Kuormat on yhdistettävä rakennesuunnittelussa riippuvasti

Koko: px
Aloita esitys sivulta:

Download "Kuormat on yhdistettävä rakennesuunnittelussa riippuvasti"

Transkriptio

1 /1(6)/tp Kuormat on yhdistettävä rakennesuunnittelussa riippuvasti Pysyvät kuormat ovat riippumattomia, mutta ne yhdistetään nykyisissä rakennesuunnittelunormeissa aina riippuvasti 1. Pysyvä ja muuttuva kuorma ovat yhden vuoden aikana riippumattomia, mutta 50 vuoden aikana riippuvia. Nämä kuormat yhdistetään ja varmuusluvut G, Q, M lasketaan murtotilassa joskus riippumattomasti 2, joskus riippuvasti, mutta käyttötilassa aina riippuvasti. Muuttuva kuormat yhdistetään ja yhdistelykertoimet 0 lasketaan yleensä puoliriippuvasti 3, mutta joskus riippuvasti. Kuormat on kuitenkin yhdistettävä aina riippuvasti, mihin johtopäätökseen voidaan päätyä monesta syystä: Riippumaton ja puoliriippuva yhdistäminen johtaa epärealistiseen tulokseen. Eräitä esimerkkejä tästä selostetaan jäljempänä. Kuormat ovat aina keskenään riippuvia, kun aika on suuri tai kun tarkastellaan useita kuormia. Kun tarkastellaan 50 vuoden aikana esiintyviä kuormia tai jos kuormia on noin 50, kuormat ovat jo luonnossa keskenään suurella tarkkuudelle (noin 1 %) keskenään riippuvia. Yksittäiset kuormat ovat keskenään riippumattomia, mutta nekin on yhdistettävä riippuvasti, mikä voidaan päätellä siitä, että kuormitusyhdistelyn uuden kuormaa vaikutus on aikaisemmista kuormista riippumaton. Jos kuormat yhdistetään riippumattomasti tai puoliriippuvasti, uuden kuorman vaikutus riippuu aikaisemmista kuormista. Tämä on mahdotonta, sillä uuden kuorman ja aikaisempien kuormien välillä ei ole mitään vaikutusyhteyttä. Kuormien riippuvassa yhdistämisessä osakuormien arvot summeerataan sellaisenaan, joten kuormaa ei häviä yhdistämisessä. Riippumattomassa ja puoliriippuvassa yhdistämisessä sen sijaan osa kuormista häviää yhdistämisessä: Kun kuormien satunnaisarvot summeerataan keskenään, 0 10 % kuormista häviää, jolloin varmuusluvut G, Q, M tulevat liian pieniksi. Vastaavasti puoliriippuva yhdistäminen johtaa 0 15 %:n kuormien häviämiseen ja liian pieniin yhdistelykertoimiin 0. Sallittujen jännitysten mukainen pysyvän ja muuttuvan kuorman yhdistely on riippuva ja siten oikea, mutta eurokoodissa nämä kuormat yhdistetään riippumattomasti ja väärin 4. Kaikissa normeissa muuttuvat kuormat yhdistetään puoliriippuvasti eli väärin. Kuormat yhdistetään riippuvasti summeeraamalla osakuormat fraktiileittain. Vaihtoehtoisesti yhdistelyjakauma voidaan määrittää konvoluutiokaavalla niin, että yhdistelyjakauma sovitetaan kulkemaan osajakaumien leikkauspisteiden kautta. Jos yhdistäminen tehdään Monte Carlo simuloimalla, käytetään yhtä siemenlukua. Käytännön rakennesuunnittelussa osakuormien laskenta-arvot summeerataan sellaisenaan ilman (implisiittisiä tai eksplisiittisiä) yhdistelykertoimia, vähennyskertoimia tms. 1 Summajakauman fraktiiliarvo saadaan laskemalla yhteen osajakaumien vastaavien fraktiilien arvot. 2 Summajakauma muodostetaan osajakaumista satunnaisesti, Ferry Borges Castanhetan menetelmä. 3 Toisen jakauman arvo on suurin tavoiteluotettavuuden mukainen deterministinen arvo ja toinen on satunnaisarvo, Turkstran menetelmä. 4 kun käytetään eurokoodin yhdistelysääntöä 6.10a,b tai 6.10a,mod, yhdistelysääntö 6.10 on oikea

2 /2(6)/tp Ääriarvojakauma Rakennesuunnittelun jakaumat ovat ääriarvojakaumia, joko valitun todennäköisyyden suurimpia kuormia tai pienimpiä lujuuksia. Jos jakaumat yhdistetään riippumattomasti, näin saatu jakauma ei ole ääriarvojakauma. Kuormin riippuvasta yhdistämisestä saatu jakauma sen sijaan on ääriarvojakauma. Hook:n laki, lineaaarisuus Hook:n laki ja lineaarisuus ovat rakennesuunnittelun peruspilareita: kuorman ja sen vaikutuksen välinen riippuvuus on lineaarinen. Suomen eurokoodeissa sovelletaan sääntöä 6.10a, mod. Sen mukaan, kun pysyvä kuorma on vähäinen ja muuttuva kuorma kasvaa, vaikutus ei kasva lainkaan. Em. kuormien yhdistelysääntö on riippumattoman kuormayhdistelyn mukainen. Riippumaton kuormien yhdistely on siten ristiriidassa lineaarisuuden ja Hook:n lain kanssa. Mitoituskava Rakennesuunnittelun perusmitoitusyhtälö on G G Q Q M M (1) G on pysyvä kuorma, Q muuttuva kuorma ja M materiaalilujuus, G, Q, M ovat vastaavat varmuusluvut. Tämä epäyhtälö voi aina olla yhtäsuuruusyhtälö, mikä tekee yhdistelyssä käytettävät kuormat täydellisesti riippuviksi ja korreloiviksi riippumatta siitä ovatko nämä kuorma muuten riippuvia vai riippumattomia, sillä lujuus on kuormiin nähden vakio. Korreloivat kuormat on yhdistettävä riippuvasti. Kuormien häviäminen Jos jakaumat yhdistetään riippumattomasti, yhdistelyjakauma on osajakaumien satunnainen summa. Tällaisessa yhdistämisessä osa kuormista häviää. Osajakaumat on kuitenkin summattava ehdottomasti ja riippuvasti, sillä uusi kuorma on lisättävä aikaisempaan täydellä määrällään. Pysyvä ja muuttuva kuorma G + Q ovat riippuvia, kun aika on suuri Pysyvän kuorman jakauma G määrittelee, millä todennäköisyydellä pysyvästä kuormasta aiheutuva mitoituspistekuorma ei toteudu. Vastaavasti muuttuvan kuorman jakauma Q määrittelee, millä todennäköisyydellä muuttuvan kuorman mitoituspistekuorma ei toteudu yhden vuoden aikana. Nämä jakaumat, G ja Q ovat riippumattomia 5. Kuormat on yhdistettävä riippuvasti myös siksi, että kuormat ovat riippuvia, kun aika on suuri: Muuttuvan kuorman yhden vuoden mitoituspistekuorman todennäköisyys P f1 on pieni luku. Esimerkiksi eurokoodissa se on Kun aika kasvaa, tämä todennäköisyys kasvaa. Esimerkiksi t vuodessa todennäköisyys on 1 (1 - P f1 ) t. Kun aika on hyvin suuri, saadaan kaikki jakauman Q arvot niin, että kukin fraktiilin i arvo vastaa jotakin aikaa t. Olkoon pysyvän kuorman fraktiilin i alkio g i. Tämän kanssa esiintyvät samanaikaisesti jonakin aikana 0 t kaikki muuttuvan kuorman fraktiilin j alkiot q j, j = 0 1 ja siten myös q i. Jakaumien G ja Q välillä vallitsee siis täydellinen riippuvuus, sillä jakaumien kaikkien fraktiilien arvot esiintyvät samanaikaisesti. Kun tällaiset jakaumat yhdistetään, tämä riippuvuus on otettava huomioon eli jakaumat G ja Q on yhdistettävä riippuvasti. 5 Tarkemmin ilmaistuna: jakaumat ovat riippuvia, jos fraktiilit ovat pienempiä kuin 0.02.

3 /3(6)/tp Riippumaton ja puoliriippuva yhdistäminen johtaa epärealistiseen tulokseen Esimerkki 1 Oletetaan, että rakenne kestää sekä pysyvää että muuttuvaa kuormaa 1 voimayksikön, kun voimat vaikuttavat erikseen. On selvää, että jos rakenteeseen kohdistuu sekä pysyvä voima 0.5 että muuttuva voima 0.5 samanaikaisesti, rakenne kestää myös yhden voimayksikön. Riippumattoman kuormayhdistelyn ja nykyisten normien mukaan, rakenne kestää kuitenkin noin 1.1, mikä johtuu siitä, että riippumattomassa yhdistämisessä osa kuormasta häviää. On mahdotonta, että kuormien yhdistäminen kasvattaisi rakenteen lujuutta. Esimerkki 2 Kerrostalon ylimmän kerroksen hyötykuormaa pienennetään, jos kuormat yhdistetään riippumattomasti ja alemmissa kerroksissa on kuormaa, mutta ei pienennetä, jos ei ole. On selvää, että ylimmän kerroksen kuorman vaikutus on riippumaton siitä, onko alemmissa kerroksissa kuormaa vai ei. Jos kerrostalon yhdessä kerroksessa on kaksi henkilöä, joiden yhteispaino on 2 kn = kn, mutta jos samat henkilöt ovat kahdessa kerroksessa, riippumattoman yhdistelyn ja nykyisten normien mukaan, kokonaispaino on 1.7 kn? Kerrostaloissa ei voida soveltaa mitään kuormien vähennyskertoimia 0. Tämä johtuu siitä, että kerrostalon kerroksissa olevat hyötykuormat ovat talossa olevan kokonaishyötykuorman osakuormia, jolloin nämä osakuormat ovat keskenään riippuvia. Tältä osin ennen eurokoodia vallinnut mitoituskäytäntökin on ollut väärä. Esimerkki 3 Riippumaton kuormien yhdistäminen merkitsee, että rakenteen jokaisen uuden kuorman tulisi tietää onko rakenteella aikaisempaa kuormaa ja uuden kuorman täytyisi osata pienentää itseään 0 30 %, jos rakenteella on aikaisempaa kuormaa. Tämä on mahdotonta. Esimerkiksi, on mahdotonta, että katolle vaikuttava tuulikuorma voisi tietää onko katolla lumikuormaa ja että tuulikuorma osaisi sovittaa oman vaikutuksensa rakenteisiin tästä riippuvaksi 6. Esimerkki 4 Tarkastellaan pysyvän ja muuttuvan kuorman yhdistämistä eurokoodin perusoletusten mukaisesti. Asian yksinkertaistamiseksi muuttuvan kuorman jakauman oletetaan olevan normaali (eurokoodissa gumbel) ja pysyvän kuorman mitoituspistearvo asetetaan 0.98:ksi (eurokoodissa 0.5). Asetetaan mitoituspiste ykköseksi. Pysyvän kuorman variaatiokerroin on ja muuttuvan 0.4, joten jakaumaparametrit ovat: G = 0.842, G = 0.077, Q = 0.549, Q = Vaaditaan, että mitoituksen täytyy toteutua 98 %:n todennäköisyydellä. Valitaan kuormat ykkösiksi, jolloin ne ovat mitoituspisteessä ja 0.98 fraktiilissa, eli molemmat kuormat ovat kelpoisuusrajalla. Kuormat yhdistetään kuormasuhteessa = 0.5, eli kuormat yhdistetään suhteissa 50 % + 50 %. 6 Tuulikuorman yhdistämisessä sovelletaan tässä tapauksessa yhdistelykerrointa 0 0.8, mikä johtuu siitä, että lumi vaikuttaa vain talvella, mutta tuuli esiintyy koko vuoden ajan ja molemmat jakaumat määritellään vuoden ajalle.

4 /4(6)/tp Pysyvät kuormat yhdistetään nykyisissä normeissa riippuvasti (kaikki kuormat tulee yhdistää riippuvasti: molemmat yhdistettävät kuormat ovat suurimmissa arvoissaan kaikissa fraktiileissa). Yhdistelykuorma lasketaan tässä tapauksessa normaalijakaumasta N: N x G 1 NGQ d x 2 Q G 1 Q 2 2 Q G 1 (1) Pysyvä ja muuttuva kuorma yhdistetään eurokoodissa riippumattomasti ja tästä yhdistelytuloksesta lasketaan varmuusluvut G, Q, M (molemmat kuormat ovat satunnaisarvoissaan, Ferry Borges - Castanheta:n malli): N x G 1 NGQ i x 2 Q G 1 Q 2 (2) Alla olevassa kuvassa on esitetty pysyvän kuorman jakauma ympyräviivalla ja muuttuvan kuorman jakauma neliöviivalla, vaaka-akselilla on kuorma, pystyakselilla fraktiili. Riippuva yhdistelykuorma on esitetty yhtenäisellä paksulla viivalla, riippumaton katkoviivalla. Oleellista nyt on, mikä on yhdistelyjakauman arvo kelpoisuusrajalla eli 0.98-fraktiilissa, joka on piirretty vaakaviivalla? Loogista on, että se on 1 (= ) eli kuormat ja myös niiden puolikkaat summeerataan sellaisenaan. Näin todella on, sillä pysyvä kuorma 1 esiintyy koko käyttöajan ja muuttuvan kuorman käy rakenteen 50 vuoden käyttöaikana ainakin kerron arvossa 1. Kuormat ovat samanaikaisia ja summeerataan sellaisenaan. Jos kuormat yhdistetään riippumattomasti, yhdistelykuorma on 0.934, minkä mukaan kuormitusyhdistely pienentää kokonaiskuormaa, < 1 ja vastaavasti lujittaa materiaalia, mikä on kuormien samanaikaisuuden vuoksi väärin ja lisäksi epäloogista Esimerkki 5 On kolme geometrialtaan samanlaista taloa. Talossa A on betonikatto, jonka omapaino on 20 kn eikä katolla ole kuormaa, talossa B on teräskatto, jonka omapaino on 10 kn ja katolla on 10 kn lunta, talon C katto on ideaalimateriaalia eikä se paina mitään ja katolla on 20 kn lunta. Suomen eurokoodin mukaan selvää on, että katon A murtotilan mitoituskuorma on 1.35*20=27 kn ja katon C vastaavasti 1.5*20=30 kn. Kiistanalaista sen sijaan on, mikä on katon B mitoituskuorma? Lasketaanko yhdistelykuorma riippumattomista jakaumista, kuten tehdään esimerkiksi Suomen eurokoodissa, jolloin mitoituskuorma on 1.15*10+1.5*10=26.5 kn vai lasketaanko yhdistelykuorma riippuvista jakaumista, jolloin yhdistelykuorma on 1.35*10+1.5*10=28.5 kn? Jaetaan katot A ja C kuormineen pieniin yhtä suuriin osiin ja tehdään neljäs katto D ottamalla siihen puolet katon A osista ja puolet katon C osista. On selvää, että katon D mitoituskuorma on puolet katon A ja C mitoituskuormien summasta eli 28.5 kn, mikä on sama kuin riippuvalla menetelmällä laskettu yhdistelykuorma. Katto D voidaan tehdä ainakin ideaalisena fysikaalisestikin niin, että katto tehdään ensin ja lumi sataa vain katosta C otetuille osille tai vaihtoehtoisesti katolla on lumenpoisto katon C osilta. On selvää, että katon B ja D alla olevien kantavien rakenteiden kuorma on sama, joten katon B mitoituskuoma on laskettava riippuvien jakaumien mukaan.

5 /5(6)/tp Tässä tapauksessa kuormasuhde (muuttuvan kuorman suhde kokonaiskuormaan) on 0.5 ja laskentamenetelmien ero on noin 7 %. Ero on hieman suurempi, kun kuormasuhde on pienempi. Riippuvan ja riippumattoman yhdistämisen ero kasvaa, kun kuormien vaihtelu kasvaa, esimerkiksi tuuli- ja lumikuorman yhdistämisessä menetelmien ero on noin 15 %. Pysyvien kuormien yhdistäminen Pysyvät kuormat ovat riippumattomia. Näissä kuormissa ei ole edes edellä selostettua ajan kasvusta johtuvaa kuormien korrelaatiota. Pysyvät kuormat yhdistetään kuitenkin kaikissa normeissa riippuvasti. Esimerkiksi kerrostalojen välipohja-, seinä-, yms. kuormat yhdistetään kaikissa normeissa riippuvasti. Pysyvien kuormien vaikutus on itsenäinen ja muista kuormista riippumaton, minkä johdosta nämä kuormat on yhdistettävä riippuvasti ja nykyiset normit ovat tältä osin oikeita. Näitä kuormia ei voida yhdistää riippumattomasti, sillä varmuus häviäisi kerrostaloissa käytännöllisesti katsoen kokonaan. Yhteenveto Perimmäinen syy kuormien riippuvaan yhdistämiseen on kunkin kuorman muista kuormista riippumaton ja itsenäinen vaikutus. Riippumattomassa ja puoliriippuvassa yhdistämisessä jokaisen kuorman vaikutus rakenteeseen on muista kuormista riippuva. Vaikutus on täysimääräinen vain, jos muita kuormia ei ole, ja jos muita kuormia on, vaikutus on pienempi. Vaikutus on sitä pienempi mitä enemmän muita kuormia on ja ääritapauksessa, kun kuormia on paljon, varmuus häviää kokonaan. Jos kuormia ei yhdistetä riippuvasti, päädytään tavoiteluotettavuuteen nähden noin 0 20 % alivarmaan mitoitukseen. Tampere Tuomo Poutanen, ,

Uusi rakenteiden mitoitusmenetelmä

Uusi rakenteiden mitoitusmenetelmä Rakenteiden Mekaniikka Vol. 45, Nro 4, 2011, s. 201-212 Uusi rakenteiden mitoitusmenetelmä Tuomo Poutanen Tiivistelmä. Uusi mitoitusmenetelmä esitetään kolmena variaationa: sallittujen jännitysten muunnelma,

Lisätiedot

M&T Farm s pressuhallit

M&T Farm s pressuhallit M&T Farm s pressuhallit Lasketaan M&T Farm s pressukaarihallin lujuudet. Laskenta tehdään EN standardia käyttäen. Rakenne: Kaarihallit on esitetty alla olevissa kuvissa. Kaarissa käytettävä materiaali

Lisätiedot

Lumirakenteiden laskennassa noudatettavat kuormat ja kuormitukset

Lumirakenteiden laskennassa noudatettavat kuormat ja kuormitukset Lumirakenteiden laskennassa noudatettavat kuormat ja kuormitukset Kuormien laskemisessa noudatetaan RakMK:n osaa B1, Rakenteiden varmuus ja kuormitukset sekä Rakenteiden kuormitusohjetta (RIL 144) Mitoituslaskelmissa

Lisätiedot

EC7 Kuormien osavarmuusluvut geoteknisessä suunnittelussa, vaihtoehtoja nykyarvoille

EC7 Kuormien osavarmuusluvut geoteknisessä suunnittelussa, vaihtoehtoja nykyarvoille EC7 Kuormien osavarmuusluvut geoteknisessä suunnittelussa, vaihtoehtoja nykyarvoille Tim Länsivaara TTY EUROKOODI 2014 SEMINAARI Sisältö 1. Johdanto 2. Kuormien osavarmuusluvut stabiliteettitarkastelussa

Lisätiedot

EC0 ja EC1. Keskeiset muutokset kansallisissa. liitteissä. Eurokoodi 2014 seminaari Rakennusteollisuus RT ry Timo Tikanoja 9.12.

EC0 ja EC1. Keskeiset muutokset kansallisissa. liitteissä. Eurokoodi 2014 seminaari Rakennusteollisuus RT ry Timo Tikanoja 9.12. EC0 ja EC1 Keskeiset muutokset kansallisissa liitteissä Eurokoodi 2014 seminaari 9.12.2014 Kansallisten liitteiden muutokset Muutoksia tehdään osin käyttäjiltä tulleen palautteen pohjalta. Osa muutoksista

Lisätiedot

T512905 Puurakenteet 1 5 op

T512905 Puurakenteet 1 5 op T512905 Puurakenteet 1 5 op Kantavat puurakenteet Rajatilamitoituksen periaatteet Murtorajatila Materiaalin osavarmuusluku M Kuorman keston ja kosteusvaikutuksen huomioiva lujuuden ja jäykkyyden muunnoskerroin

Lisätiedot

7,2 10-5. Mikali tama muutetaan vuosittaiseksi vaurioitumistodenniikoisyydeksi, EUROCODE 1 KUORMITUS- JA V ARMUUSNORMIN PERUSTEET.

7,2 10-5. Mikali tama muutetaan vuosittaiseksi vaurioitumistodenniikoisyydeksi, EUROCODE 1 KUORMITUS- JA V ARMUUSNORMIN PERUSTEET. EUROCODE 1 KUORMITUS- JA V ARMUUSNORMIN PERUSTEET Tor-Ulf Week Rakenteiden Mekaniikka, Vol. 26 No 1 1993, ss. 3-14 TIIVISTELMA Kirjoitus ktisittelee yhteiseurooppalaisen rakennusalan suunnittelunormiston

Lisätiedot

KANSALLINEN LIITE STANDARDIIN SFS-EN 1990 EUROKOODI. RAKENTEIDEN SUUNNITTELUPERUSTEET

KANSALLINEN LIITE STANDARDIIN SFS-EN 1990 EUROKOODI. RAKENTEIDEN SUUNNITTELUPERUSTEET 1 LIITE 1 KANSALLINEN LIITE STANDARDIIN SFS-EN 1990 EUROKOODI. RAKENTEIDEN SUUNNITTELUPERUSTEET Esipuhe Tätä kansallista liitettä käytetään yhdessä standardin SFS-EN 1990:2002 kanssa. Tässä kansallisessa

Lisätiedot

Helsingin, Itä-Suomen, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe 11.6.2012 klo 10 13 Ratkaisut ja pisteytysohjeet

Helsingin, Itä-Suomen, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe 11.6.2012 klo 10 13 Ratkaisut ja pisteytysohjeet Helsingin, Itä-Suomen, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe 11.6.01 klo 10 13 t ja pisteytysohjeet 1. Ratkaise seuraavat yhtälöt ja epäyhtälöt. (a) 3 x 3 3 x 1 4, (b)

Lisätiedot

Erään teräsrunkoisen teoll.hallin tarina, jännev. > 40-50 m

Erään teräsrunkoisen teoll.hallin tarina, jännev. > 40-50 m Erään teräsrunkoisen teoll.hallin tarina, jännev. > 40-50 m 1 HALLIN ROMAHDUS OLI IHAN TIPALLA - lunta katolla yli puoli metriä, mutta paino olennaisesti alle 180 kg neliölle KEHÄT HIEMAN TOISESTA NÄKÖKULMASTA

Lisätiedot

KANSALLINEN LIITE STANDARDIIN. SFS-EN 1991-1-4 EUROKOODI 1: RAKENTEIDEN KUORMAT Osa 1-4: Yleiset kuormat. Tuulikuormat

KANSALLINEN LIITE STANDARDIIN. SFS-EN 1991-1-4 EUROKOODI 1: RAKENTEIDEN KUORMAT Osa 1-4: Yleiset kuormat. Tuulikuormat 1 LIITE 5 KANSALLINEN LIITE STANDARDIIN SFS-EN 1991-1-4 EUROKOODI 1: RAKENTEIDEN KUORMAT Osa 1-4: Yleiset kuormat. Tuulikuormat Esipuhe Tätä kansallista liitettä käytetään yhdessä standardin SFS-EN 1991-1-4

Lisätiedot

Jatkuvat satunnaismuuttujat

Jatkuvat satunnaismuuttujat Jatkuvat satunnaismuuttujat Satunnaismuuttuja on jatkuva jos se voi ainakin periaatteessa saada kaikkia mahdollisia reaalilukuarvoja ainakin tietyltä väliltä. Täytyy ymmärtää, että tällä ei ole mitään

Lisätiedot

Orsien käytönrajat paljaille ja päällystetyille avojohdoille EN 50341, EN 50423. Johtokulma

Orsien käytönrajat paljaille ja päällystetyille avojohdoille EN 50341, EN 50423. Johtokulma Orsien käytönrajat paljaille ja päällystetyille avojohdoille EN 50341, EN 50423 40 50 60 70 80 90 100 110 03 Sisällysluettelo Orsien käytönrajat perusteet...04 20 kv paljaan avojohdon orret SH66 (seuraava

Lisätiedot

KANSALLINEN LIITE STANDARDIIN. SFS-EN 1995 EUROKOODI 5: PUURAKENTEIDEN SUUNNITTELU Osa 1-2: Yleistä. Rakenteiden palomitoitus

KANSALLINEN LIITE STANDARDIIN. SFS-EN 1995 EUROKOODI 5: PUURAKENTEIDEN SUUNNITTELU Osa 1-2: Yleistä. Rakenteiden palomitoitus 1 LIITE 17 KANSALLINEN LIITE STANDARDIIN SFS-EN 1995 EUROKOODI 5: PUURAKENTEIDEN SUUNNITTELU Osa 1-2: Yleistä. Rakenteiden palomitoitus Esipuhe Tätä kansallista liitettä käytetään yhdessä standardin SFS-EN

Lisätiedot

Simulointi. Varianssinhallintaa Esimerkki

Simulointi. Varianssinhallintaa Esimerkki Simulointi Varianssinhallintaa Esimerkki M C Esimerkki Tarkastellaan lasersäteen sirontaa partikkelikerroksesta Jukka Räbinän pro gradu 2005 Tavoitteena simuloida sirontakuvion tunnuslukuja Monte Carlo

Lisätiedot

Rakenteiden varmuus ja kuormitukset

Rakenteiden varmuus ja kuormitukset Jaakko Huuhtanen, rakennusneuvos Ympäristöministeriö, asunto- ja rakennusosasto jaakko.huuhtanen@vyh.fi Määräykset 1998 Ympäristöministeriö on rakennuslain 13 :n, sellaisena kuin se on laissa 557/89, nojalla

Lisätiedot

Karteesinen tulo. Olkoot A = {1, 2, 3, 5} ja B = {a, b, c}. Näiden karteesista tuloa A B voidaan havainnollistaa kuvalla 1 / 21

Karteesinen tulo. Olkoot A = {1, 2, 3, 5} ja B = {a, b, c}. Näiden karteesista tuloa A B voidaan havainnollistaa kuvalla 1 / 21 säilyy Olkoot A = {1, 2, 3, 5} ja B = {a, b, c}. Näiden karteesista tuloa A B voidaan havainnollistaa kuvalla c b a 1 2 3 5 1 / 21 säilyy Esimerkkirelaatio R = {(1, b), (3, a), (5, a), (5, c)} c b a 1

Lisätiedot

KANSALLINEN LIITE (LVM) SFS-EN 1991-1-5 RAKENTEIDEN KUORMAT Lämpötilakuormat LIIKENNE- JA VIESTINTÄMINISTERIÖ

KANSALLINEN LIITE (LVM) SFS-EN 1991-1-5 RAKENTEIDEN KUORMAT Lämpötilakuormat LIIKENNE- JA VIESTINTÄMINISTERIÖ KANSALLINEN LIITE (LVM) SFS-EN 1991-1-5 RAKENTEIDEN KUORMAT Lämpötilakuormat LIIKENNE- JA VIESTINTÄMINISTERIÖ 1.6.2010 Kansallinen liite (LVM), 1.6.2010 1/6 KANSALLINEN LIITE (LVM) STANDARDIIN SFS-EN 1991-1-5

Lisätiedot

Lumen teknisiä ominaisuuksia

Lumen teknisiä ominaisuuksia Lumen teknisiä ominaisuuksia Lumi syntyy ilmakehässä kun vesihöyrystä tiivistyneessä lämpötila laskee alle 0 C:n ja pilven sisällä on alijäähtynyttä vettä. Kun lämpötila on noin -5 C, vesihöyrystä, jäähiukkasista

Lisätiedot

Aineistoista. Laadulliset menetelmät: miksi tarpeen? Haastattelut, fokusryhmät, havainnointi, historiantutkimus, miksei videointikin

Aineistoista. Laadulliset menetelmät: miksi tarpeen? Haastattelut, fokusryhmät, havainnointi, historiantutkimus, miksei videointikin Aineistoista 11.2.09 IK Laadulliset menetelmät: miksi tarpeen? Haastattelut, fokusryhmät, havainnointi, historiantutkimus, miksei videointikin Muotoilussa kehittyneet menetelmät, lähinnä luotaimet Havainnointi:

Lisätiedot

LATTIA- JA KATTOPALKIT

LATTIA- JA KATTOPALKIT LATTIA- JA KATTOPALKIT LATTIA- JA KATTOPALKIT Kerto -palkit soveltuvat kantaviksi palkeiksi niin puurunkoisiin kuin kiviainesrunkoisiin rakennuksiin. Kerto-palkkeja käytetään mm. alapohja-, välipohja-,

Lisätiedot

Teema 3: Tilastollisia kuvia ja tunnuslukuja

Teema 3: Tilastollisia kuvia ja tunnuslukuja Teema 3: Tilastollisia kuvia ja tunnuslukuja Tilastoaineiston peruselementit: havainnot ja muuttujat havainto: yhtä havaintoyksikköä koskevat tiedot esim. henkilön vastaukset kyselylomakkeen kysymyksiin

Lisätiedot

3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä

3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä 3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä Lineaarinen m:n yhtälön yhtälöryhmä, jossa on n tuntematonta x 1,, x n on joukko yhtälöitä, jotka ovat muotoa a 11 x 1 + + a 1n x n = b 1 a 21

Lisätiedot

ESIMERKKI 2: Kehän mastopilari

ESIMERKKI 2: Kehän mastopilari ESIMERKKI : Kehän mastopilari Perustietoja: - Hallin 1 pääpilarit MP101 ovat liimapuurakenteisia mastopilareita. - Mastopilarit ovat tuettuja heikomman suunnan nurjahusta vastaan ulkoseinäelementeillä.

Lisätiedot

JOKELA - VÄLIPOHJAN KANTAVUUDEN MÄÄRITYS RAPORTTI 1. KRS. KATON VAAKARAKENTEISTA Torikatu 26 80100 Joensuu 02.09.2011

JOKELA - VÄLIPOHJAN KANTAVUUDEN MÄÄRITYS RAPORTTI 1. KRS. KATON VAAKARAKENTEISTA Torikatu 26 80100 Joensuu 02.09.2011 JOENSUUN JUVA OY JOKELA - VÄLIPOHJAN KANTAVUUDEN MÄÄRITYS RAPORTTI 1. KRS. KATON VAAKARAKENTEISTA Torikatu 26 80100 Joensuu 02.09.2011 JOENSUUN JUVA OY Penttilänkatu 1 F 80220 Joensuu Puh. 013 137980 Fax.

Lisätiedot

KANSALLINEN LIITE (LVM) SFS-EN 1991-1-4 RAKENTEIDEN KUORMAT Tuulikuormat LIIKENNE- JA VIESTINTÄMINISTERIÖ

KANSALLINEN LIITE (LVM) SFS-EN 1991-1-4 RAKENTEIDEN KUORMAT Tuulikuormat LIIKENNE- JA VIESTINTÄMINISTERIÖ KANSALLINEN LIITE (LVM) SFS-EN 1991-1-4 RAKENTEIDEN KUORMAT Tuulikuormat LIIKENNE- JA VIESTINTÄMINISTERIÖ 1.6.2010 Kansallinen liite (LVM), 1.6.2010 1/4 Alkusanat KANSALLINEN LIITE (LVM) STANDARDIIN SFS-EN

Lisätiedot

3. SUUNNITTELUPERUSTEET

3. SUUNNITTELUPERUSTEET 3. SUUNNITTELUPERUSTEET 3.1 MATERIAALIT Rakenneterästen myötörajan f y ja vetomurtolujuuden f u arvot valitaan seuraavasti: a) käytetään suoraan tuotestandardin arvoja f y = R eh ja f u = R m b) tai käytetään

Lisätiedot

Ympäristöministeriön asetus Eurocode-standardien soveltamisesta talonrakentamisessa annetun asetuksen muuttamisesta

Ympäristöministeriön asetus Eurocode-standardien soveltamisesta talonrakentamisessa annetun asetuksen muuttamisesta Ympäristöministeriön asetus Eurocode-standardien soveltamisesta talonrakentamisessa annetun asetuksen muuttamisesta Annettu Helsingissä 5 päivänä marraskuuta 2010 Ympäristöministeriön päätöksen mukaisesti

Lisätiedot

3.3 Paraabeli toisen asteen polynomifunktion kuvaajana. Toisen asteen epäyhtälö

3.3 Paraabeli toisen asteen polynomifunktion kuvaajana. Toisen asteen epäyhtälö 3.3 Paraabeli toisen asteen polynomifunktion kuvaajana. Toisen asteen epäyhtälö Yhtälön (tai funktion) y = a + b + c, missä a 0, kuvaaja ei ole suora, mutta ei ole yhtälökään ensimmäistä astetta. Funktioiden

Lisätiedot

Ritilän A kuormitustaulukko

Ritilän A kuormitustaulukko Ritilän A kuormitustaulukko Tyyppi A 22x22 c/c kantoteräs = 22 mm mitat (mm) 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 20x2 Q(maks. 93 52 33 23 17 13 10 8.3 6.9 5.8 4.9 4.3 3.7 Q(L/200)

Lisätiedot

RUDUS OY ELEMENTO - PORRASELEMENTIT

RUDUS OY ELEMENTO - PORRASELEMENTIT RUDUS OY Sivu 1/15 RUDUS OY ELEMENTO - PORRASELEMENTIT SUUNNITTELUN LÄHTÖTIEDOT 1. Suunnittelun perusteet SFS-EN 1990 Eurocode: Rakenteiden suunnitteluperusteet, 2010 NA SFS-EN 1990-YM, Suomen kansallinen

Lisätiedot

Johtuuko tämä ilmastonmuutoksesta? - kasvihuoneilmiön voimistuminen vaikutus sääolojen vaihteluun

Johtuuko tämä ilmastonmuutoksesta? - kasvihuoneilmiön voimistuminen vaikutus sääolojen vaihteluun Johtuuko tämä ilmastonmuutoksesta? - kasvihuoneilmiön voimistuminen vaikutus sääolojen vaihteluun Jouni Räisänen Helsingin yliopiston fysiikan laitos 15.1.2010 Vuorokauden keskilämpötila Talvi 2007-2008

Lisätiedot

EUROKOODI SUUNNITTELUN PERUSTEET JA RAKENTEIDEN KUORMITUKSET 1090 MITÄ SUUNNITTELIJAN TULEE TIETÄÄ? LUJUUSOPIN KERTAUSTA SUUNNITTELIJOILLE

EUROKOODI SUUNNITTELUN PERUSTEET JA RAKENTEIDEN KUORMITUKSET 1090 MITÄ SUUNNITTELIJAN TULEE TIETÄÄ? LUJUUSOPIN KERTAUSTA SUUNNITTELIJOILLE EUROKOODI SUUNNITTELUN PERUSTEET JA RAKENTEIDEN KUORMITUKSET 26. 27.11.2015 1090 MITÄ SUUNNITTELIJAN TULEE TIETÄÄ? 3.12.2015 LUJUUSOPIN KERTAUSTA SUUNNITTELIJOILLE 15. 16.12.2015 Skannaa tästä QR-koodi

Lisätiedot

Tilastollisen analyysin perusteet Luento 1: Lokaatio ja hajonta

Tilastollisen analyysin perusteet Luento 1: Lokaatio ja hajonta Tilastollisen analyysin perusteet Luento 1: ja hajonta Sisältö Havaittujen arvojen jakauma Havaittujen arvojen jakaumaa voidaan kuvailla ja esitellä tiivistämällä havaintoarvot sopivaan muotoon. Jakauman

Lisätiedot

Johdatus tn-laskentaan torstai 16.2.2012

Johdatus tn-laskentaan torstai 16.2.2012 Johdatus tn-laskentaan torstai 16.2.2012 Muunnoksen jakauma (ei pelkkä odotusarvo ja hajonta) Satunnaismuuttujien summa; Tas ja N Vakiokerroin (ax) ja vakiolisäys (X+b) Yleinen muunnos: neulanheittoesimerkki

Lisätiedot

1.3 Prosenttilaskuja. pa b = 100

1.3 Prosenttilaskuja. pa b = 100 1.3 Prosenttilaskuja Yksi prosentti jostakin luvusta tai suureesta on tämän sadasosa ja saadaan siis jakamalla ao. luku tai suure luvulla. Jos luku b on p % luvusta a, toisin sanoen jos luku b on p kpl

Lisätiedot

b6) samaan perusjoukkoon kohdistuu samanaikaisesti useampia tutkimuksia.

b6) samaan perusjoukkoon kohdistuu samanaikaisesti useampia tutkimuksia. 806109P TILASTOTIETEEN PERUSMENETELMÄT I 1. välikoe 11.3.2011 (Jari Päkkilä) VALITSE VIIDESTÄ TEHTÄVÄSTÄ NELJÄ JA VASTAA VAIN NIIHIN! 1. Valitse kohdissa A-F oikea (vain yksi) vaihtoehto. Oikeasta vastauksesta

Lisätiedot

RIL 201-3-2013. Suunnitteluperusteet ja rakenteiden kuormat. Vesirakenteet. Suomen Rakennusinsinöörien Liitto RIL ry

RIL 201-3-2013. Suunnitteluperusteet ja rakenteiden kuormat. Vesirakenteet. Suomen Rakennusinsinöörien Liitto RIL ry RIL 201-3-2013 Suomen Rakennusinsinöörien Liitto RIL ry Suunnitteluperusteet ja rakenteiden kuormat Vesirakenteet 2 RIL 201-3-2013 RILin julkaisuilla on oma kotisivu, joka löytyy osoitteesta www.ril.fi

Lisätiedot

Kuormitukset: Puuseinärungot ja järjestelmät:

Kuormitukset: Puuseinärungot ja järjestelmät: PIENTALON PUURUNKO JA JÄYKISTYS https://www.virtuaaliamk.fi/bin/get/eid/51ipycjcf/runko- _ja_vesikattokaavio-oppimisaihio.pdf Ks Esim opintojaksot: Rakennetekniikka, Puurakenteet Luentoaineisto: - Materiaalia

Lisätiedot

2.3 Juurien laatu. Juurien ja kertoimien väliset yhtälöt. Jako tekijöihin. b b 4ac = 2

2.3 Juurien laatu. Juurien ja kertoimien väliset yhtälöt. Jako tekijöihin. b b 4ac = 2 .3 Juurien laatu. Juurien ja kertoimien väliset yhtälöt. Jako tekijöihin. Toisen asteen yhtälön a + b + c 0 ratkaisukaavassa neliöjuuren alla olevaa lauseketta b b 4ac + a b b 4ac a D b 4 ac sanotaan yhtälön

Lisätiedot

Turun seitsemäsluokkalaisten matematiikkakilpailu 18.1.2012 Tehtävät ja ratkaisut

Turun seitsemäsluokkalaisten matematiikkakilpailu 18.1.2012 Tehtävät ja ratkaisut (1) Laske 20 12 11 21. Turun seitsemäsluokkalaisten matematiikkakilpailu 18.1.2012 Tehtävät ja ratkaisut a) 31 b) 0 c) 9 d) 31 Ratkaisu. Suoralla laskulla 20 12 11 21 = 240 231 = 9. (2) Kahden peräkkäisen

Lisätiedot

Tämän kohteen naulalevyrakennesuunnitelmat on tarkistettava päärakennesuunnittelijalla ennen valmistusta.

Tämän kohteen naulalevyrakennesuunnitelmat on tarkistettava päärakennesuunnittelijalla ennen valmistusta. () PYYDETÄÄN PALAUTTAMAAN Vastaanottaja: Timo Surakka / Urpo Manninen Tämän kohteen naulalevyrakennesuunnitelmat on tarkistettava päärakennesuunnittelijalla ennen valmistusta. Kohde: Rakennelaskelma nrot:

Lisätiedot

TUTKIMUSAINEISTON ANALYYSI. LTKY012 Timo Törmäkangas

TUTKIMUSAINEISTON ANALYYSI. LTKY012 Timo Törmäkangas TUTKIMUSAINEISTON ANALYYSI LTKY012 Timo Törmäkangas KAKSIULOTTEISEN EMPIIRISEN JAKAUMAN TARKASTELU Jatkuvat muuttujat: hajontakuvio Koehenkilöiden pituus 75- ja 80-vuotiaana ID Pituus 75 Pituus 80 1 156

Lisätiedot

CENTRIA tutkimus ja kehitys, Ylivieska Vierimaantie 7, 84100 Ylivieska

CENTRIA tutkimus ja kehitys, Ylivieska Vierimaantie 7, 84100 Ylivieska EUROKOODIKOULUTUS CENTRIA tutkimus ja kehitys, Ylivieska Vierimaantie 7, 84100 Ylivieska Aika: Ke 10.2.2010, klo 11.15-17 To 18.2.2010, klo 11.15-17 Ma 22.2.2010, klo 10-16 To 25.2.2010, klo10-15 Kohderyhmä:

Lisätiedot

25.11.11. Sisällysluettelo

25.11.11. Sisällysluettelo GLASROC-KOMPOSIITTIKIPSILEVYJEN GHO 13, GHU 13, GHS 9 JA RIGIDUR KUITUVAHVISTELEVYJEN GFH 13 SEKÄ GYPROC RAKENNUSLEVYJEN GN 13, GEK 13, GF 15, GTS 9 JA GL 15 KÄYTTÖ RANKARAKENTEISTEN RAKENNUSTEN JÄYKISTÄMISEEN

Lisätiedot

TKK @ Ilkka Mellin (2008) 1/5

TKK @ Ilkka Mellin (2008) 1/5 Mat-1.2620 Sovellettu todennäköisyyslaskenta B / Tehtävät Demo-tehtävät: 1, 3, 6, 7 Pistetehtävät: 2, 4, 5, 9 Ylimääräiset tehtävät: 8, 10, 11 Aiheet: Moniulotteiset jakaumat Avainsanat: Diskreetti jakauma,

Lisätiedot

1.1 Funktion määritelmä

1.1 Funktion määritelmä 1.1 Funktion määritelmä Tämän kappaleen otsikoksi valittu funktio on hyvä esimerkki matemaattisesta käsitteestä, johon usein jopa tietämättämme törmäämme arkielämässä. Tutkiessamme erilaisia Jos joukkojen

Lisätiedot

3. Kuvio taitetaan kuutioksi. Mikä on suurin samaa kärkeä ympäröivillä kolmella sivutahkolla olevien lukujen tulo?

3. Kuvio taitetaan kuutioksi. Mikä on suurin samaa kärkeä ympäröivillä kolmella sivutahkolla olevien lukujen tulo? Peruskoulun matematiikkakilpailu Loppukilpailu perjantaina 4.2.2011 OSA 1 Ratkaisuaika 30 min Pistemäärä 20 Tässä osassa ei käytetä laskinta. Esitä myös lasku, kuvio, päätelmä tai muu lyhyt perustelu.

Lisätiedot

ESIMERKKI 3: Nurkkapilari

ESIMERKKI 3: Nurkkapilari ESIMERKKI 3: Nurkkapilari Perustietoja: - Hallin 1 nurkkapilarit MP10 ovat liimapuurakenteisia mastopilareita. 3 Halli 1 6000 - Mastopilarit on tuettu heikomman suunnan nurjahusta vastaan ulkoseinäelementeillä.

Lisätiedot

Muista merkitä vastauspaperiin oma nimesi ja tee etusivulle pisteytysruudukko. Kaikkiin tehtävien ratkaisuihin välivaiheet näkyviin!

Muista merkitä vastauspaperiin oma nimesi ja tee etusivulle pisteytysruudukko. Kaikkiin tehtävien ratkaisuihin välivaiheet näkyviin! MAA6 Kurssikoe 1.11.14 Jussi Tyni ja Juha Käkilehto Muista merkitä vastauspaperiin oma nimesi ja tee etusivulle pisteytysruudukko. Kaikkiin tehtävien ratkaisuihin välivaiheet näkyviin! A-OSIO: Laske kaikki

Lisätiedot

TIESILTOJEN VÄSYTYSKUORMAT

TIESILTOJEN VÄSYTYSKUORMAT TIESILTOJEN VÄSYTYSKUORMAT Siltaeurokoodien koulutus Teräs-, liitto- ja puusillat 29-30.3.2010 Heikki Lilja Liikennevirasto 2 MILLE RAKENNEOSILLE TEHDÄÄN VÄSYTYSMITOITUS (TERÄS- JA LIITTOSILLAT) EN1993-2

Lisätiedot

TUOTTEEN NIMI EDUSTAJA/ VALMISTAJA TUOTEKUVAUS SERTIFIOINTIMENETTELY. Myönnetty 1.10.2013. Alkuperäinen englanninkielinen

TUOTTEEN NIMI EDUSTAJA/ VALMISTAJA TUOTEKUVAUS SERTIFIOINTIMENETTELY. Myönnetty 1.10.2013. Alkuperäinen englanninkielinen TUOTTEEN NIMI SERTIFIKAATTI VTT-C-10100-13 Myönnetty 1.10.2013 Alkuperäinen englanninkielinen Xella kattoelementit Xella lattiaelementit EDUSTAJA/ VALMISTAJA Xella Danmark A/S Helge Nielsen Allé 7 DK-8723

Lisätiedot

MATEMATIIKKA 5 VIIKKOTUNTIA. PÄIVÄMÄÄRÄ: 8. kesäkuuta 2009

MATEMATIIKKA 5 VIIKKOTUNTIA. PÄIVÄMÄÄRÄ: 8. kesäkuuta 2009 EB-TUTKINTO 2009 MATEMATIIKKA 5 VIIKKOTUNTIA PÄIVÄMÄÄRÄ: 8. kesäkuuta 2009 KOKEEN KESTO: 4 tuntia (240 minuuttia) SALLITUT APUVÄLINEET: Eurooppa-koulun antama taulukkovihkonen Funktiolaskin, joka ei saa

Lisätiedot

Testit järjestysasteikollisille muuttujille

Testit järjestysasteikollisille muuttujille Ilkka Mellin Tilastolliset menetelmät Osa 3: Tilastolliset testit Testit järjestysasteikollisille muuttujille TKK (c) Ilkka Mellin (2007) 1 Testit järjestysasteikollisille muuttujille >> Järjestysasteikollisten

Lisätiedot

Siltasuunnittelu Eurocodeaikana

Siltasuunnittelu Eurocodeaikana Siltasuunnittelu Eurocodeaikana Kokemuksia E18 hankkeesta NIKLAS GORDIN 31.10.2012 E18 Koskenkylä Kotka portal.liikennevirasto.fi/sivu/www/f/hankkeet/kaynnissa/koskenkyla_loviisa_kotka Moottoritie sisältää:

Lisätiedot

Taulukkoja käytettäessä ei tarvita lisätarkistuksia leikkaus- ja vääntökestävyyden, ankkurointiyksityiskohtien tai lohkeilun suhteen.

Taulukkoja käytettäessä ei tarvita lisätarkistuksia leikkaus- ja vääntökestävyyden, ankkurointiyksityiskohtien tai lohkeilun suhteen. TAULUKKOMITOITUS 1. Yleistä Tässä esitetään eurokoodin SFS-EN 199-1- ja Suomen kansallisen liitteen mukainen taulukkomitoitus normaalipainoiselle betonille. Standardiin nähden esitystapa on tiivistetty

Lisätiedot

Aloitamme yksinkertaisella leluesimerkillä. Tarkastelemme yhtä osaketta S. Oletamme että tänään, hetkellä t = 0, osakkeen hinta on S 0 = 100=C.

Aloitamme yksinkertaisella leluesimerkillä. Tarkastelemme yhtä osaketta S. Oletamme että tänään, hetkellä t = 0, osakkeen hinta on S 0 = 100=C. Luku 1 Johdatteleva esimerkki Herra K. tarjoaa osto-option Aloitamme yksinkertaisella leluesimerkillä. Tarkastelemme yhtä osaketta S. Oletamme että tänään, hetkellä t = 0, osakkeen hinta on S 0 = 100=C.

Lisätiedot

Suuren jännevälin NR yläpohja Puupäivä 2015

Suuren jännevälin NR yläpohja Puupäivä 2015 Suuren jännevälin NR yläpohja Puupäivä 2015 Tero Lahtela Suuren jännevälin NR yläpohja L = 10 30 m L < 10 m Stabiliteettiongelma Kokonaisjäykistys puutteellinen Yksittäisten puristussauvojen tuenta puutteellinen

Lisätiedot

Lukion. Calculus. Todennäköisyys ja tilastot. Paavo Jäppinen Alpo Kupiainen Matti Räsänen Otava PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN

Lukion. Calculus. Todennäköisyys ja tilastot. Paavo Jäppinen Alpo Kupiainen Matti Räsänen Otava PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN Calculus Lukion 3 MAA Todennäköisyys ja tilastot Paavo Jäppinen Alpo Kupiainen Matti Räsänen Otava PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN Todennäköisyys ja tilastot (MAA) Pikatesti ja kertauskokeet

Lisätiedot

2 Porapaalujen kärkiosien tekniset vaatimukset 2 KÄYTETTÄVÄT STANDARDIT JA OHJEET... 4

2 Porapaalujen kärkiosien tekniset vaatimukset 2 KÄYTETTÄVÄT STANDARDIT JA OHJEET... 4 2 Porapaalujen kärkiosien tekniset vaatimukset Sisällysluettelo 1 YLEISTÄ... 3 1.1 Porapaalujen kärkiosat... 3 1.2 Vaatimusten rajaus... 3 2 KÄYTETTÄVÄT STANDARDIT JA OHJEET... 4 3 PORAPAALUJEN KÄRKIOSIEN

Lisätiedot

Tuloperiaate. Oletetaan, että eräs valintaprosessi voidaan jakaa peräkkäisiin vaiheisiin, joita on k kappaletta

Tuloperiaate. Oletetaan, että eräs valintaprosessi voidaan jakaa peräkkäisiin vaiheisiin, joita on k kappaletta Tuloperiaate Oletetaan, että eräs valintaprosessi voidaan jakaa peräkkäisiin vaiheisiin, joita on k kappaletta ja 1. vaiheessa valinta voidaan tehdä n 1 tavalla,. vaiheessa valinta voidaan tehdä n tavalla,

Lisätiedot

Kojemeteorologia. Sami Haapanala syksy 2013. Fysiikan laitos, Ilmakehätieteiden osasto

Kojemeteorologia. Sami Haapanala syksy 2013. Fysiikan laitos, Ilmakehätieteiden osasto Kojemeteorologia Sami Haapanala syksy 2013 Fysiikan laitos, Ilmakehätieteiden osasto Mittalaitteiden staattiset ominaisuudet Mittalaitteita kuvaavat tunnusluvut voidaan jakaa kahteen luokkaan Staattisiin

Lisätiedot

Solmu 3/2001 Solmu 3/2001. Kevään 2001 ylioppilaskirjoitusten pitkän matematiikan kokeessa oli seuraava tehtävä:

Solmu 3/2001 Solmu 3/2001. Kevään 2001 ylioppilaskirjoitusten pitkän matematiikan kokeessa oli seuraava tehtävä: Frégier n lause Simo K. Kivelä Kevään 2001 ylioppilaskirjoitusten pitkän matematiikan kokeessa oli seuraava tehtävä: Suorakulmaisen kolmion kaikki kärjet sijaitsevat paraabelilla y = x 2 ; suoran kulman

Lisätiedot

EUROKOODI 2012 SEMINAARI. Betonirakenteet eurokoodit ja toteutusstandardi SFS-EN 13670

EUROKOODI 2012 SEMINAARI. Betonirakenteet eurokoodit ja toteutusstandardi SFS-EN 13670 EUROKOODI 2012 SEMINAARI Betonirakenteet eurokoodit ja toteutusstandardi SFS-EN 13670 Koulutus ja käyttöönotto Eurokoodikoulutukset järjestettiin pääosin 2007 Oppilaitoksissa opetus pääosin eurokoodipohjaista

Lisätiedot

Suojatuote PROxA Sääsuojan asennusohje. Suojatuote Pro Oy Rastaansiipi 15 D 10 90650 Oulu Suomi

Suojatuote PROxA Sääsuojan asennusohje. Suojatuote Pro Oy Rastaansiipi 15 D 10 90650 Oulu Suomi Suojatuote PROxA Sääsuojan asennusohje Suojatuote Pro Oy Rastaansiipi 15 D 10 90650 Oulu Suomi Yleisesti Sääsuoja on tilapäiseen suojaukseen tehty rakenne, jota ei ole mitoitettu täysille tuuli ja lumikuormille.

Lisätiedot

Puutavara-autot mitta- ja massamuutoksen jälkeen. Antti Korpilahti

Puutavara-autot mitta- ja massamuutoksen jälkeen. Antti Korpilahti Puutavara-autot mitta- ja massamuutoksen jälkeen 11/2013 Ajoneuvoasetuksen merkittävimmät muutokset 1.10.2013 Ajoneuvojen korkeutta lisättiin Auton teli- ja kokonaismassoihin muutoksia 8- ja 9-akseliset

Lisätiedot

Copyright 2010 Metsäliitto Osuuskunta, Puutuoteteollisuus. Finnwood 2.3 ( 2.3.027) FarmiMalli Oy. Katoksen takaseinän palkki. Urpo Manninen 12.7.

Copyright 2010 Metsäliitto Osuuskunta, Puutuoteteollisuus. Finnwood 2.3 ( 2.3.027) FarmiMalli Oy. Katoksen takaseinän palkki. Urpo Manninen 12.7. Laskelmat on tehty alla olevilla lähtötiedoilla vain kyseiselle rakenneosalle. Laskelmissa esitetty rakenneosan pituus ei ole tilausmitta. Tilausmitassa on otettava huomioon esim. tuennan vaatima lisäpituus.

Lisätiedot

Vientikohde Eurooppaan Miten Eurokoodien käyttö onnistuu?

Vientikohde Eurooppaan Miten Eurokoodien käyttö onnistuu? Vientikohde Eurooppaan Miten Eurokoodien käyttö onnistuu? Eurokoodiseminaari Helsinki, Hilton Kalastajantorppa Teräsrakenteiden suunnittelupäällikkö, DI Jussi Vaiste WWW.AINS.FI Omia kokemuksia vientiprojekteista

Lisätiedot

Copyright 2010 Metsäliitto Osuuskunta, Puutuoteteollisuus. Finnwood 2.3 ( 2.3.027) FarmiMalli Oy. Katoksen rakentaminen, Katoksen 1.

Copyright 2010 Metsäliitto Osuuskunta, Puutuoteteollisuus. Finnwood 2.3 ( 2.3.027) FarmiMalli Oy. Katoksen rakentaminen, Katoksen 1. Laskelmat on tehty alla olevilla lähtötiedoilla vain kyseiselle rakenneosalle. Laskelmissa esitetty rakenneosan pituus ei ole tilausmitta. Tilausmitassa on otettava huomioon esim. tuennan vaatima lisäpituus.

Lisätiedot

2.2 Neliöjuuri ja sitä koskevat laskusäännöt

2.2 Neliöjuuri ja sitä koskevat laskusäännöt . Neliöjuuri ja sitä koskevat laskusäännöt MÄÄRITELMÄ 3: Lukua b sanotaan luvun a neliöjuureksi, merkitään a b, jos b täyttää kaksi ehtoa: 1o b > 0 o b a Esim.1 Määritä a) 64 b) 0 c) 36 a) Luvun 64 neliöjuuri

Lisätiedot

Matemaatikot ja tilastotieteilijät

Matemaatikot ja tilastotieteilijät Matemaatikot ja tilastotieteilijät Matematiikka/tilastotiede ammattina Tilastotiede on matematiikan osa-alue, lähinnä todennäköisyyslaskentaa, mutta se on myös itsenäinen tieteenala. Tilastotieteen tutkijat

Lisätiedot

Vastaanottaja Helsingin kaupunki. Asiakirjatyyppi Selvitys. Päivämäärä 30.10.2014 VUOSAAREN SILTA KANTAVUUSSELVITYS

Vastaanottaja Helsingin kaupunki. Asiakirjatyyppi Selvitys. Päivämäärä 30.10.2014 VUOSAAREN SILTA KANTAVUUSSELVITYS Vastaanottaja Helsingin kaupunki Asiakirjatyyppi Selvitys Päivämäärä 30.10.2014 VUOSAAREN SILTA KANTAVUUSSELVITYS VUOSAAREN SILTA KANTAVUUSSELVITYS Päivämäärä 30/10/2014 Laatija Tarkastaja Kuvaus Heini

Lisätiedot

Mitoitusesimerkki - Poimu

Mitoitusesimerkki - Poimu Mitoitusesimerkki - Poimu Rautaruukin laskentaohjelmin käytön helpottamiseksi niitä varten on tehty sarja mitoitusesimerkkejä. Esimerkeissä keskitytään ohjelmien peruskäyttöön joten kuormien ja rakenteen

Lisätiedot

Osa 1: Todennäköisyys ja sen laskusäännöt. Kokonaistodennäköisyyden ja Bayesin kaavat

Osa 1: Todennäköisyys ja sen laskusäännöt. Kokonaistodennäköisyyden ja Bayesin kaavat Ilkka Mellin Todennäköisyyslaskenta Osa 1: Todennäköisyys ja sen laskusäännöt Kokonaistodennäköisyyden ja Bayesin kaavat TKK (c) Ilkka Mellin (2007) 1 Kokonaistodennäköisyys ja Bayesin kaava >> Kokonaistodennäköisyys

Lisätiedot

C A S E S A T A M A K A T U

C A S E S A T A M A K A T U C A S E S A T A M A K A T U Kaksi lisäkerrosta 8-kerroksisen rakennuksen katolle PUUPÄIVÄ 26.11.2015 - Riina Savikko Mikä A-Insinöörit? Kuka Riina? WWW.AINS.FI CASE SATAMAKATU As Oy Tampereen Puolari 24

Lisätiedot

Teräsrakenteiden maanjäristysmitoitus

Teräsrakenteiden maanjäristysmitoitus Teräsrakenteiden maanjäristysmitoitus Teräsrakenteiden T&K-päivät Helsinki 28. 29.5.2013 Jussi Jalkanen, Jyri Tuori ja Erkki Hömmö Sisältö 1. Maanjäristyksistä 2. Seismisten kuormien suuruus ja kiihtyvyysspektri

Lisätiedot

Rakenteiden suunnittelua koskevien säädösten ja ohjeiden tilanne. Jukka Bergman Yli-insinööri Rakennukset ja rakentaminen yksikkö

Rakenteiden suunnittelua koskevien säädösten ja ohjeiden tilanne. Jukka Bergman Yli-insinööri Rakennukset ja rakentaminen yksikkö Rakenteiden suunnittelua koskevien säädösten ja ohjeiden tilanne Jukka Bergman Yli-insinööri Rakennukset ja rakentaminen yksikkö Hilton Kalastajatorppa 10.12.2015 MRL I 1.1.2013-> MRL II 1.9.2014-> YMa+VNa

Lisätiedot

A-Osio. Ei saa käyttää laskinta, maksimissaan tunti aikaa. Valitse seuraavista kolmesta tehtävästä kaksi, joihin vastaat:

A-Osio. Ei saa käyttää laskinta, maksimissaan tunti aikaa. Valitse seuraavista kolmesta tehtävästä kaksi, joihin vastaat: MAA6 Loppukoe 26..203 Jussi Tyni Muista merkitä vastauspaperiin oma nimesi ja tee etusivulle pisteytysruudukko. Kaikkiin tehtävien ratkaisuihin välivaiheet näkyviin! Lue ohjeet huolella! A-Osio. Ei saa

Lisätiedot

Teema 4. Homomorfismeista Ihanne ja tekijärengas. Teema 4 1 / 32

Teema 4. Homomorfismeista Ihanne ja tekijärengas. Teema 4 1 / 32 1 / 32 Esimerkki 4A.1 Esimerkki 4A.2 Esimerkki 4B.1 Esimerkki 4B.2 Esimerkki 4B.3 Esimerkki 4C.1 Esimerkki 4C.2 Esimerkki 4C.3 2 / 32 Esimerkki 4A.1 Esimerkki 4A.1 Esimerkki 4A.2 Esimerkki 4B.1 Esimerkki

Lisätiedot

Nimittäin, koska s k x a r mod (p 1), saadaan Fermat n pienen lauseen avulla

Nimittäin, koska s k x a r mod (p 1), saadaan Fermat n pienen lauseen avulla 6. Digitaalinen allekirjoitus Digitaalinen allekirjoitus palvelee samaa tarkoitusta kuin perinteinen käsin kirjotettu allekirjoitus, t.s. Liisa allekirjoittaessaan Pentille lähettämän viestin, hän antaa

Lisätiedot

Tilastollisen analyysin perusteet Luento 1: Lokaatio ja hajonta

Tilastollisen analyysin perusteet Luento 1: Lokaatio ja hajonta Tilastollisen analyysin perusteet Luento 1: ja hajonta Sisältö Havaittujen arvojen jakauma Havaittujen arvojen jakaumaa voidaan kuvailla ja esitellä tiivistämällä havaintoarvot sopivaan muotoon. Jakauman

Lisätiedot

Kuvioita, taulukoita ja tunnuslukuja. Aki Taanila 2.2.2011

Kuvioita, taulukoita ja tunnuslukuja. Aki Taanila 2.2.2011 Kuvioita, taulukoita ja tunnuslukuja Aki Taanila 2.2.2011 1 Tilastokuviot Pylväs Piirakka Viiva Hajonta 2 Kuviossa huomioitavia asioita 1 Kuviolla tulee olla tarkoitus ja tehtävä (minkä tiedon haluat välittää

Lisätiedot

1 Kannat ja kannanvaihto

1 Kannat ja kannanvaihto 1 Kannat ja kannanvaihto 1.1 Koordinaattivektori Oletetaan, että V on K-vektoriavaruus, jolla on kanta S = (v 1, v 2,..., v n ). Avaruuden V vektori v voidaan kirjoittaa kannan vektorien lineaarikombinaationa:

Lisätiedot

MYNTINSYRJÄN JALKAPALLOHALLI

MYNTINSYRJÄN JALKAPALLOHALLI Sivu 1 / 9 MYNTINSYRJÄN JALKAPALLOHALLI Tämä selvitys on tilattu rakenteellisen turvallisuuden arvioimiseksi Myntinsyrjän jalkapallohallista. Hallin rakenne vastaa ko. valmistajan tekemiä halleja 90 ja

Lisätiedot

Väsymisanalyysi Case Reposaaren silta

Väsymisanalyysi Case Reposaaren silta Väsymisanalyysi Case Reposaaren silta TERÄSSILTAPÄIVÄT 2012, 6. 7.6.2012 Jani Meriläinen, Liikennevirasto Esityksen sisältö Lyhyet esimerkkilaskelmat FLM1, FLM3, FLM4 ja FLM5 Vanha silta Reposaaren silta

Lisätiedot

CLT-rakentamisen yleisperiaatteet

CLT-rakentamisen yleisperiaatteet 4.1 Teollisuus- ja toimitilarakentaminen - Seinän kiinnitys Seinälevyn kiinnitys Ulkoverhous Koolaus Pystytiiviste (tuulensuojalevy) Seinän kiinnitys Pilari (CLT:ä tai liimapuuta) Perustus Saumanauhat

Lisätiedot

MATEMATIIKKA 5 VIIKKOTUNTIA

MATEMATIIKKA 5 VIIKKOTUNTIA EB-TUTKINTO 2008 MATEMATIIKKA 5 VIIKKOTUNTIA PÄIVÄMÄÄRÄ: 5. kesäkuuta 2008 (aamupäivä) KOKEEN KESTO: 4 tuntia (240 minuuttia) SALLITUT APUVÄLINEET: Europpa-koulun antama taulukkovihkonen Funktiolaskin,

Lisätiedot

Ensimmäisiä tuloksia SETUKLIM-hankkeesta (Sektoritutkimusohjelman ilmastoskenaariot)

Ensimmäisiä tuloksia SETUKLIM-hankkeesta (Sektoritutkimusohjelman ilmastoskenaariot) Ensimmäisiä tuloksia SETUKLIM-hankkeesta (Sektoritutkimusohjelman ilmastoskenaariot) Jouni Räisänen, Helsingin yliopisto Milla Johansson, Ilmatieteen laitos 5.3.2012 Osa 1: Kylmien ja lämpimien kuukausien

Lisätiedot

Ohje Suodatinkankaiden vaatimukset esitetään luvussa 21120. Viitteet 21120 Suodatinkankaat, InfraRYL osa 1.

Ohje Suodatinkankaiden vaatimukset esitetään luvussa 21120. Viitteet 21120 Suodatinkankaat, InfraRYL osa 1. 1 21110 Suodatinkerrokset Suodatinkankaiden vaatimukset esitetään luvussa 21120. 21120 Suodatinkankaat, InfraRYL osa 1. 21110.1 Suodatinkerroksen materiaalit Tuotteen kelpoisuus osoitetaan ensisijaisesti

Lisätiedot

b) Arvonnan, jossa 50 % mahdollisuus saada 15 euroa ja 50 % mahdollisuus saada 5 euroa.

b) Arvonnan, jossa 50 % mahdollisuus saada 15 euroa ja 50 % mahdollisuus saada 5 euroa. 2.9. Epävarmuus ja odotetun hyödyn teoria Testi. Kumman valitset a) 10 euroa varmasti. b) Arvonnan, jossa 50 % mahdollisuus saada 15 euroa ja 50 % mahdollisuus saada 5 euroa. Odotettu arvo 0,5* 15 + 0,5*5

Lisätiedot

Teräsrakenteiden suunnittelua koskevat määräykset, ohjeet ja Eurocode-standardit

Teräsrakenteiden suunnittelua koskevat määräykset, ohjeet ja Eurocode-standardit Teräsrakenteiden suunnittelua koskevat määräykset, ohjeet ja Eurocode-standardit Teräsrakenteiden suunnittelua koskevat määräykset, ohjeet ja Eurocode-standardit Esityksen aiheet: Suomen rakentamismääräykset

Lisätiedot

Aluksi. 1.1. Kahden muuttujan lineaarinen yhtälö

Aluksi. 1.1. Kahden muuttujan lineaarinen yhtälö Aluksi Matematiikan käsite suora on tarkalleen sama asia kuin arkikielen suoran käsite. Vai oliko se toisinpäin? Matematiikan luonteesta johtuu, että sen soveltaja ei tyydy pelkkään suoran nimeen eikä

Lisätiedot

Tampereen Tornihotelli CASE STUDY. Juha Valjus Finnmap Consulting Oy 17.11.2011

Tampereen Tornihotelli CASE STUDY. Juha Valjus Finnmap Consulting Oy 17.11.2011 Tampereen Tornihotelli CASE STUDY Juha Valjus Finnmap Consulting Oy 17.11.2011 TAMPEREEN TORNIHOTELLI 2011 2 TAMPEREEN TORNIHOTELLI 2011 Veturitalli Ravintolat ja kokoustilat Torniosa Huoneet ja Lounge

Lisätiedot

IIZE3010 Elektroniikan perusteet Harjoitustyö. Pasi Vähämartti, C1303, IST4SE

IIZE3010 Elektroniikan perusteet Harjoitustyö. Pasi Vähämartti, C1303, IST4SE IIZE3010 Elektroniikan perusteet Harjoitustyö Pasi Vähämartti, C1303, IST4SE 2 (11) Sisällysluettelo: 1. Tehtävänanto...3 2. Peruskytkentä...4 2.1. Peruskytkennän käyttäytymisanalyysi...5 3. Jäähdytyksen

Lisätiedot

RunkoPES 2.0 OSA 12: LIITTYMÄDETALJIKIRJASTO 31.12.2013

RunkoPES 2.0 OSA 12: LIITTYMÄDETALJIKIRJASTO 31.12.2013 RunkoPES 2.0 OSA 12: LIITTYMÄDETALJIKIRJASTO 31.12.2013 1.0 JOHDANTO Tämän liittymädetaljikirjaston tarkoituksena on ohjeistaa rakennusliikkeitä ja rakennuttajia sekä päärakennesuunnittelijaa seuraavalla

Lisätiedot

kaikille a R. 1 (R, +) on kommutatiivinen ryhmä, 2 a(b + c) = ab + ac ja (b + c)a = ba + ca kaikilla a, b, c R, ja

kaikille a R. 1 (R, +) on kommutatiivinen ryhmä, 2 a(b + c) = ab + ac ja (b + c)a = ba + ca kaikilla a, b, c R, ja Renkaat Tarkastelemme seuraavaksi rakenteita, joissa on määritelty kaksi binääristä assosiatiivista laskutoimitusta, joista toinen on kommutatiivinen. Vaadimme muuten samat ominaisuudet kuin kokonaisluvuilta,

Lisätiedot

VÄLISEINÄT. Leca väliseinät. Leca EasyLex 88 Leca Lex. www.e-weber.fi 4-20/1.9.2012

VÄLISEINÄT. Leca väliseinät. Leca EasyLex 88 Leca Lex. www.e-weber.fi 4-20/1.9.2012 VÄLISEINÄT Leca väliseinät Leca EasyLex 88 Leca Lex 4-20/1.9.2012 www.e-weber.fi Leca väliseinät Leca EasyLex Leca Lex markkinoiden nopein väliseinäratkaisu Nopea rakentaa ja helppo tasoittaa Sisältö Leca

Lisätiedot

Mitoitusesimerkkejä Eurocode 2:n mukaisesti

Mitoitusesimerkkejä Eurocode 2:n mukaisesti Maanvaraisen lattian mitoitus by45/bly7 2014 Mitoitusesimerkkejä Eurocode 2:n mukaisesti BETONI LATTIA 2014 by 45 BETONILATTIAT 2002, korvaa julkaisut by 8 (1975), by 12 (1981), by 31 (1989), by 45 (1997

Lisätiedot

Betonieurokoodit ja niiden kansalliset liitteet Betonivalmisosarakentamisen uudet suunnittelu- ja toteutusohjeet

Betonieurokoodit ja niiden kansalliset liitteet Betonivalmisosarakentamisen uudet suunnittelu- ja toteutusohjeet Betonieurokoodit ja niiden kansalliset liitteet Betonivalmisosarakentamisen uudet suunnittelu- ja toteutusohjeet /Rakennusteollisuus RT Betonieurokoodien tilanne Eurokoodien asema Uudessa B-sarjassa eurokoodeihin

Lisätiedot

Luku 6. Dynaaminen ohjelmointi. 6.1 Funktion muisti

Luku 6. Dynaaminen ohjelmointi. 6.1 Funktion muisti Luku 6 Dynaaminen ohjelmointi Dynaamisessa ohjelmoinnissa on ideana jakaa ongelman ratkaisu pienempiin osaongelmiin, jotka voidaan ratkaista toisistaan riippumattomasti. Jokaisen osaongelman ratkaisu tallennetaan

Lisätiedot