Tarkastellaan yhtä reitittimen ulostulolinkkiä Liikenne koostuu linkkiä pitkin lähetetyistä datapaketeista R R R R 4

42 . Johdanto Klassinen dataliikenteen mallinnus (2) Klassisena mallina on yhden palvelijan (n = ) puhdas jonotusjärjestelmä, jossa on siis ääretön määrä odotuspaikkoja (m = ) asiakas = paketti λ = uusien pakettien saapumisintensiteetti (pakettia per aikayks.) L = keskim. paketin pituus (datayks.) palvelija = linkki, odotuspaikat = puskuri C = linkin kapasiteetti (datayks. per aikayks.) palveluaika = paketin lähetysaika /µ = L/C = keskim. paketin lähetysaika (aikayks.) λ µ 42

43 . Johdanto Liikenneprosessi pakettien tila (odottamassa/lähetyksessä) odotusaika lähetysaika pakettien saapumishetket järjestelmässä olevien pakettien lkm linkin käyttöaste aika aika aika 43

44 . Johdanto Liikennekuorma Pakettikytkentäisissä dataverkoissa: Liikenne Paketit Liikenteen voimakkuutta kuvataan liikennekuormalla ρ Määritelmä: Liikennekuorma ρ on saapumisintensiteetin λ suhde palveluintensiteettiin µ = C/L: λ ρ = = µ λl C Liikennekuorma on paljas luku (kuten menetysjärjestelmän liikenneintensiteettikin) Littlen kaavan nojalla: liikennekuorma kertoo keskimäärin palvelussa olevien asiakkaiden lkm:n. Se voidaan myös tulkita tn:ksi, että palvelija on jollakin mielivaltaisella ajanhetkellä käytössä. Näin ollen se kertoo myös järjestelmän käyttöasteen (utilization). 44

45 . Johdanto Esimerkki Tarkastellaan reitittimen ulostulolinkkiä. Oletetaan, että lähetettäviä paketteja saapuu keskimäärin 0 kpl sekunnissa, yhden paketin keskimääräinen pituus on 400 tavua, ja linkin kapasiteetti on 64 kbps. Tällöin linkin kuormaksi (ja samalla käyttöasteeksi) tulee ρ = / 64,000 = 0.5 = 50% Jos linkin kapasiteetti olisi 50 Mbps, niin kuormaksi tulisi vain ρ = /50,000,000 = = 0.02% Huom: tavu = 8 bittiä kbps = kbit/s = kbit per second =,000 bittiä sekunnissa Mbps = Mbit/s = Mbit per second =,000,000 bittiä sekunnissa 45

46 . Johdanto Liikenneteoreettinen analyysi () Järjestelmän kapasiteetti C = linkin kapasiteetti (kbps) Liikenne λ = pakettien saapumisintensiteetti (pakettia sekunnissa) L = keskimäär. paketin pituus (kbit). Oletetaan tässä: L = kbit Palvelun laatu (käyttäjän näkökulmasta) P z = tn, että paketin täytyy odottaa liian kauan, so. kauemmin kuin annettu referenssiviive z. Oletetaan tässä: z = 0. s Tarkastellaan tyyppiä M/M/ olevaa puhdasta jonotusjärjestelmää, ts. oletetaan, että uudet paketit saapuvat Poisson-prosessin mukaisesti (intensiteetillä λ) ja pakettien pituudet ovat riippumattomia ja samoin jakautuneita noudattaen eksponenttijakaumaa odotusarvolla L 46

47 . Johdanto Liikenneteoreettinen analyysi (2) Tällöin eri tekijöiden (järjestelmä, liikenne ja palvelun laatu) välisen yhteyden kertoo seuraava kaava: P z = Wait( C, λ; L, z) : = λl C, exp( ( C L λ) z), if λl if λl < C ( ρ < ) C ( ρ ) Huom: Järjestelmä on stabiili vain tapauksessa ρ <. Muutoin odottavien pakettien jono kasvaa lopulta äärettömän pitkäksi. 47

48 . Johdanto Esimerkki Oletetaan, että lähetettäviä paketteja saapuu intensiteetillä λ = 50 pakettia sekunnissa ja linkin kapasiteetti on C = 64 kbps. Tällöin liian pitkän viiveen tn:ksi P z (missä siis z = 0. s) tulee P z = Wait(64,50;,0.) = 50 exp(.4) 9% 64 Huom: Järjestelmä on stabiili, sillä λl ρ = C = 50 < 64 48

49 . Johdanto Tarvittava kapasiteetti saapumisintensiteetin funktiona Asetetaan palvelun laatuvaatimukseksi, että P z < 20% Tarvittava kapasiteetti C saapumisint:n λ funktiona saadaan kaavalla: C( λ) = min{ c > λl Wait( c, λ;,0.) < 0.2} linkin kapasiteetti C saapumisintensiteetti λ 49

50 . Johdanto Palvelun laatu saapumisintensiteetin funktiona Oletetaan sitten, että linkin kapasiteetti on C = 50 kbps Palvelun laatu P z saapumisint:n λ funktiona saadaan kaavalla: P ( λ) = Wait(50, λ;,0.) z palvelun laatu P z saapumisintensiteetti λ 50

51 . Johdanto Palvelun laatu kapasiteetin funktiona Oletetaan lopuksi, että saapumisintensiteetti on λ = 50 pakettia/s Palvelun laatu P z linkin kapasiteetin C funktiona saadaan kaavalla: ( C) = Wait( C,50;,0.) P z palvelun laatu P z linkin kapasiteetti C 5

52 . Johdanto Sanastoa (tele)liikenneteoria = (tele)traffic theory jonoteoria = queueing theory menetysjärjestelmä = loss system jonotusjärjestelmä = queueing system estoverkko = loss network jonoverkko = queueing network saapumisintensiteetti = arrival intensity saapumisväliaika = interarrival time palveluintensiteetti = service intensity palveluaika = service time ääretön = infinite kutsu = call pitoaika = holding time liikenneintensiteetti = traffic intensity liikennemäärä = traffic volume esto = blocking aikaesto = time blocking kutsuesto = call blocking estotn = blocking probability paketti = packet lähetysaika = transmission time (liikenne)kuorma = (traffic) load käyttöaste = utilization liikenne = traffic 52

53 ABTEKNILLINEN KORKEAKOULU Tietoverkkolaboratorio 2. Esimerkkejä eri järjestelmien mallintamisesta (osa ) Luento02.ppt S Liikenneteorian perusteet - Kevät 2004

54 2. Esimerkkejä eri järjestelmien mallintamisesta (osa ) Sisältö Tietoliikenneverkot Verkkotaso: välitysperiaatteet Linkkitaso: yhteyksien kanavointi ja keskitys Jaetun median yhteiskäyttö 2

55 2. Esimerkkejä eri järjestelmien mallintamisesta (osa ) Esimerkki: Miksi verkkoja? () Oletetaan, että N = 00 henkilöä haluaa olla yhteydessä keskenään Ratkaisu : Erillisverkot kunkin henkilön kotoa vedetään linkki kaikkien muiden koteihin kunkin linkin päihin laitetaan omat päätelaitteet ei kytkimiä Kommentit: resursseja ei jaeta ollenkaan, joten käyttöaste jää pieneksi resurssi lkm max käyttöaste N(N-) % N(N-)/2 % A B C D 3

56 2. Esimerkkejä eri järjestelmien mallintamisesta (osa ) Esimerkki: Miksi verkkoja? (2) Yhteyksien A-B ja C-D yhtaikainen toteutus ratkaisussa A B C D 4

57 2. Esimerkkejä eri järjestelmien mallintamisesta (osa ) Esimerkki: Miksi verkkoja? (3) Oletetaan edelleen, että N = 00 henkilöä haluaa olla yhteydessä keskenään Ratkaisu 2: Täydellisesti kytketty verkko vain yksi päätelaite per käyttäjä kunkin henkilön kotiin kytkin vedetään linkki kaikkien muiden kytkimiin Kommentit: osittainen resurssien jakaminen korkeampi käyttöaste resurssi lkm max käyttöaste N 00% N(N-)/2 % N 00% A B C D 5

58 2. Esimerkkejä eri järjestelmien mallintamisesta (osa ) Esimerkki: Miksi verkkoja? (4) Yhteyksien A-B ja C-D yhtaikainen toteutus ratkaisussa 2 A B C D 6

59 2. Esimerkkejä eri järjestelmien mallintamisesta (osa ) Esimerkki: Miksi verkkoja? (5) Oletetaan edelleen, että N = 00 henkilöä haluaa olla yhteydessä keskenään Ratkaisu 3: Tähtimäinen verkko vain yksi päätelaite per käyttäjä yhteinen keskus vedetään linkki kunkin henkilön kotoa yhteiseen keskukseen Kommentit täydellinen resurssien jakaminen paras käyttöaste Huom! Todellisten verkkojen topologiat ovat kuitenkin paljon monimutkaisempia, mieti miksi. resurssi lkm max käyttöaste N 00% N 00% 00% A B C D 7

60 2. Esimerkkejä eri järjestelmien mallintamisesta (osa ) Esimerkki: Miksi verkkoja? (6) Yhteyksien A-B ja C-D yhtaikainen toteutus ratkaisussa 3 A B C D 8

61 2. Esimerkkejä eri järjestelmien mallintamisesta (osa ) Tietoliikenneverkot Yksinkertainen tietoliikenneverkon malli koostuu solmuista (node) päätelaitteet verkon solmut solmujen välisistä linkeistä (link) Liityntäverkko (access network) päätelaitteita verkon (reunalla oleviin) solmuihin yhdistävä osa tietoliikenneverkosta Runkoverkko (trunk network) verkon solmuja toisiinsa yhdistävä osa tietoliikenneverkosta 9

62 2. Esimerkkejä eri järjestelmien mallintamisesta (osa ) Jaettu media liityntäverkkona Edellisen kalvon mallissa, päätelaitteiden ja verkon solmujen väliset yhteydet oletetaan pisteestä-pisteeseen tyyppisiksi ( resursseja jaetaan vain runkoverkon puolella) Joissakin tapauksissa, kuten matkapuhelinverkko lähiverkko liityntäverkko muodostuu jaetusta mediasta: käyttäjien on kilpailtava resursseista tarvitaan erilaisia moniliityntätekniikoita 0

63 2. Esimerkkejä eri järjestelmien mallintamisesta (osa ) Verkon topologia tähti puu väylä silmikoitu täydellisesti kytketty rengas

64 2. Esimerkkejä eri järjestelmien mallintamisesta (osa ) Verkon hierarkia Tietoliikenneverkot sisältävät usein eri hierarkiatasoja litteät topologiat (vain yksi taso) hierarkkiset topologiat (monta tasoa) Eräs luonnollinen hierarkiajako: liityntä- vs. runkoverkko Perinteisesti puhelinverkossa: monta tasoa (esim. AT&T:llä 5 tasoa) Nykyinen suuntaus: hierarkiatasojen vähentäminen We see future large national networks with only three levels. 2

65 2. Esimerkkejä eri järjestelmien mallintamisesta (osa ) Sisältö Tietoliikenneverkot Verkkotaso: välitysperiaatteet Linkkitaso: yhteyksien kanavointi ja keskitys Jaetun median yhteiskäyttö 3

66 2. Esimerkkejä eri järjestelmien mallintamisesta (osa ) Tiedon siirto yli verkon: välitysperiaatteet Piirikytkentä (circuit switching) perinteisestä puhelinverkosta tuttu välitysperiaate käytössä myös nykyisissä matkapuhelinverkoissa sovellettu jopa dataverkkoihin Pakettikytkentä (packet switching) dataverkoissa käytetty (ja niille ominaisempi) välitysperiaate kaksi mahdollisuutta yhteydellinen (connection oriented) esim. X.25, Frame Relay yhteydetön (connectionless) esim. Internet (IP), SS7 (MTP) Solukytkentä (cell switching) erikoistapaus pakettikytkennästä: kiinteänmittaiset paketit eli solut (cell) tarjoaa mahdollisuuden hyvinkin erilaisten liikennevirtojen (kuten puhe, data ja video) integroimiseksi samaan verkkoon (esim. ATM-verkot) 4

67 2. Esimerkkejä eri järjestelmien mallintamisesta (osa ) Piirikytkentä () Yhteydellinen: tiedonsiirtoa edeltää yhteydenmuodostusvaihe, jonka aikana yhteys rakennetaan valmiiksi päästäpäähän tarvittavat resurssit varataan koko yhteyden keston ajaksi Informaation siirto jatkuvana virtana A B 5

68 2. Esimerkkejä eri järjestelmien mallintamisesta (osa ) Piirikytkentä (2) Ennen informaation siirtoa yhteydenmuodostuksesta aiheutuva viive Siirron aikana ei overheadia ei ylimääräisiä viiveitä B A 6

69 2. Esimerkkejä eri järjestelmien mallintamisesta (osa ) Yhteydetön pakettikytkentä () Yhteydetön: ei yhteydenmuodostusta B ei resurssien varausta Informaation siirto diskreetteinä paketteina B vaihtelevanmittaisia sisältää otsikon, jossa mm. kohteen globaali osoite A B B B 7

70 2. Esimerkkejä eri järjestelmien mallintamisesta (osa ) Yhteydetön pakettikytkentä (2) Ennen informaation siirtoa ei viiveitä B Siirron aikana overheadia (otsikkotavut) B paketin prosessointiviiveitä jonotusviiveitä (paketit kilpailevat yhteisistä resursseista) A B B B 8

71 2. Esimerkkejä eri järjestelmien mallintamisesta (osa ) Yhteydellinen pakettikytkentä () Yhteydellinen: tiedonsiirtoa edeltää yhteydenmuodostusvaihe, jonka aikana (virtuaali)yhteys rakennetaan valmiiksi päästäpäähän 4 B ei kuitenkaan resurssien varausta Informaation siirto diskreetteinä paketteina A 2 vaihtelevanmittaisia sisältää otsikon, jossa vain lokaali osoite (loogisen kanavan indeksi) olennaisesti lyhyempi kuin globaali osoite 9

72 2. Esimerkkejä eri järjestelmien mallintamisesta (osa ) Yhteydellinen pakettikytkentä (2) Ennen informaation siirtoa yhteydenmuodostuksesta aiheutuva viive B Siirron aikana overheadia (kuitenkin vähemmän kuin yhteydettömässä pakettikytkennässä) paketin prosessointiviiveitä (lyhyemmän osoitteen vuoksi kuitenkin vähemmän) A 2 4 jonotusviiveitä (paketit kilpailevat jälleen yhteisistä resursseista) 20

73 2. Esimerkkejä eri järjestelmien mallintamisesta (osa ) Solukytkentä () Yhteydellinen: tiedonsiirtoa edeltää yhteydenmuodostusvaihe, jonka aikana (virtuaali)yhteys rakennetaan valmiiksi päästäpäähän 4 4 B resurssien varaus mahdollinen mutta ei pakollinen (palveluluokasta riippuen) A 2 Informaation siirto diskreetteinä kiinteänmittaisina paketteina (eli soluina) lyhyitä sisältää otsikon, jossa lokaali osoite (VPI/VCI) 2

74 2. Esimerkkejä eri järjestelmien mallintamisesta (osa ) Solukytkentä (2) Ennen informaation siirtoa yhteydenmuodostuksesta aiheutuva viive B Siirron aikana overheadia (suhteellisesti jopa enemmän kuin yhteydettömässä pakettikytkennässä) paketin prosessointiviiveitä (kiinteän pituuden ja lyhyemmän osoitteen vuoksi kuitenkin huomattavasti vähemmän) A jonotusviiveitä (ellei resursseja ole varattu etukäteen) 22

75 2. Esimerkkejä eri järjestelmien mallintamisesta (osa ) Välitysperiaatteet: yhteenveto Piirikytkentä sopii hyvin liikenteelle, jolla tiukka reaaliaikaisuusvaatimus (puhe, RT-video, ) tehoton vaihtelevannopeuksiselle liikenteelle (VBR) ja datalle läpinäkyvä mutta jäykkä Solukytkentä melko joustava verkon resurssien tehokas käyttö pakettien järjestys säilyy reaaliaikatakuut mahdollisia mahdollisuus yhdistää eri tyyppisiä liikennevirtoja Yhteydellinen pakettikytkentä melko joustava verkon resurssien tehokas käyttö pakettien järjestys säilyy reaaliaikaisuutta ei voida taata Yhteydetön pakettikytkentä joustava ja vikasietoinen verkon resurssien tehokas käyttö pakettien järjestys voi muuttua reaaliaikaisuutta ei voida taata 23

76 2. Esimerkkejä eri järjestelmien mallintamisesta (osa ) Sisältö Tietoliikenneverkot Verkkotaso: välitysperiaatteet Linkkitaso: yhteyksien kanavointi ja keskitys Jaetun median yhteiskäyttö 24

77 2. Esimerkkejä eri järjestelmien mallintamisesta (osa ) Analogiset vs. digitaaliset järjestelmät () Aiemmin tietoliikenneverkot (so. puhelinverkot) olivat puhtaasti analogisia Ensimmäisenä digitalisoitiin keskusten väliset yhdysjohdot (trunk) Sen jälkeen myös keskukset Nykyisessä puhelinverkossa itse puhelin ja tilaajajohto ovat vielä (enimmäkseen) analogiseen tekniikkaan perustuvia ISDN ja GSM ovat ensimmäisiä täysin digitalisoituja (päätelaitteet ja tilaajajohto mukaanlukien) puhelinverkkoja Pakettikytkentäiset verkot ovat aina olleet digitaalisia Lähiverkot (LAN) ovat esimerkkejä täysin digitaalisista pakettikytkentäisistä verkoista Solukytkentäinen verkko (ATM) on myös täysin digitaalinen 25

78 2. Esimerkkejä eri järjestelmien mallintamisesta (osa ) Analogiset vs. digitaaliset järjestelmät (2) Analogisissa piirikytkentäisissä järjestelmissä yksi yhteys varaa yhden kanavan tai sen monikerran linkin kapasiteetti n ilmaistaan kanavina Digitaalisissa piirikytkentäisissä järjestelmissä yksi yhteys varaa yhden kanavan tai sen monikerran kanavan kapasiteetti ilmaistaan bitteinä sekunnissa (bps, kbps, Mbps,...) tyypillisesti 64 kbps linkin kapasiteetti voidaan ilmaista kanavina tai bitteinä sekunnissa (jolloin se on jokin kanavanopeuden monikerta) Digitaalisissa paketti- ja solukytkentäisissä järjestelmissä yhteys voi varata linkin kapasiteettia joustavasti (tai voidaan toimia yhteydettömästi) yhteyden varaama kapasiteetti ilmaistaan bitteinä sekunnissa (bps, kbps, Mbps,...) linkin kapasiteetti C ilmaistaan bitteinä sekunnissa (bps, kbps, Mbps,...) 26

79 2. Esimerkkejä eri järjestelmien mallintamisesta (osa ) Kanavointitekniikka () Alunperin puhelinverkossa varattiin kullekin yhteydelle oma fyysinen johto Kanavoinnilla (multiplexing) linkin kapasiteetti jaetaan useampaan kanavaan jokainen yhteys varaa tyypillisesti yhden kanavan näin saadaan useampi yhteys samalle (fyysiselle) linkille Kanavointi toteutetaan kanavointilaitteella (multiplexer) kanavointilaite n 27

80 2. Esimerkkejä eri järjestelmien mallintamisesta (osa ) Kanavointitekniikka (2) Piirikytkentäisissä verkoissa on käytössä kiinteä kanavointi. Tähän on olemassa kaksi eri periaatetta: taajuusjakoinen kanavointi (frequency division multiplexing, FDM) aikajakoinen kanavointi (time division multiplexing, TDM) Paketti- ja solukytkentäisissä verkoissa käytössä olevaa dynaamista kanavointiperiaatetta kutsutaan nimellä tilastollinen kanavointi (statistical multiplexing) kanavointilaite n 28

81 2. Esimerkkejä eri järjestelmien mallintamisesta (osa ) Taajuusjakoinen kanavointi Taajuusjakoinen kanavointi (FDM) vanhin kanavointitekniikka käytössä analogisissa piirikytkentäisissä verkoissa kullekin kanavalle oma osuus linkin kaistasta (taajuusalueesta) varattu taajuuskaista identifioi yhteyden Taajuusjakoinen kanavointilaite on estoton: tulopuolella n -kanavaista linkkiä lähtöpuolella n-kanavainen linkki kanava taajuusjakoinen kanavointilaite n kanavaa n 29

82 2. Esimerkkejä eri järjestelmien mallintamisesta (osa ) Aikajakoinen kanavointi Aikajakoinen kanavointi (TDM) käytössä digitaalisissa piirikytkentäisissä verkoissa tiedon siirto kiinteänpituisina kehyksinä, joka jaettu aikaväleihin jokainen aikaväli vastaa yhtä kanavaa varatun aikavälin paikka kehyksessä identifioi yhteyden Aikajakoinen kanavointilaite on estoton: tulopuolella n -kanavaista linkkiä lähtöpuolella n-kanavainen linkki aikajakoinen kanavointilaite aikaväli n kehys 30

83 2. Esimerkkejä eri järjestelmien mallintamisesta (osa ) Tilastollinen kanavointi Tilastollinen kanavointi käytössä paketti- ja solukytkentäisissä verkoissa (esim. Internet, ATM) tiedon siirto paketteina (vaihtuvan- tai kiinteänmittaisina), joissa yhteyskohtainen otsikko (sisältäen mm. ko. yhteyden tunnisteen) otsikko siis paljastaa, mistä yhteydestä on kysymys eri yhteydet (tarkemmin: kaikki paketit) kilpailevat koko käytettävissä olevasta kaistasta jonotusperiaatteella tarve puskurointiin tilastollinen kanavointilaite paketti n 3

84 2. Esimerkkejä eri järjestelmien mallintamisesta (osa ) Tilastollinen kanavointilaite Tilastollinen kanavointilaite on estollinen: tulopuolella n linkkiä kapasiteeteiltaan C i (i =,,n) lähtöpuolella linkki kapasiteetiltaan C C C n On siis mahdollista, että saapuva paketti menetetään paketin menetystodennäköisyyttä voidaan kuitenkin pienentää kasvattamalla puskurin kokoa äärettömän puskurin tapauksessa riittää, että C ylittää yhteen kanavoitavien yhteyksien yhteenlasketun keskimääräisen siirtonopeuden C tilastollinen kanavointilaite C n C n 32

85 2. Esimerkkejä eri järjestelmien mallintamisesta (osa ) Tilastollisen kanavointilaitteen mallinnus Tilastollinen kanavointilaite voidaan mallintaa puhtaana jonotusjärjestelmänä (kuten kuvassa alla), jos puskuri on iso sekajärjestelmänä, jos puskuri on pieni Liikenne koostuu paketeista jokainen paketti lähetetään täydellä nopeudella C merk. L:llä keskimääräistä paketin pituutta pakettien palvelunopeus µ on tällöin µ=c/l stabiilisuusvaatimus (ol. puskuri ääretön): pakettien saapumisnopeus λ < µ λ C/L 33

86 2. Esimerkkejä eri järjestelmien mallintamisesta (osa ) Keskitys Keskitys käytössä piirikytkentäisissä verkoissa (sekä analogisissa että digitaalisissa) tyypillisesti liittymäverkon puolella myös keskukset (solmut) toimivat implisiittisesti keskittiminä n -kanavaista linkkiä keskitetään m:lle -kanavaiselle linkille, missä m < n (tai :lle m-kanavaiselle linkille) idea: kaikki n tulopuolen kanavaa ovat yhtaikaa käytössä vain hyvin pienellä todennäköisyydellä keskitin n m 34

87 2. Esimerkkejä eri järjestelmien mallintamisesta (osa ) Keskitin Keskitin on estollinen: tulopuolella n -kanavaista linkkiä lähtöpuolella m -kanavaista linkkiä (m < n) Lähtevien kanavien lkm m tulee mitoittaa niin, että kutsuesto (so. tn, että kaikki m kanavaa ovat varattuina uuden kutsun saapuessa) on tarpeeksi pieni toisin sanoen: palvelun laatuvaatimuksen tulee täyttyä keskitin n m 35

88 2. Esimerkkejä eri järjestelmien mallintamisesta (osa ) Keskittimen mallinnus Keskitin voidaan mallintaa m:n palvelijan puhtaana menetysjärjestelmänä (kuten kuvassa alla) Liikenne koostuu yhteyksistä liikennettä generoi äärellinen määrä (n) lähteitä saapumisintensiteetti λ ei ole vakio vaan riippuu lähteiden lkm:stä n ja systeemin tilasta eli varattujen kanavien lkm:stä x: λ =λ(n,x) merk. h:lla keskimääräistä yhteyden pitoaikaa (eli kestoa) palvelunopeus µ on tällöin µ=/h /h λ(n,x) m 36

89 2. Esimerkkejä eri järjestelmien mallintamisesta (osa ) Sisältö Tietoliikenneverkot Verkkotaso: välitysperiaatteet Linkkitaso: yhteyksien kanavointi ja keskitys Jaetun median yhteiskäyttö 37

90 2. Esimerkkejä eri järjestelmien mallintamisesta (osa ) Matkapuhelinjärjestelmien moniliityntämenetelmät Matkapuhelinverkot jakautuvat maantieteellisesti soluihin jokaisella solulla oma tukiasema Liityntään käytössä oleva resurssi (taajuuskaista) on jaettu tukiasemakohtaisesti kanaviin järjestelmän käyttäjät (siis ko. tukiaseman alueella olevat) kilpailevat yhteydenmuodostusvaiheessa näistä kanavista dynaamisesta kanavien jaosta eri käyttäjille huolehtii ko. tukiasema (siis täysin keskitetysti) Käytössä olevia liityntämenetelmiä: taajuusjakoinen moniliityntä (frequency division multiple access, FDMA) aikajakoinen moniliityntä (time division multiple access, TDMA) koodijakoinen moniliityntä (code division multiple access, CDMA) 38

91 2. Esimerkkejä eri järjestelmien mallintamisesta (osa ) FDMA ja TDMA Taajuusjakoinen moniliityntä (FDMA) käytössä yleisesti analogisissa matkapuhelinverkoissa, esim. NMT verkon käyttämä taajuusalue jaettu kaistoihin (kanaviin) jokainen yhteys varaa yhden kanavan samanaikaiset yhteydet käyttävät siis eri taajuuskaistoja vrt. taajuusjakoinen kanavointi (FDM) Aikajakoinen moniliityntä (TDMA) käytössä digitaalisissa matkapuhelinverkoissa, esim. GSM tieto siirretään kehyksinä, joka jaettu aikaviipaleisiin (kanaviin) jokainen yhteys varaa yhden kanavan samanaikaiset yhteydet käyttävät siis samaa taajuusaluetta mutta eri aikaviipaleita taajuuskaistan suhteen tehokkaampi kuin FDMA vrt. aikajakokanavointi (TDM) 39

92 2. Esimerkkejä eri järjestelmien mallintamisesta (osa ) CDMA Koodijakoinen moniliityntä (CDMA) käytössä digitaalisissa matkapuhelinverkoissa, esim. IS-95 (USA) samaa taajuuskaistaa käyttävät radiolähetykset koodataan siten, että tietylle vastaanottajalle tarkoitetut signaalit voidaan ottaa vastaan vain ko. vastaanottimessa (muille ne näyttävät kohinalta) jokainen koodi vastaa yhtä kanavaa jokainen yhteys varaa yhden kanavan samanaikaiset yhteydet käyttävät siis samaa taajuusaluetta mutta eri koodeja voidaan yleensä sijoittaa enemmän kanavia samalle taajuusalueelle kuin FDMA- ja TDMA-tekniikalla tosin CDMA-järjestelmän kapasiteeetti on elastinen suure (toisin kuin FDMA- ja TDMA-järjestelmissä): mitä enemmän koodeja (kanavia), sitä enemmän ne häiritsevät toisiaan 40

93 2. Esimerkkejä eri järjestelmien mallintamisesta (osa ) Matkapuhelinjärjestelmien moniliitynnän mallinnus Kaikki edellä mainitut moniliityntämenetelmät (FDMA, TDMA, CDMA) voidaan mallintaa puhtaina menetysjärjestelminä Liikenne muodostuu kutsuista joko täysin uusia yhteyspyyntöjä (fresh call) tai sitten toisen tukiaseman alueelta siirtyviä yhteyksiä (handover) tuoreitten kutsujen malliksi käy Poisson-prosessi, mutta miten pitäisi mallintaa siirtyvät kutsut? asiakkaan palveluaika on täysi yhteyden pitoaika vain siinä tapauksessa, että ko. käyttäjä ei poistu ko. tukiaseman alueelta yhteyden aikana muussa tapauksessa asiakkaan palvelu loppuu heti, kun ko. käyttäjä on siirtynyt toisen tukiaseman alueelle uutena piirtenä on siis otettava huomioon käyttäjien liikkuvuuden mallinnus Järjestelmän kapasiteetti eli rinnakkaisten kanavien lkm taas riippuu käytössä olevasta taajuuskaistasta sekä käytetystä moniliityntämenetelmästä 4

94 2. Esimerkkejä eri järjestelmien mallintamisesta (osa ) Lähiverkkojen moniliityntämenetelmät Tietokoneiden välinen lähiverkko (local area network, LAN) välittää paketteja verkkoon kytkettyjen asemien välillä asemat kilpailevat tästä jaetusta resurssista aina yrittäessään lähettää paketteja kerralla ko. resurssi on aina kokonaisuudessaan yhden aseman käytössä dynaaminen resurssin jako tapahtuu yleensä täysin hajautetusti kilpavarausperiaatteella Käytössä olevia liityntämenetelmiä: satunnaisliityntä (random access): ALOHA, Slotted ALOHA kuulostelu yhdistettynä törmäysten havaitsemiseen (carrier sense multiple access with collision detection, CSMA/CD): Ethernet, IEEE valtuutuksen välitys väylässä (Token Bus): IEEE valtuutuksen välitys renkaassa (Token Ring): IEEE kuulostelu yhdistettynä törmäysten välttämiseen (carrier sense multiple access with collision avoidance, CSMA/CA): IEEE 802. WLAN 42

95 2. Esimerkkejä eri järjestelmien mallintamisesta (osa ) Satunnaisliityntä Asemat lähettävät paketteja täysin toisistaan riippumatta aina kun tarvetta ilmenee törmäyksiä ei pyritä ennaltaehkäisemään teoreettinen maksimiläpäisy alle 20% (LAN:in nimelliskapasiteetista) esim. ALOHA (alunperin käytössä satelliittilinkeissä) Jos oletetaan, että paketin pituus on kiinteä, kannattaa aika jakaa yhden paketin lähetysajan pituisiin viipaleisiin (so. lähetysaikojen synkronointi) teoreettinen maksimiläpäisy voidaan kaksinkertaistaa esim. Slotted ALOHA 43

96 2. Esimerkkejä eri järjestelmien mallintamisesta (osa ) Satunnaisliitynnän analyysi () Oletetaan, että asemat generoivat kiinteänpituisia paketteja Poissonprosessin mukaan intensiteetillä ν Merk. T:llä paketin lähetykseen kuluvaa aikaa stabiilisuusvaatimus: ν </T Synkronoimattomassa systeemissä (ALOHA) paketit törmäävät toisiinsa, mikäli niiden lähtöhetkien väli < T Törmänneet paketit lähetetään satunnaisen ajan kuluttua uudestaan (ja uudelleenlähetyksiä jatketaan niin kauan kunnes pakettien lähetys lopulta onnistuu) Approksimoidaan näin muodostunutta pakettien kokonaisvirtaa edelleen Poisson-prosessilla, jonka intensiteettiä merkitään λ:lla (λ >ν) Tarkkaan ottaen tämä ei taatusti pidä paikkaansa, mutta palvelee laskettavissa olevana approksimaationa 44

97 2. Esimerkkejä eri järjestelmien mallintamisesta (osa ) Satunnaisliitynnän analyysi (2) Tarkastellaan asemaa, joka on lähettämässä uutta pakettia hetkellä 0 Törmäystä ei tapahdu, mikäli aikavälillä ( T,+T) ei yritetä lähettää muita paketteja Tehdyn Poisson-approksimaation nojalla onnistuneen lähetyksen tn on siis exp( 2λT) Näin ollen, läpäisyksi ν tulee ν = λ exp( 2λT) Tämä on suurimmillaan, kun λ:lla on arvo λ max = /(2T) Vastaava liikennekuorma on λ max T = /2 = 50% Teoreettinen maksimiläpäisy ν max on siis ν max =λ max exp( 2λ max T) = /(2eT) 0.84/T 20% (/T) 45

98 2. Esimerkkejä eri järjestelmien mallintamisesta (osa ) Satunnaisliitynnän analyysi (3) Tarkastellaan sitten aikaviipaloitua systeemiä (Slotted ALOHA), missä paketit lähetetään täsmälleen T:n pituisissa aikaviipaleissa Tässä systeemissä paketit törmäävät toisiinsa, mikäli ne ovat saapuneet samassa aikavälissä Tarkastellaan asemaa, joka on lähettämässä uutta pakettia hetkellä 0 Törmäystä ei tapahdu, mikäli aikavälillä ( T,0) ei ole saapunut muita paketteja Tehdyn Poisson-approksimaation nojalla onnistuneen lähetyksen tn on siis exp( λt) Näin ollen, läpäisyksi ν tulee ν = λ exp( λt) Tämä on suurimmillaan, kun λ:lla on arvo λ max = /T Vastaava liikennekuorma on λ max T = = 00% Teoreettinen maksimiläpäisy ν max on siis ν max =λ max exp( λ max T) = /(et) 0.368/T 40% (/T) 46

99 2. Esimerkkejä eri järjestelmien mallintamisesta (osa ) Sanastoa tietoliikenneverkko = telecommunication network solmu = node linkki = link liityntäverkko = access network runkoverkko = trunk network = core network = backbone pisteestä-pisteeseen = point-to-point jaettu media = shared medium moniliityntä = multiple access lähiverkko = local area network silmikoitu = meshed täydellisesti kytketty = fully meshed välitys = switching piirikytkentä = circuit switching pakettikytkentä = packet switching solukytkentä = cell switching yhteydellinen = connection-oriented yhteydetön = connectionless kanavointi = multiplexing kanavointilaite = multiplexer taajuusjakoinen = frequency division aikajakoinen = time division tilastollinen = statistical keskitys = concentration keskitin = concentrator koodijakoinen = code division 47

100 ABTEKNILLINEN KORKEAKOULU Tietoverkkolaboratorio 3. Esimerkkejä eri järjestelmien mallintamisesta (osa 2) Luento03.ppt S Liikenneteorian perusteet - Kevät 2004

101 3. Esimerkkejä eri järjestelmien mallintamisesta (osa 2) Sisältö Piirikytkentäisen verkon mallinnus estoverkkona Pakettikytkentäisen verkon mallinnus jonoverkkona 2

102 3. Esimerkkejä eri järjestelmien mallintamisesta (osa 2) Piirikytkentäisen verkon malli () Tarkastellaan piirikytkentäistä verkkoa (esim. puhelinverkko) Liikenne: Asiakkaita ovat saapuvat yhteyspyynnöt. Liikenne muodostuu järjestelmään päässeistä kutsuista (puheluista), jotka varaavat yhden kanavan per linkki. Järjestelmä: päätelaitteet (puhelimet) verkon solmut (keskukset) puhelimia ja keskuksia yhdistävät linkit (tilaajajohdot) keskusten väliset linkit (keskusten väliset yhdysjohdot) A B 3

103 3. Esimerkkejä eri järjestelmien mallintamisesta (osa 2) Piirikytkentäisen verkon malli (2) Palvelun laatu: Palvelun laatua kuvaa tn, jolla haluttua yhteyttä ei pystytä muodostamaan (verkon rajallisista resursseista johtuen). Tätä sanotaan päästä-päähän estoksi (end-to-end blocking). Mallissa oletetaan, että kaikki verkon solmut ja koko liityntäverkko ovat estottomia Näin ollen, kutsu estyy täsmälleen silloin, kun kutsun saapuessa vähintään yksi kutsun reittiin kuuluva runkoverkon linkki on täysi (so. kaikki kanavat varattuina) A B 4

104 3. Esimerkkejä eri järjestelmien mallintamisesta (osa 2) Linkit j =,,J Mallissa oletetaan, että kaikki linkit ovat kaksisuuntaisia (miksi?) Merk. J:llä runkoverkon linkkien lkm:ää, ja indeksoidaan niitä j:llä: j =,, J kuvassa: J = 6 A 2 6 B 3 Merk. n j :llä linkin j kapasiteettia (rinnakkaisten kanavien lkm) 5 4 n = (n,,n J ) Yksittäiset linkit mallinnetaan puhtaina menetysjärjestelminä 5

105 3. Esimerkkejä eri järjestelmien mallintamisesta (osa 2) Reitit r =,,R Määr. reitti joukoksi linkkejä, jotka yhdistävät kaksi runkoverkon solmua toisiinsa. Merk. R:llä eri reittien lkm:ää, ja indeksoidaan niitä r:llä: r =,, R kuvassa: R = = 32 esim. verkon solmujen a ja b välillä on kolme eri reittiä: {,2}, {6,3}, {5,4,3} A a b 4 B 3 Merk. d jr =, jos linkki j kuuluu reitille r (muuten d jr = 0) D = (d jr j =,, J; r =,,R) 6

106 3. Esimerkkejä eri järjestelmien mallintamisesta (osa 2) Yhteysluokat ja verkon tila Oletetaan sitten, että yhteydet reititetään aina samalla tavalla läpi verkon tätä kutsutaan kiinteäksi reititykseksi (fixed routing) ed. kalvon kuvassa: käyttäjien A ja B väliseksi reitiksi on valittu {6,3}. Näin ollen kaikki samaa reittiä noudattavat yhteydet kokevat saman päästä-päähän eston. Reitti siis määrää yhteyspyynnön luokan (class) ed. kalvon kuvassa: esim. käyttäjien A ja B välinen yhteys kuuluu reittiä {6,3} vastaavaan luokkaan Merkitään x r :llä reittiä r noudattavien yhteyksien lkm:ää x = (x,,x R ) Vektoria x kutsutaan verkon tilaksi (state) 7

107 3. Esimerkkejä eri järjestelmien mallintamisesta (osa 2) Tila-avaruus S Reitillä olevien linkkien kapasiteetti asettaa seuraavan ylärajan yhtaikaisten yhteyksien lkm:lle: R r= d Sama vektorimuodossa: jr Mahdollisten tilojen joukko eli tila-avaruus S (state space) on siten Huom. Tila-avaruus on R-ulotteinen ja äärellinen (miksi?) x r n j D x n kaikilla S = { x 0 D x n} j 8

108 3. Esimerkkejä eri järjestelmien mallintamisesta (osa 2) Esimerkki 3 linkkiä kapasiteetein: linkki a-c: 3 kanavaa linkki b-c: 3 kanavaa linkki c-d: 4 kanavaa 2 reittiä: reitti a-c-d reitti b-c-d Huom. muut 4 reittiä (mitkä?) sivuutetaan tässä esimerkissä Tila-avaruus: S = {(0,0),(0,),(0,2),(0,3), (,0),(,),(,2),(,3), (2,0),(2,),(2,2), (3,0),(3,)} a c b 4 3 x 2 x x 0 x d S 9

109 3. Esimerkkejä eri järjestelmien mallintamisesta (osa 2) Luokkakohtaiset estottomat tilat S r Tarkastellaan luokkaan r kuuluvaa (so. reitille r tarjottua) yhteyspyyntöä Se ei esty, jos kaikilla ko. reitin varrella olevilla linkeillä j on ainakin yksi vapaa kanava: R r' = d Sama vektorimuodossa (e r on yksikkövektori suuntaan r): Luokan r estottomien tilojen joukko S r (non-blocking states) on siten S r jr' x r' n j kaikilla j r D x + e ) n ( r = r { x 0 D ( x + e ) n} 0

110 3. Esimerkkejä eri järjestelmien mallintamisesta (osa 2) Luokkakohtaiset estotilat S r B Luokan r estotilojen joukko S r B (blocking states) on selvästikin: B r S = S \ S r a b c d Jos siis systeemi on jossakin näistä estotiloista uuden, luokkaan r kuuluvan yhteyspyynnön saapuessa, ko. yhteyspyyntö estyy eikä yhteyttä synny. Esimerkki (jatkoa): Luokan (siis reittiä a-c-d käyttävien) kutsujen estotilat S B on merkitty kuvaan. x x S B = { (,3),(2,2),(3,),(3,0)}

111 3. Esimerkkejä eri järjestelmien mallintamisesta (osa 2) Tilatodennäköisyydet () Oletetaan, että kullekin reitille r tulee uusia yhteyspyyntöjä (muista reiteistä riippumattoman) Poisson-prosessin mukaisesti intensiteetillä λ r ja kaikkien yhteyksien pitoajat ovat riippumattomia ja samoin jakautuneita keskiarvonaan h Merkitään a r :llä luokan r liikenneintensiteettä: a r = λ r h 2

112 3. Esimerkkejä eri järjestelmien mallintamisesta (osa 2) Tilatodennäköisyydet (2) Tällöin voidaan osoittaa, että (minkä tahansa) tilan x S todennäköisyys π(x) on ns. tasapainotilanteessa (steady state) π (x) R = r = missä G on ns. normeerausvakio (normalizing constant) R ja funktiot f r (x r ) määritellään kaavalla f r G f r ( x r ) G = f r ( x r ) x S r = ( x r ) = a x xr r r! 3

113 3. Esimerkkejä eri järjestelmien mallintamisesta (osa 2) Tilatodennäköisyydet (3) Tilatodennäköisyyttä π(x) sanotaan tulomuotoiseksi (product-form) Kyseessä ei kuitenkaan ole eri luokkiin kuuluvien yhteyksien lkm:ien riippumattomuus, vaan niitä sitoo normeerausvakio G (joka puolestaan riippuu yhtaikaa kaikkien luokkien tiloista). Perimmäinen syy eri luokkien riippuvuuksille on äärellisten resurssien jakaminen. Jos resurssit olisivat äärettömät (ts. kaikilla linkeillä olisi riittävästi kapasiteettia), eri luokat olisivat toisistaan riippumattomia. 4

114 3. Esimerkkejä eri järjestelmien mallintamisesta (osa 2) PASTA Tarkastellaan, hetken ajan, mitä tahansa yksinkertaista liikenneteoreettista mallia (kts. luennon kalvo 7), johon asiakkaat saapuvat Poisson-prosessin mukaisesti Niin sanotun PASTA-ominaisuuden (Poisson Arrivals See Time Averages) mukaan, saapuvat asiakkaat (jotka siis noudattavat Poisson-prosessia) näkevät systeemin tasapainotilanteessa Tämä on tärkeä havainto sovellettavissa monessa tilanteessa Sitä voidaan esimerkiksi käyttää päästä-päähän eston laskemiseen edellä esitetyssä piirikytkentäisen verkon mallissa, jossa oletettiin uusien kutsujen saapuvan Poisson-prosessin mukaisesti 5

115 3. Esimerkkejä eri järjestelmien mallintamisesta (osa 2) Päästä-päähän eston laskenta: tarkka kaava Todennäköisyys, että systeemi on (tasapainotilanteessa) luokkaan r liittyvässä estotilassa on selvästikin Tällaista tn:ttä sanotaan luokan r päästä-päähän aikaestoksi (time blocking). PASTA-ominaisuuden nojalla taas voidaan päätellä, että x Sr B π (x) luokkaan r kuuluvien yhteyksien kokema päästä-päähän kutsuesto (call blocking) saadaan täsmälleen samalla kaavalla: B r = x S B r Huom. Tässä tilanteessa siis päästä-päähän aika- ja kutsuestot ovat samoja, ja voidaan lyhyesti puhua päästä-päähän estosta. π (x) 6

ABTEKNILLINEN KORKEAKOULU Tietoverkkolaboratorio

ABTEKNILLINEN KORKEAKOULU Tietoverkkolaboratorio ABTEKNILLINEN KORKEAKOULU Tietoverkkolaboratorio 2. Esimerkkejä eri järjestelmien mallintamisesta (osa ) Luento02.ppt S-38.45 - Liikenneteorian perusteet - Kevät 2004 Sisältö Tietoliikenneverkot Verkkotaso:

Lisätiedot

Liikenneteoriaa (vasta-alkajille)

Liikenneteoriaa (vasta-alkajille) Liikenneteoriaa (vasta-alkajille) samuli.aalto@hut.fi liikteor.ppt S-38.8 - Teletekniikan perusteet - Syksy 000 Sisältö Liikenneteorian tehtävä Verkot ja välitysperiaatteet Puhelinliikenteen mallinnus

Lisätiedot

AB TEKNILLINEN KORKEAKOULU

AB TEKNILLINEN KORKEAKOULU TEKNILLINEN KORKEKOULU Tietoverkkolaboratorio 2. Esimerkkejä eri järjestelmien mallintamisesta (osa ) luento02.ppt S-38.45 - Liikenneteorian perusteet - Kevät 2002 2. Esimerkkejä eri järjestelmien mallintamisesta

Lisätiedot

1. Johdanto luento01.ppt S Liikenneteorian perusteet - Kevät

1. Johdanto luento01.ppt S Liikenneteorian perusteet - Kevät luento01.ppt S-38.145 - Liikenneteorian perusteet - Kevät 2005 1 Sisältö Tietoliikenneverkot ja välitysperiaatteet Liikenneteorian tehtävä Liikenneteoreettiset mallit Littlen kaava 2 Tietoliikenneverkot

Lisätiedot

2. Esimerkkejä eri järjestelmien mallintamisesta (osa 1)

2. Esimerkkejä eri järjestelmien mallintamisesta (osa 1) 2. Esimerkkejä eri järjestelmien mallintamisesta (osa ) luento02.ppt S-38.45 - Liikenneteorian perusteet - Kevät 2000 2. Esimerkkejä eri järjestelmien mallintamisesta (osa ) Sisältö Tietoliikenneverkot

Lisätiedot

3. Esimerkkejä luento03.ppt S Liikenneteorian perusteet - Kevät

3. Esimerkkejä luento03.ppt S Liikenneteorian perusteet - Kevät luento03.ppt S-38.1145 - Liikenneteorian perusteet - Kevät 2006 1 Sisältö Puhelinliikenteen malli Pakettitason malli dataliikenteelle Vuotason malli elastiselle dataliikenteelle Vuotason malli virtaavalle

Lisätiedot

ABTEKNILLINEN KORKEAKOULU

ABTEKNILLINEN KORKEAKOULU ATEKNILLINEN KORKEAKOULU. Johdanto Tietoverkkolaboratorio Sisältö. Johdanto Liikenneteorian tehtävä Liikenneteoreettiset mallit Puhelinliikenteen mallinnus puhtaana menetysjärjestelmänä Dataliikenteen

Lisätiedot

ABTEKNILLINEN KORKEAKOULU

ABTEKNILLINEN KORKEAKOULU ATEKNILLINEN KORKEAKOULU. Johdanto Tietoverkkolaboratorio Sisältö. Johdanto Liikenneteorian tehtävä Liikenneteoreettiset mallit Puhelinliikenteen mallinnus puhtaana menetysjärjestelmänä Dataliikenteen

Lisätiedot

3. Esimerkkejä. Sisältö. Klassinen puhelinliikenteen malli (1) Klassinen puhelinliikenteen malli (2)

3. Esimerkkejä. Sisältö. Klassinen puhelinliikenteen malli (1) Klassinen puhelinliikenteen malli (2) Sisältö Puhelinliikenteen malli Pakettitason malli dataliikenteelle Vuotason malli elastiselle dataliikenteelle Vuotason malli virtaavalle dataliikenteelle luento03.ppt S-38.45 - Liikenneteorian perusteet

Lisätiedot

Sovellus Esitystapa Yhteysjakso Kuljetus Verkko Siirtoyhteys Fyysinen

Sovellus Esitystapa Yhteysjakso Kuljetus Verkko Siirtoyhteys Fyysinen S-38.45 Liikenneteorian perusteet K-99 lect2.ppt Sisältö Tietoliikenneverkot Verkkotaso: välitysperiaatteet Linkkitaso: yhteyksien kanavointi ja keskitys Jaetun median yhteiskäyttö Piirikytkentäisen verkon

Lisätiedot

Demonstraatiot Luento 7 D7/1 D7/2 D7/3

Demonstraatiot Luento 7 D7/1 D7/2 D7/3 TEKNILLINEN KORKEAKOULU Tietoliikenne- ja tietoverkkotekniikan laitos S-8.45 Liikenneteorian perusteet, Kevät 2008 Demonstraatiot Luento 7 7.2.2008 D7/ Tarkastellaan piirikytkentäisen järjestelmän n-kanavaista

Lisätiedot

Demonstraatiot Luento

Demonstraatiot Luento TEKNILLINEN KORKEAKOULU Tietoliikenne- ja tietoverkkotekniikan laitos S-8.45 Liikenneteorian perusteet, Kevät 8 Demonstraatiot Luento 8..8 D/ Tarkastellaan seuraavaa yksinkertaista piirikytkentäistä (runko)verkkoa.

Lisätiedot

AB TEKNILLINEN KORKEAKOULU

AB TEKNILLINEN KORKEAKOULU AB TEKNILLINEN KORKEAKOULU Tietoverkkolaboratorio luento10.ppt S-38.145 - Liikenneteorian perusteet - Kevät 2002 1 Sisältö Johdanto Verkon suunnittelu Liikenne-ennusteet Mitoitus 2 Tietoliikenneverkko

Lisätiedot

ABTEKNILLINEN KORKEAKOULU Tietoverkkolaboratorio. 10. Verkon suunnittelu ja mitoitus

ABTEKNILLINEN KORKEAKOULU Tietoverkkolaboratorio. 10. Verkon suunnittelu ja mitoitus ABTEKNILLINEN KORKEAKOULU Tietoverkkolaboratorio 10. Verkon suunnittelu ja mitoitus luento10.ppt S-38.145 - Liikenneteorian perusteet - Kevät 2004 1 Sisältö Johdanto Verkon suunnittelu Liikenne-ennusteet

Lisätiedot

Liikenneteorian tehtävä

Liikenneteorian tehtävä J. Virtamo 38.3141Teleliikenneteoria / Johdanto 1 Liikenneteorian tehtävä Määrää kolmen eri tekijän väliset riippuvuudet palvelun laatu järjestelmä liikenne Millainen käyttäjän kokema palvelun laatu on

Lisätiedot

Littlen tulos. Littlen lause sanoo. N = λ T. Lause on hyvin käyttökelpoinen yleisyytensä vuoksi

Littlen tulos. Littlen lause sanoo. N = λ T. Lause on hyvin käyttökelpoinen yleisyytensä vuoksi J. Virtamo 38.3143 Jonoteoria / Littlen tulos 1 Littlen tulos Littlen lause Littlen tuloksena tai Littlen lauseena tunnettu tulos on hyvin yksinkertainen relaatio järjestelmään tulevan asiakasvirran, keskimäärin

Lisätiedot

Estojärjestelmä (loss system, menetysjärjestelmä)

Estojärjestelmä (loss system, menetysjärjestelmä) J. Virtamo 38.3143 Jonoteoria / Estojärjestelmä 1 Estojärjestelmä (loss system, menetysjärjestelmä) Tarkastellaan perinteistä puhdasta estojärjestelmää, jossa on annettu n = johtojen (varattavien elementtien)

Lisätiedot

Estynyt puheluyritys menetetään ei johda uusintayritykseen alkaa uusi miettimisaika: aika seuraavaan yritykseen Exp(γ) pitoaika X Exp(µ)

Estynyt puheluyritys menetetään ei johda uusintayritykseen alkaa uusi miettimisaika: aika seuraavaan yritykseen Exp(γ) pitoaika X Exp(µ) J Virtamo 383143 Jonoteoria / Engsetin järjestelmä 1 Äärellinen lähdepopulaatio: M/M/s/s/n-järjestelmä Tarkastellaan estojärjestelmää (ei odotuspaikkoja) tapauksessa, jossa saapumiset tulevat äärellisestä

Lisätiedot

10. Verkon suunnittelu ja mitoitus

10. Verkon suunnittelu ja mitoitus luento10.ppt S-38.145 - Liikenneteorian perusteet - Kevät 2000 1 Sisältö Johdanto Verkon suunnittelu Liikenne-ennusteet Mitoitus 2 Tietoliikenneverkko Yksinkertainen tietoliikenneverkon malli koostuu solmuista

Lisätiedot

» multiaccess channel» random access channel LAN (Ethernet) langaton. ongelma: käyttövuoron jakelu Yhteiskäyttöisen kanavan käyttö

» multiaccess channel» random access channel LAN (Ethernet) langaton. ongelma: käyttövuoron jakelu Yhteiskäyttöisen kanavan käyttö 4. MAC-alikerros yleislähetys (broadcast)» multiaccess channel» random access channel LAN (Ethernet) langaton ongelma: käyttövuoron jakelu 29.9.2000 1 Mitä käsitellään? Yhteiskäyttöisen kanavan käyttö

Lisätiedot

4. MAC-alikerros. yleislähetys (broadcast) ongelma: käyttövuoron jakelu. » multiaccess channel» random access channel LAN (Ethernet) langaton

4. MAC-alikerros. yleislähetys (broadcast) ongelma: käyttövuoron jakelu. » multiaccess channel» random access channel LAN (Ethernet) langaton 4. MAC-alikerros yleislähetys (broadcast)» multiaccess channel» random access channel LAN (Ethernet) langaton ongelma: käyttövuoron jakelu 29.9.2000 1 Mitä käsitellään? Yhteiskäyttöisen kanavan käyttö

Lisätiedot

2. Liikenne. luento02.ppt S Liikenneteorian perusteet - Kevät 2006

2. Liikenne. luento02.ppt S Liikenneteorian perusteet - Kevät 2006 luento02.ppt S-38.1145 - Liikenneteorian perusteet - Kevät 2006 1 Sisältö Liikenteen karakterisointi Puhelinliikenteen mallinnus Dataliikenteen mallinnus pakettitasolla Dataliikenteen mallinnus vuotasolla

Lisätiedot

Kuva maailmasta Pakettiverkot (Luento 1)

Kuva maailmasta Pakettiverkot (Luento 1) M.Sc.(Tech.) Marko Luoma (1/20) M.Sc.(Tech.) Marko Luoma (2/20) Kuva maailmasta Pakettiverkot (Luento 1) WAN Marko Luoma TKK Teletekniikan laboratorio LAN M.Sc.(Tech.) Marko Luoma (3/20) M.Sc.(Tech.) Marko

Lisätiedot

ABTEKNILLINEN KORKEAKOULU

ABTEKNILLINEN KORKEAKOULU ABTEKNILLINEN KORKEAKOULU Tietoverkkolaboratorio Sisältö Peruskäsitteitä Poisson-prosessi Luento05.ppt S-38.45 - Liikenneteorian perusteet - Kevät 2005 2 Stokastiset prosessit () Stokastiset prosessit

Lisätiedot

J. Virtamo Jonoteoria / Prioriteettijonot 1

J. Virtamo Jonoteoria / Prioriteettijonot 1 J. Virtamo 38.3143 Jonoteoria / Prioriteettijonot 1 Prioriteettijonot Tarkastellaan M/G/1-jonojärjestelmää, jossa asiakkaat on jaettu K:hon prioriteettiluokkaan, k = 1,..., K: - luokalla 1 on korkein prioriteetti

Lisätiedot

S-38.1105 Tietoliikennetekniikan perusteet. Piirikytkentäinen evoluutio. Annukka Kiiski

S-38.1105 Tietoliikennetekniikan perusteet. Piirikytkentäinen evoluutio. Annukka Kiiski S-38.1105 Tietoliikennetekniikan perusteet Piirikytkentäinen evoluutio Annukka Kiiski Verkon topologia Kuvaa verkon rakenteen Fyysinen vs looginen topologia Tähti asema keskitin Perustopologioita Kahdenvälinen

Lisätiedot

Liikenneongelmien aikaskaalahierarkia

Liikenneongelmien aikaskaalahierarkia J. Virtamo 38.3141 Teleliikenneteoria / HOL-esto 1 Liikenneongelmien aikaskaalahierarkia AIKASKAALAHIERARKIA Kiinnostavat aikaskaalat kattavat laajan alueen, yli 13 dekadia! Eri aikaskaaloissa esiintyvät

Lisätiedot

5. Stokastiset prosessit (1)

5. Stokastiset prosessit (1) luento05.ppt S-38.45 - Liikenneteorian perusteet - Kevät 2006 Sisältö Peruskäsitteitä Poisson-prosessi 2 Stokastiset prosessit () Tarkastellaan jotakin (liikenneteorian kannalta tai sitten muuten) kiinnostavaa

Lisätiedot

2. Liikenne. Sisältö. Tarjottu vs. kuljetettu liikenne. Kuljetetun liikenteen karakterisointi

2. Liikenne. Sisältö. Tarjottu vs. kuljetettu liikenne. Kuljetetun liikenteen karakterisointi Sisältö Liikenteen karakterisointi Puhelinliikenteen mallinnus Dataliikenteen mallinnus pakettitasolla Dataliikenteen mallinnus vuotasolla luento.ppt S-8.5 - teorian perusteet - Kevät 6 Tarjottu vs. kuljetettu

Lisätiedot

S Liikenneteorian perusteet (2 ov) K-98

S Liikenneteorian perusteet (2 ov) K-98 S-38.145 Liikenneteorian perusteet (2 ov) K-98 Samuli Aalto Teletekniikan laboratorio Teknillinen korkeakoulu samuli.aalto@hut.fi http://keskus.hut.fi/opetus/s38145/ preface.ppt Opintojakson puitteet luennot

Lisätiedot

Jonojen matematiikkaa

Jonojen matematiikkaa Lectio praecursoria Jonojen matematiikkaa Samuli Aalto luento.ppt 1 Sisältö Johdanto Joukkopalveltu jono (batch service queue) Nestevarastomalli (fluid flow storage model) 2 Reaalimaailman ilmiö... ÿþýüûr.u.p.t.

Lisätiedot

J. Virtamo Jonoteoria / Prioriteettijonot 1

J. Virtamo Jonoteoria / Prioriteettijonot 1 J. Virtamo 38.143 Jonoteoria / Prioriteettijonot 1 Prioriteettijonot TarkastellaanM/G/1-jonojärjestelmää, jossaasiakkaaton jaettu K:hon prioriteettiluokkaan, k =1,...,K: - luokalla 1 on korkein prioriteetti

Lisätiedot

Odotusjärjestelmät. Aluksi esitellään allaolevan kuvan mukaisen yhden palvelimen jonoon liittyvät perussuureet.

Odotusjärjestelmät. Aluksi esitellään allaolevan kuvan mukaisen yhden palvelimen jonoon liittyvät perussuureet. J. Virtamo 38.3143 Jonoteoria / M/M/ /-jonot 1 Odotusjärjestelmät Siirrytään tarkastelemaan odotusjärjestelmiä. Nämä ovat aitoja jonojärjestelmiä siinä mielessä, että niissä on odotuspaikkoja ja asiakkat

Lisätiedot

ABTEKNILLINEN KORKEAKOULU Tietoverkkolaboratorio

ABTEKNILLINEN KORKEAKOULU Tietoverkkolaboratorio ABTEKNILLINEN KORKEAKOULU Tietoverkkolaboratorio S-38.145 Liikenneteorian perusteet (2 ov) Kevät 2002 Samuli Aalto Tietoverkkolaboratorio Teknillinen korkeakoulu samuli.aalto@hut.fi http://keskus.hut.fi/opetus/s38145/

Lisätiedot

Vuonohjaus: ikkunamekanismi

Vuonohjaus: ikkunamekanismi J. Virtamo 38.3141 Teleliikenneteoria / Ikkunointiin perustuva vuonohjaus 1 Vuonohjaus: ikkunamekanismi Kuittaamattomina liikkeellä olevien segmenttien (data unit) lkm W (ikkuna) Lähetyslupien kokonaismäärä

Lisätiedot

AB TEKNILLINEN KORKEAKOULU

AB TEKNILLINEN KORKEAKOULU AB TEKNILLINEN KORKEAKOULU Tietoverkkolaboratorio S-38.145 Liikenneteorian perusteet (2 ov) Kevät 2001 Samuli Aalto Tietoverkkolaboratorio Teknillinen korkeakoulu samuli.aalto@hut.fi http://keskus.hut.fi/opetus/s38145/

Lisätiedot

AB TEKNILLINEN KORKEAKOULU

AB TEKNILLINEN KORKEAKOULU AB TEKNILLINEN KORKEAKOULU Tietoverkkolaboratorio S-38.145 Liikenneteorian perusteet (2 ov) Kevät 2002 Samuli Aalto Tietoverkkolaboratorio Teknillinen korkeakoulu samuli.aalto@hut.fi http://keskus.hut.fi/opetus/s38145/

Lisätiedot

Luennon sisältö. Protokolla eli yhteyskäytäntö (1) Verkon topologia

Luennon sisältö. Protokolla eli yhteyskäytäntö (1) Verkon topologia Luennon sisältö S-38.1105 Tietoliikennetekniikan perusteet Piirikytkentäinen evoluutio Annukka Kiiski annukka.kiiski@tkk.fi Verkon topologia eli rakenne Protokolla eli yhteyskäytäntö Protokollapino Yhteystyypit

Lisätiedot

S-38.1105 Tietoliikennetekniikan perusteet. Piirikytkentäinen evoluutio

S-38.1105 Tietoliikennetekniikan perusteet. Piirikytkentäinen evoluutio S-38.1105 Tietoliikennetekniikan perusteet Piirikytkentäinen evoluutio Annukka Kiiski annukka.kiiski@tkk.fi Luennon sisältö Verkon topologia eli rakenne Protokolla eli yhteyskäytäntö Protokollapino Yhteystyypit

Lisätiedot

Liikenneintensiteetti

Liikenneintensiteetti J. Virtamo 38.3141Teleliikenneteoria / Liikenne 1 Liikenneintensiteetti a = λ T missä λ = kuljetettujen yhteyksien lukumäärä aikayksikössä (saapumisnopeus, kutsunopeus) T = yhteyden keskimääräinen kesto

Lisätiedot

Yleistä. Esimerkki. Yhden palvelimen jono. palvelin. saapuvat asiakkaat. poistuvat asiakkaat. odotushuone, jonotuspaikat

Yleistä. Esimerkki. Yhden palvelimen jono. palvelin. saapuvat asiakkaat. poistuvat asiakkaat. odotushuone, jonotuspaikat J. Virtamo 38.3143 Jonoteoria / Jonojärjestelmät 1 JONOJÄRJESTELMÄT Yleistä Jonojärjestelmät muodostavat keskeisen mallinnuksen välineen mm. tietoliikenne- ja tietokonejärjestelmien suorituskyvyn analysoinnissa.

Lisätiedot

j n j a b a c a d b c c d m j b a c a d a c b d c c j

j n j a b a c a d b c c d m j b a c a d a c b d c c j TEKNILLINEN KORKEAKOULU Tietoliikenne- ja tietoverkkotekniikan laitos S-38.115 Liikenneteorian perusteet, Kevät 2008 Demonstraatiot Luento 12 29.2.2008 D12/1 Tarkastellaan verkkoa, jossa on solmua ja linkkiä.

Lisätiedot

J. Virtamo 38.3143 Jonoteoria / Poisson-prosessi 1

J. Virtamo 38.3143 Jonoteoria / Poisson-prosessi 1 J. Virtamo 38.3143 Jonoteoria / Poisson-prosessi 1 Poisson-prosessi Yleistä Poisson-prosessi on eräs keskeisimmistä jonoteoriassa käytetyistä malleista. Hyvin usein asiakkaiden saapumisprosessia jonoon

Lisätiedot

Esimerkki: Tietoliikennekytkin

Esimerkki: Tietoliikennekytkin Esimerkki: Tietoliikennekytkin Tämä Mathematica - notebook sisältää luennolla 2A (2..26) käsitellyn esimerkin laskut. Esimerkin kuvailu Tarkastellaan yksinkertaista mallia tietoliikennekytkimelle. Kytkimeen

Lisätiedot

Probabilistiset mallit (osa 2) Matemaattisen mallinnuksen kurssi Kevät 2002, luento 10, osa 2 Jorma Merikoski Tampereen yliopisto

Probabilistiset mallit (osa 2) Matemaattisen mallinnuksen kurssi Kevät 2002, luento 10, osa 2 Jorma Merikoski Tampereen yliopisto Probabilistiset mallit (osa 2) Matemaattisen mallinnuksen kurssi Kevät 2002, luento 10, osa 2 Jorma Merikoski Tampereen yliopisto Esimerkki Tarkastelemme ilmiötä I, joka on a) tiettyyn kauppaan tulee asiakkaita

Lisätiedot

ATM-VERKON KUTSUTASON ESTO

ATM-VERKON KUTSUTASON ESTO J. Virtamo 38.3141 Teleliikenneteoria / Kutsutason esto 1 ATM-VERKON KUTSUTASON ESTO Kutsutasolla tehtävän resurssivarauksen kannalta vaihtuvanopeuksinenkin lähde näyttää vakionopeuslähteeltä. Sen nopeus

Lisätiedot

Tiedonvälitystekniikka 1-3 ov. Kurssin sisältö ja tavoite

Tiedonvälitystekniikka 1-3 ov. Kurssin sisältö ja tavoite Tiedonvälitystekniikka 1-3 ov Luennoitsija: Ma prof. Raimo Kantola raimo.kantola@hut.fi, SG 210 ke 10-12 Assistentti: Erik. Tutkija Mika Ilvesmäki (lynx@tct.hut.fi) Tiedotus: http://www.tct.hut.fi/opetus/s38110/...

Lisätiedot

Teoria. Prosessin realisaatioiden tuottaminen

Teoria. Prosessin realisaatioiden tuottaminen Teoria Johdanto simulointiin Simuloinnin kulku -- prosessin realisaatioiden tuottaminen Tapahtumapohjaisen simuloinnin periaatteet Esimerkki: M/M/1 jonon simulointi Simulointiohjelman geneeriset komponentit

Lisätiedot

OSI malli. S 38.188 Tietoliikenneverkot S 2000. Luento 2: L1, L2 ja L3 toiminteet

OSI malli. S 38.188 Tietoliikenneverkot S 2000. Luento 2: L1, L2 ja L3 toiminteet M.Sc.(Tech.) Marko Luoma (1/38) S 38.188 Tietoliikenneverkot S 2000 Luento 2: L1, L2 ja L3 toiminteet OSI malli M.Sc.(Tech.) Marko Luoma (2/38) OSI malli kuvaa kommunikaatiota erilaisten protokollien mukaisissa

Lisätiedot

ESTON LASKENTA VERKOSSA

ESTON LASKENTA VERKOSSA J. Virtamo 38.3141 Teleliikenneteoria / Esto verkossa 1 ESTON LASKENTA VERKOSSA Erlangin funktion E(C, a) avulla voidaan laskea esto yhdessä linkissä, jonka kapasiteetti on C (johtoa) ja johon tarjotun

Lisätiedot

TVP 2003 kevätkurssi. Kertaus Otto Alhava

TVP 2003 kevätkurssi. Kertaus Otto Alhava TVP 2003 kevätkurssi Kertaus Kysymyksiä ja vastauksia 1) Mistä saa kurssin puuttuvat kalvot? ks. kurssin kotisivu ensi perjantaina! 2) Miten valmistautua tenttiin? (=Miten hahmotan kurssin sisällön paremmin?)

Lisätiedot

Tietoliikenteen perusteet. Langaton linkki

Tietoliikenteen perusteet. Langaton linkki Tietoliikenteen perusteet Langaton linkki Kurose, Ross: Ch 6.1, 6.2, 6.3 (ei:6.2.1, 6.3.4 ja 6.3.5) Tietoliikenteen perusteet /2007/ Liisa Marttinen 1 Sisältö Langattoman linkin ominaisuudet Lnagattoman

Lisätiedot

Tietoliikenteen perusteet. Langaton linkki

Tietoliikenteen perusteet. Langaton linkki Tietoliikenteen perusteet Langaton linkki Kurose, Ross: Ch 6.1, 6.2, 6.3 (ei:6.2.1, 6.3.4 ja 6.3.5) Tietoliikenteen perusteet /2007/ Liisa Marttinen 1 Sisältö Langattoman linkin ominaisuudet Lnagattoman

Lisätiedot

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi MS-A050 Todennäköisyyslaskennan ja tilastotieteen peruskurssi B Satunnaismuuttujat ja todennäköisyysjakaumat Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto

Lisätiedot

1. Tietokoneverkot ja Internet. 1. 1.Tietokoneesta tietoverkkoon. Keskuskone ja päätteet (=>-80-luvun alku) Keskuskone ja oheislaitteet

1. Tietokoneverkot ja Internet. 1. 1.Tietokoneesta tietoverkkoon. Keskuskone ja päätteet (=>-80-luvun alku) Keskuskone ja oheislaitteet 1. Tietokoneverkot ja Internet 1.1. Tietokoneesta tietoverkkoon 1.2. Tietoliikenneverkon rakenne 1.3. Siirtomedia 1.4. Tietoliikenneohjelmisto eli protokolla 1.5. Viitemallit: OSI-malli, TCP/IP-malli 1.6.

Lisätiedot

Langaton linkki. Langaton verkko. Tietoliikenteen perusteet. Sisältö. Linkkikerros. Langattoman verkon komponentit. Langattoman linkin ominaisuuksia

Langaton linkki. Langaton verkko. Tietoliikenteen perusteet. Sisältö. Linkkikerros. Langattoman verkon komponentit. Langattoman linkin ominaisuuksia Tietoliikenteen perusteet Langaton linkki Kurose, Ross: Ch 6.1, 6.2, 6.3 (ei: 6.2.1, 6.3.4 ja 6.3.5) Tietoliikenteen perusteet /2009/ Liisa Marttinen 1 Langattoman verkon komponentit Tukiasema LAN-yhteys

Lisätiedot

ABTEKNILLINEN KORKEAKOULU Tietoverkkolaboratorio

ABTEKNILLINEN KORKEAKOULU Tietoverkkolaboratorio ABTEKNILLINEN KORKEAKOULU Tietoverkkolaboratorio 4. Liikenteen mallinnus ja mittaus luento04.ppt S-38.145 - Liikenneteorian perusteet - Kevät 2002 1 Sisältö Liikenteen mittaus Liikenteen vaihtelu Puhelinliikenteen

Lisätiedot

S Laskuharjoitus 3: Ratkaisuhahmotelmia

S Laskuharjoitus 3: Ratkaisuhahmotelmia S-38.118 Laskuharjoitus 3: Ratkaisuhahmotelmia Mika Ilvesmäki lynx@tct.hut.fi 1st December 2000 Abstract Tässä dokumentissä esitellään enemmän tai vähemmän taydellisesti ratkaisuja syksyn 2000 teletekniikan

Lisätiedot

AB TEKNILLINEN KORKEAKOULU

AB TEKNILLINEN KORKEAKOULU AB TEKNILLINEN KORKEAKOULU Tietoverkkolaboratorio luento04.ppt S-38.145 - Liikenneteorian perusteet - Kevät 2002 1 Sisältö Liikenteen mittaus Liikenteen vaihtelu Puhelinliikenteen mallinnus Dataliikenteen

Lisätiedot

1. Tietokoneverkot ja Internet

1. Tietokoneverkot ja Internet 1. Tietokoneverkot ja Internet 1.1. Tietokoneesta tietoverkkoon 1.2. Tietoliikenneverkon rakenne 1.3. Siirtomedia 1.4. Tietoliikenneohjelmisto eli protokolla 1.5. Viitemallit: OSI-malli, TCP/IP-malli 1.6.

Lisätiedot

pitkittäisaineistoissa

pitkittäisaineistoissa Puuttuvan tiedon ongelma p. 1/18 Puuttuvan tiedon ongelma pitkittäisaineistoissa Tapio Nummi tan@uta.fi Matematiikan, tilastotieteen ja filosofian laitos Tampereen yliopisto mtl.uta.fi/tilasto/sekamallit/puupitkit.pdf

Lisätiedot

ELEC-C5210 Satunnaisprosessit tietoliikenteessä

ELEC-C5210 Satunnaisprosessit tietoliikenteessä ELEC-C5210 Satunnaisprosessit tietoliikenteessä Esa Ollila Aalto University, Department of Signal Processing and Acoustics, Finland esa.ollila@aalto.fi http://signal.hut.fi/~esollila/ Kevät 2017 E. Ollila

Lisätiedot

Teleliikenne vs. Dataliikenne Piirikytkentä & Pakettikytkentä

Teleliikenne vs. Dataliikenne Piirikytkentä & Pakettikytkentä CT30A2003 Tietoliikennetekniikan perusteet Teleliikenne vs. Dataliikenne Piirikytkentä & Pakettikytkentä Lappeenranta University of Technology / JP, PH, AH 1 Kytkentäiset verkot Kytkentäinen verkko koostuu

Lisätiedot

1. Tietokoneverkot ja Internet Tietokoneesta tietoverkkoon. Keskuskone ja päätteet (=>-80-luvun alku) Keskuskone ja oheislaitteet

1. Tietokoneverkot ja Internet Tietokoneesta tietoverkkoon. Keskuskone ja päätteet (=>-80-luvun alku) Keskuskone ja oheislaitteet . Tietokoneverkot ja Internet.. Tietokoneesta tietoverkkoon.. Tietoliikenneverkon rakenne.. Siirtomedia.4. Tietoliikenneohjelmisto eli protokolla.5. Viitemallit: OSI-malli, TCP/IP-malli.6. Esimerkkejä

Lisätiedot

Prosessin reaalisaatioiden tuottaminen

Prosessin reaalisaatioiden tuottaminen Teoria Johdanto simulointiin Simuloinnin kulku -- prosessin realisaatioiden tuottaminen Satunnaismuuttujan arvonta annetusta jakaumasta Tulosten keruu ja analyysi Varianssinreduktiotekniikoista 20/09/2004

Lisätiedot

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi MS-A050 Todennäköisyyslaskennan ja tilastotieteen peruskurssi B Satunnaismuuttujat ja todennäköisyysjakaumat Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto

Lisätiedot

T Rinnakkaiset ja hajautetut digitaaliset järjestelmät Stokastinen analyysi

T Rinnakkaiset ja hajautetut digitaaliset järjestelmät Stokastinen analyysi T-79.179 Rinnakkaiset ja hajautetut digitaaliset järjestelmät Stokastinen analyysi 12. maaliskuuta 2002 T-79.179: Stokastinen analyysi 8-1 Stokastinen analyysi, miksi? Tavallinen Petri-verkkojen saavutettavuusanalyysi

Lisätiedot

ABTEKNILLINEN KORKEAKOULU Tietoverkkolaboratorio

ABTEKNILLINEN KORKEAKOULU Tietoverkkolaboratorio ABTEKNILLINEN KORKEAKOULU Tietoverkkolaboratorio S-38.145 Liikenneteorian perusteet (2 ov) Kevät 2003 Aleksi Penttinen & Eeva Nyberg Tietoverkkolaboratorio Teknillinen korkeakoulu http://www.netlab.hut.fi/opetus/s38145/

Lisätiedot

Syntymä-kuolema-prosessit

Syntymä-kuolema-prosessit J. Virtamo 38.343 Jonoteoria / SK-prosessit Syntymä-kuolema-prosessit Yleistä Syntymä-kuolema-prosessiksi (SK-prosessi) kutsutaan Markov-prosessia, jonka - tila-avaruus on iskreetti - tilat voiaan järjestää

Lisätiedot

Laskuharjoitus 2 ( ): Tehtävien vastauksia

Laskuharjoitus 2 ( ): Tehtävien vastauksia TT12S1E Tietoliikenteen perusteet Metropolia/A. Koivumäki Laskuharjoitus 2 (11.9.2013): Tehtävien vastauksia 1. Eräässä kuvitteellisessa radioverkossa yhdessä radiokanavassa voi olla menossa samanaikaisesti

Lisätiedot

Chapter 5 Link Layer and LANs

Chapter 5 Link Layer and LANs Chapter 5 Link Layer and LANs A note on the use of these ppt slides: We re making these slides freely available to all (faculty, students, readers). They re in PowerPoint form so you can add, modify, and

Lisätiedot

Tietoliikenteen perusteet. Langaton linkki. Kurose, Ross: Ch 6.1, 6.2, 6.3. (ei: 6.2.1, 6.3.4 ja 6.3.5)

Tietoliikenteen perusteet. Langaton linkki. Kurose, Ross: Ch 6.1, 6.2, 6.3. (ei: 6.2.1, 6.3.4 ja 6.3.5) Tietoliikenteen perusteet Langaton linkki Kurose, Ross: Ch 6.1, 6.2, 6.3 (ei: 6.2.1, 6.3.4 ja 6.3.5) Tietoliikenteen perusteet /2008/ Liisa Marttinen 1 Sisältö Langattoman linkin ominaisuudet Langattoman

Lisätiedot

Liikenneteorian ja -tekniikan (traffic engineering) rooli tietoliikennejärjestelmissä. J. Virtamo

Liikenneteorian ja -tekniikan (traffic engineering) rooli tietoliikennejärjestelmissä. J. Virtamo Liikenneteorian ja -tekniikan (traffic engineering) rooli tietoliikennejärjestelmissä J. Virtamo 19.10.1999 Teleliikenneteorian pääaine Liikenneteorian perusteet (kl) 2 ov johdanto liikenneteoriaan ja

Lisätiedot

Tehtävä 2: Tietoliikenneprotokolla

Tehtävä 2: Tietoliikenneprotokolla Tehtävä 2: Tietoliikenneprotokolla Johdanto Tarkastellaan tilannetta, jossa tietokone A lähettää datapaketteja tietokoneelle tiedonsiirtovirheille alttiin kanavan kautta. Datapaketit ovat biteistä eli

Lisätiedot

Tietoliikenteen perusteet. Langaton linkki. Kurose, Ross: Ch 6.1, 6.2, 6.3. (ei: 6.2.1, ja 6.3.5)

Tietoliikenteen perusteet. Langaton linkki. Kurose, Ross: Ch 6.1, 6.2, 6.3. (ei: 6.2.1, ja 6.3.5) Tietoliikenteen perusteet Langaton linkki Kurose, Ross: Ch 6.1, 6.2, 6.3 (ei: 6.2.1, 6.3.4 ja 6.3.5) Tietoliikenteen perusteet /2009/ Liisa Marttinen 1 Sisältö Langattoman linkin ominaisuudet Langattoman

Lisätiedot

11. Verkonsuunnittelu ja -mitoitus

11. Verkonsuunnittelu ja -mitoitus S-38.145 Liikenneteorian perusteet K-99 lect11.ppt 1 Sisältö Johdanto Suunnitteluprosessi Mitoitus Verkon optimointi 2 1 Verkkomalli Tietoliikenneverkko voidaan yleensä mallintaa joukkona päätelaitteita

Lisätiedot

Tilastollinen testaus. Vilkkumaa / Kuusinen 1

Tilastollinen testaus. Vilkkumaa / Kuusinen 1 Tilastollinen testaus Vilkkumaa / Kuusinen 1 Motivointi Viime luennolla: havainnot generoineen jakauman muoto on usein tunnettu, mutta parametrit tulee estimoida Joskus parametreista on perusteltua esittää

Lisätiedot

1. Tietokoneverkot ja Internet Tietokoneesta tietoverkkoon. Keskuskone ja oheislaitteet. Keskuskone ja päätteet (=>-80-luvun alku)

1. Tietokoneverkot ja Internet Tietokoneesta tietoverkkoon. Keskuskone ja oheislaitteet. Keskuskone ja päätteet (=>-80-luvun alku) 1. Tietokoneverkot ja Internet 1.1. Tietokoneesta tietoverkkoon 1.2. Tietoliikenneverkon rakenne 1.3. Siirtomedia 1.4. Tietoliikenneohjelmisto eli protokolla 1.5. Viitemallit: OSI-malli, TCP/IP-malli 1.6.

Lisätiedot

Osa 2: Otokset, otosjakaumat ja estimointi

Osa 2: Otokset, otosjakaumat ja estimointi Ilkka Mellin Tilastolliset menetelmät Osa 2: Otokset, otosjakaumat ja estimointi Estimointi TKK (c) Ilkka Mellin (2007) 1 Estimointi >> Todennäköisyysjakaumien parametrit ja niiden estimointi Hyvän estimaattorin

Lisätiedot

Tutkimustiedonhallinnan peruskurssi

Tutkimustiedonhallinnan peruskurssi Tutkimustiedonhallinnan peruskurssi Hannu Toivonen, Marko Salmenkivi, Inkeri Verkamo hannu.toivonen, marko.salmenkivi, inkeri.verkamo@cs.helsinki.fi Helsingin yliopisto Hannu Toivonen, Marko Salmenkivi,

Lisätiedot

OSI-malli. S Tietoliikenneverkot. Miksi kytketään. Välitys ja kytkeminen OSI-mallissa. /XHQWR.\WNHQWlMDUHLWLW\V

OSI-malli. S Tietoliikenneverkot. Miksi kytketään. Välitys ja kytkeminen OSI-mallissa. /XHQWR.\WNHQWlMDUHLWLW\V Teknillinen korkeakoulu Teletekniikan laboratorio OSImalli S8.88 Tietoliikenneverkot 7 sovelluskerros 7 sovelluskerros /XHQWR.\WNHQWlMUHLWLW\V esitystapakerros yhteysjakso esitystapakerros yhteysjakso

Lisätiedot

Standardiliitännät. Tämä ja OSI 7LHWROLLNHQQHWHNQLLNDQSHUXVWHHW $(/&7 0DUNXV3HXKNXUL

Standardiliitännät. Tämä ja OSI 7LHWROLLNHQQHWHNQLLNDQSHUXVWHHW $(/&7 0DUNXV3HXKNXUL Standardiliitännät 7LHWROLLNHQQHWHNQLLNDQSHUXVWHHW $(/&7 0DUNXV3HXKNXUL Tämä ja OSI Liitännät toiminnalliset ominaisuudet sähköiset ominaisuudet X.25 Kehysvälitys 7 sovellus 6 esitystapa 5 yhteysjakso

Lisätiedot

4. Stokastiset prosessit. lect4.tex 1. Sisältö. Peruskäsitteitä. Poisson-prosessi. Markov-prosessit. Syntymä-kuolema-prosessit

4. Stokastiset prosessit. lect4.tex 1. Sisältö. Peruskäsitteitä. Poisson-prosessi. Markov-prosessit. Syntymä-kuolema-prosessit 4. Stokastiset prosessit lect4.tex 1 Sisältö Peruskäsitteitä Poisson-prosessi Markov-prosessit Syntymä-kuolema-prosessit 2 Stokastinen prosessi Tarkasteltavana oleva järjestelmä kehittyy ajan mukana ja

Lisätiedot

J. Virtamo Jonoteoria / Jonoverkot 1

J. Virtamo Jonoteoria / Jonoverkot 1 J. Virtamo 38.3143 Jonoteoria / Jonoverkot 1 JONOVERKOT Useasta jonosta muodostuva verkko Queueing network Network of queues Esimerkiksi Asiakkaita siirtyy postin, pankin, kaupan jonoista toiseen Datapaketteja

Lisätiedot

Syntymä-kuolema-prosessit

Syntymä-kuolema-prosessit J. Virtamo Liikenneteoria ja liikenteenhallinta / SK-prosessit Syntymä-kuolema-prosessit Yleistä Syntymä-kuolema-prosessiksi (SK-prosessi) kutsutaan Markov-prosessia, jonka - tila-avaruus on iskreetti

Lisätiedot

Tietokone. Tietokone ja ylläpito. Tietokone. Tietokone. Tietokone. Tietokone

Tietokone. Tietokone ja ylläpito. Tietokone. Tietokone. Tietokone. Tietokone ja ylläpito computer = laskija koostuu osista tulostuslaite näyttö, tulostin syöttölaite hiiri, näppäimistö tallennuslaite levy (keskusyksikössä) Keskusyksikkö suoritin prosessori emolevy muisti levy Suoritin

Lisätiedot

T Verkkomedian perusteet

T Verkkomedian perusteet T-110.250 Verkkomedian perusteet Lähiverkot Ursula Holmström Tavoitteet Oppia lähiverkkoteknologiaan liittyviä käsitteitä kuten jaetun median käyttö median saanti (medium access control) topologiat Tutustua

Lisätiedot

pitkittäisaineistoissa

pitkittäisaineistoissa Puuttuvan tiedon käsittelystä p. 1/18 Puuttuvan tiedon käsittelystä pitkittäisaineistoissa Tapio Nummi tan@uta.fi Matematiikan, tilastotieteen ja filosofian laitos Tampereen yliopisto Puuttuvan tiedon

Lisätiedot

Service Level Agreement. Service Level Agreement. IP verkkopalvelu. S 38.192 Verkkopalvelujen tuotanto Luento 1: Service Level Agreement

Service Level Agreement. Service Level Agreement. IP verkkopalvelu. S 38.192 Verkkopalvelujen tuotanto Luento 1: Service Level Agreement Lic.(Tech.) Marko Luoma (1/20) Lic.(Tech.) Marko Luoma (2/20) Service Level greement S 38.192 Verkkojen tuotanto Luento 1: Service Level greement Sopimus, jokaa kuvaa tuotettua a ja siitä maksettavaa korvausta

Lisätiedot

4.1. Olkoon X mielivaltainen positiivinen satunnaismuuttuja, jonka odotusarvo on

4.1. Olkoon X mielivaltainen positiivinen satunnaismuuttuja, jonka odotusarvo on Mat-2.090 Sovellettu todennäköisyyslasku A / Ratkaisut Aiheet: Avainsanat: Otanta Poisson- Jakaumien tunnusluvut Diskreetit jakaumat Binomijakauma, Diskreetti tasainen jakauma, Geometrinen jakauma, Hypergeometrinen

Lisätiedot

ABHELSINKI UNIVERSITY OF TECHNOLOGY

ABHELSINKI UNIVERSITY OF TECHNOLOGY Satunnaismuuttujat ja todennäköisyysjakaumat Mitä tänään? Jos satunnaisilmiötä halutaan mallintaa matemaattisesti, on ilmiön tulosvaihtoehdot kuvattava numeerisessa muodossa. Tämä tapahtuu liittämällä

Lisätiedot

Reiluus. Maxmin-reiluus. Tärkeä näkökohta best effort -tyyppisissä palveluissa. Reiluuden maxmin-määritelmä

Reiluus. Maxmin-reiluus. Tärkeä näkökohta best effort -tyyppisissä palveluissa. Reiluuden maxmin-määritelmä J. Virtamo 38.3141 Teleliikenneteoria / Reiluus 1 Reiluus Maxmin-reiluus Tärkeä näkökohta best effort -tyyppisissä palveluissa kenellekään ei anneta kvantitatiivisia QoS-takuita kaikkien pitää saada palvelua

Lisätiedot

5. Liikenteen mallinnus ja mittaus

5. Liikenteen mallinnus ja mittaus S-38.45 Liikenneteorian perusteet K-99 5. Liikenteen mallinnus ja mittaus lect5.ppt Sisältö Perinteinen puhelinliikenteen mallinnus Liikenteen vaihtelu Liikenteen mittaus Perinteinen dataliikenteen mallinnus

Lisätiedot

Tekijä / Aihe 1

Tekijä / Aihe 1 14.12.2009 Tekijä / Aihe 1 IPTV Alueverkkojen näkökulmasta SimuNet Seminaari 7.12.2008 Vesa Kankare 14.12.2009 Vesa Kankare/ IPTV 2 Agenda Yleistä Palvelun laadun merkitys Aluedataverkon rooli tulevaisuuden

Lisätiedot

Ilkka Mellin Todennäköisyyslaskenta. Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat. Momenttiemäfunktio ja karakteristinen funktio

Ilkka Mellin Todennäköisyyslaskenta. Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat. Momenttiemäfunktio ja karakteristinen funktio Ilkka Mellin Todennäköisyyslaskenta Osa : Satunnaismuuttujat ja todennäköisyysjakaumat Momenttiemäfunktio ja karakteristinen funktio TKK (c) Ilkka Mellin (7) 1 Momenttiemäfunktio ja karakteristinen funktio

Lisätiedot

Chapter 1 Introduction

Chapter 1 Introduction Chapter 1 Introduction A note on the use of these ppt slides: We re making these slides freely available to all (faculty, students, readers). They re in PowerPoint form so you can add, modify, and delete

Lisätiedot

Ilkka Mellin Tilastolliset menetelmät Osa 2: Otokset, otosjakaumat ja estimointi Estimointi

Ilkka Mellin Tilastolliset menetelmät Osa 2: Otokset, otosjakaumat ja estimointi Estimointi Ilkka Mellin Tilastolliset menetelmät Osa 2: Otokset, otosjakaumat ja estimointi Estimointi TKK (c) Ilkka Mellin (2006) 1 Estimointi >> Todennäköisyysjakaumien parametrit ja niiden estimointi Hyvän estimaattorin

Lisätiedot

DownLink Shared Channel in the 3 rd Generation Base Station

DownLink Shared Channel in the 3 rd Generation Base Station S-38.110 Diplomityöseminaari DownLink Shared hannel in the 3 rd Diplomityön tekijä: Valvoja: rofessori Samuli Aalto Ohjaaja: Insinööri Jari Laasonen Suorituspaikka: Nokia Networks 1 Seminaarityön sisällysluettelo

Lisätiedot

D B. Levykön rakenne. pyöriviä levyjä ura. lohko. Hakuvarsi. sektori. luku-/kirjoituspää

D B. Levykön rakenne. pyöriviä levyjä ura. lohko. Hakuvarsi. sektori. luku-/kirjoituspää Levyn rakenne Levykössä (disk drive) on useita samankeskisiä levyjä (disk) Levyissä on magneettinen pinta (disk surface) kummallakin puolella levyä Levyllä on osoitettavissa olevia uria (track), muutamasta

Lisätiedot