Mat-2.148 Dynaaminen optimointi, mallivastaukset, kierros 5



Samankaltaiset tiedostot
k = 1,...,r. L(x 1 (t), x

Mat Dynaaminen optimointi, mallivastaukset, kierros Johdetaan välttämättömät ehdot funktionaalin. g(y(t), ẏ(t),...

[xk r k ] T Q[x k r k ] + u T k Ru k. }.

6 Variaatiolaskennan perusteet

Mat Dynaaminen optimointi, mallivastaukset, kierros 11

Mat Dynaaminen optimointi, mallivastaukset, kierros Johdetaan ensiksi välttämättömät ehdot diskreettiaikaiselle optimisäätötehtävälle.

Jos siis ohjausrajoitusta ei olisi, olisi ratkaisu triviaalisti x(s) = y(s). Hamiltonin funktio on. p(0) = p(s) = 0.

min x x2 2 x 1 + x 2 1 = 0 (1) 2x1 1, h = f = 4x 2 2x1 + v = 0 4x 2 + v = 0 min x x3 2 x1 = ± v/3 = ±a x 2 = ± v/3 = ±a, a > 0 0 6x 2

Fourier-analyysi, I/19-20, Mallivastaukset, Laskuharjoitus 7

w + x + y + z =4, wx + wy + wz + xy + xz + yz =2, wxy + wxz + wyz + xyz = 4, wxyz = 1.

HY, MTO / Matemaattisten tieteiden kandiohjelma Todennäköisyyslaskenta IIa, syksy 2018 Harjoitus 3 Ratkaisuehdotuksia.

Mat Dynaaminen optimointi, mallivastaukset, kierros 3

Maksimit ja minimit 1/5 Sisältö ESITIEDOT: reaalifunktiot, derivaatta

12. Hessen matriisi. Ääriarvoteoriaa

Haitallinen valikoituminen: yleinen malli ja sen ratkaisu

2. kl:n DY:t. Lause. Yleisesti yhtälöllä ẍ = f(ẋ, x, t) on (sopivin oletuksin) aina olemassa 1-käs. ratkaisu. (ẋ dx/dt, ẍ d 2 x/dt 2.

Matematiikan tukikurssi

Funktiot. funktioita f : A R. Yleensä funktion määrittelyjoukko M f = A on jokin väli, muttei aina.

1 UUSIUTUMATTOMAT LUONNONVARAT

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 3: Vektorikentät

Normaaliryhmä. Toisen kertaluvun normaaliryhmä on yleistä muotoa

0 kun x < 0, 1/3 kun 0 x < 1/4, 7/11 kun 1/4 x < 6/7, 1 kun x 1, 1 kun x 6/7,

Mat Dynaaminen optimointi, mallivastaukset, kierros Vaimennetun heilurin tilanyhtälöt on esitetty luennolla: θ = g sin θ r θ

Luku 4. Derivoituvien funktioiden ominaisuuksia.

Malliratkaisut Demo 1

1 Rajoittamaton optimointi

BM20A0900, Matematiikka KoTiB3

Malliratkaisut Demot

Yhdistetty funktio. Älä sekoita arvo- eli kuvajoukkoa maalijoukkoon! (wikipedian ongelma!)

13. Ratkaisu. Kirjoitetaan tehtävän DY hieman eri muodossa: = 1 + y x + ( y ) 2 (y )

Matematiikan tukikurssi

y (0) = 0 y h (x) = C 1 e 2x +C 2 e x e10x e 3 e8x dx + e x 1 3 e9x dx = e 2x 1 3 e8x 1 8 = 1 24 e10x 1 27 e10x = e 10x e10x

Wiener-prosessi: Tarkastellaan seuraavanlaista stokastista prosessia

Talousmatematiikan perusteet: Luento 14. Rajoitettu optimointi Lagrangen menetelmä: yksi yhtälörajoitus Lagrangen menetelmä: monta yhtälörajoitusta

b 1. b m ) + ( 2b Ax) + (b b)

x = π 3 + nπ, x + 1 f (x) = 2x (x + 1) x2 1 (x + 1) 2 = 2x2 + 2x x 2 = x2 + 2x f ( 3) = ( 3)2 + 2 ( 3) ( 3) = = 21 tosi

Jatkuvan ajan dynaaminen optimointi

2 Funktion derivaatta

y = 3x2 y 2 + sin(2x). x = ex y + e y2 y = ex y + 2xye y2

Matematiikan tukikurssi

Satunnaismuuttujien muunnokset ja niiden jakaumat

Johdatus todennäköisyyslaskentaan Satunnaismuuttujien muunnokset ja niiden jakaumat. TKK (c) Ilkka Mellin (2004) 1

MS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 1: Parametrisoidut käyrät ja kaarenpituus

6. Toisen ja korkeamman kertaluvun lineaariset

Insinöörimatematiikka D

Numeeriset menetelmät TIEA381. Luento 12. Kirsi Valjus. Jyväskylän yliopisto. Luento 12 () Numeeriset menetelmät / 33

2 Osittaisderivaattojen sovelluksia

Derivaatan sovellukset (ääriarvotehtävät ym.)

Differentiaalilaskenta 1.

Ensimmäisen ja toisen kertaluvun differentiaaliyhtälöistä

a(t) = v (t) = 3 2 t a(t) = 3 2 t < t 1 2 < 69 t 1 2 < 46 t < 46 2 = 2116 a(t) = v (t) = 50

a) Mikä on integraalifunktio ja miten derivaatta liittyy siihen? Anna esimerkki = 16 3 =

Talousmatematiikan perusteet: Luento 15. Rajoitettu optimointi Lagrangen menetelmä Lagrangen kerroin ja varjohinta

MATP153 Approbatur 1B Harjoitus 6 Maanantai

Diskreettiaikainen dynaaminen optimointi

Talousmatematiikan perusteet: Luento 12. Lineaarinen optimointitehtävä Graafinen ratkaisu Ratkaisu Excel Solverilla

Mikäli funktio on koko ajan kasvava/vähenevä jollain välillä, on se tällä välillä monotoninen.

Insinöörimatematiikka D, laskuharjoituksien esimerkkiratkaisut

Esimerkki: Tarkastellaan korkeudella h ht () putoavaa kappaletta, jonka massa on m (ks. kuva).

MS-A0207 Differentiaali- ja integraalilaskenta 2 (Chem) Tentti ja välikokeiden uusinta

3 Derivoituvan funktion ominaisuuksia

l 1 2l + 1, c) 100 l=0

y + 4y = 0 (1) λ = 0

2. Viikko. CDH: luvut (s ). Matematiikka on fysiikan kieli ja differentiaaliyhtälöt sen yleisin murre.

Differentiaali- ja integraalilaskenta 1 Ratkaisut 6. viikolle /

4 Korkeamman kertaluvun differentiaaliyhtälöt

MS-A0102 Differentiaali- ja integraalilaskenta 1

Ratkaisuehdotus 2. kurssikokeeseen

lnx x 1 = = lim x = = lim lim 10 = x x0

Ratkaisuehdotus 2. kurssikoe

Mat Investointiteoria Laskuharjoitus 3/2008, Ratkaisut

MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 7: Pienimmän neliösumman menetelmä ja Newtonin menetelmä.

Matemaattinen Analyysi

Mapu 1. Laskuharjoitus 3, Tehtävä 1

Antti Rasila. Kevät Matematiikan ja systeemianalyysin laitos Aalto-yliopisto. Antti Rasila (Aalto-yliopisto) MS-A0204 Kevät / 16

Oletetaan, että funktio f on määritelty jollakin välillä ]x 0 δ, x 0 + δ[. Sen derivaatta pisteessä x 0 on

MATEMATIIKAN PERUSKURSSI I Harjoitustehtäviä syksy Millä reaaliluvun x arvoilla. 3 4 x 2,

IV. TASAINEN SUPPENEMINEN. f(x) = lim. jokaista ε > 0 ja x A kohti n ε,x N s.e. n n

Matematiikan taito 9, RATKAISUT. , jolloin. . Vast. ]0,2] arvot.

A = (a 2x) 2. f (x) = 12x 2 8ax + a 2 = 0 x = 8a ± 64a 2 48a x = a 6 tai x = a 2.

, c) x = 0 tai x = 2. = x 3. 9 = 2 3, = eli kun x = 5 tai x = 1. Näistä

1 Peruskäsitteet. Dierentiaaliyhtälöt

Kaikkia alla olevia kohtia ei käsitellä luennoilla kokonaan, koska osa on ennestään lukiosta tuttua.

f (28) L(28) = f (27) + f (27)(28 27) = = (28 27) 2 = 1 2 f (x) = x 2

Matematiikan tukikurssi

Vapaus. Määritelmä. jos c 1 v 1 + c 2 v c k v k = 0 joillakin c 1,..., c k R, niin c 1 = 0, c 2 = 0,..., c k = 0.

Insinöörimatematiikka D

3.1 Väliarvolause. Funktion kasvaminen ja väheneminen

Differentiaali- ja integraalilaskenta 1 Ratkaisut 2. viikolle /

Matematiikkaa kauppatieteilijöille

Kun järjestelmää kuvataan operaattorilla T, sisäänmenoa muuttujalla u ja ulostuloa muuttujalla y, voidaan kirjoittaa. y T u.

Differentiaali- ja integraalilaskenta 1 Ratkaisut 5. viikolle /

3 = Lisäksi z(4, 9) = = 21, joten kysytty lineaarinen approksimaatio on. L(x,y) =

Kuva 1: Funktion f tasa-arvokäyriä. Ratkaisu. Suurin kasvunopeus on gradientin suuntaan. 6x 0,2

MS-A0102 Differentiaali- ja integraalilaskenta 1

MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 6: Ääriarvojen luokittelu. Lagrangen kertojat.

Matriisit ja optimointi kauppatieteilijöille

Funktion raja-arvo ja jatkuvuus Reaali- ja kompleksifunktiot

r > y x z x = z y + y x z y + y x = r y x + y x = r

Transkriptio:

Mat-2.148 Dynaaminen optimointi, mallivastaukset, kierros 5 1. Kotitehtävä. 2. Lasketaan aluksi korkoa korolle. Jos korkoprosentti on r, ja korko maksetaan n kertaa vuodessa t vuoden ajan, niin kokonaisvuosikorko on (1 + r/n) nt. Antamalla n saadaan jatkuvan koron prosentti lim (1 + n r/n)nt = e rt. Tätä voidaan siis käyttää tulevien voittojen/tappioiden diskonttaustekijänä nykyisyyteen. Olkoon varaston koko x(t) ja tuotantonopeus ẋ(t). Tehtävä on silloin minimoida kustannukset min J = e rt[ C 1 ẋ 2 (t) + C 2 x(t) ] dt = F (x, ẋ, t) dt reunaehdoilla x() = ja x(t ) = B. Lisäksi tulee päteä ẋ(t) kaikilla t [, T ]. Nyt F x = C 2 e rt, Fẋ = 2C 1 e rt ẋ, d dt F ẋ = 2C 1 re rt ẋ + 2C 1 e rt ẍ jolloin Eulerin yhtälö on muotoa ẍ rẋ = C 2 2C 1. (1) Ratkaistaan homogeeninen yhtälö ẍ rẋ = yritteellä x(t) = e at, jolloin sijoittamalla saadaan a 2 e at rae at = a(a r) = ja homogeenisen yhtälön ratkaisu on x(t) = k 1 + k 2 e rt. Yleisen yhtälön (1) erikoisratkaisu on suora x(t) = C 2 t, 1

jolloin yhtälön (1) täydellinen ratkaisu on muotoa x(t) = k 1 + k 2 e rt C 2 t. Vakiot k 1 ja k 2 määritetään reunaehdoista: ja ratkaisu on k 1 = k 2, k 2 = B + [C 2/( )]T e rt 1 x (t) = ( B + C 2 T ) e rt 1 e rt 1 C 2 t. Toteutuuko nyt rajoitus ẋ (t) kaikilla t [, T ]? Tarkastelemalla Eulerin yhtälöä ẍ(t) = rẋ(t) + C 2 2C 1 havaitaan, että mikäli ẋ(τ) jollakin ajan hetkellä τ, niin silloin ẍ > ja siten ẋ on aidosti kasvava ja myös pysyy aidosti kasvavana kaikilla tulevilla ajanhetkillä t > τ. Välttämätön ja riittävä ehto on siis, että ẋ (). Derivoimalla ratkaisua saadaan ẋ (t) = ( B + C 2 T ) re rt e rt 1 C 2 ja sijoittamalla t = saadaan ehto eli ( C 2 B + T ) r e rt 1 C 2 B C 2 2r 2 C 1 (e rt 1 rt ). Mikäli tämä ehto toteutuu, on x (t) optimaalinen tuotantosuunnitelma. Muussa tapauksessa joudutaan tuotannon aloitusta viivästyttämään. Epäyhtälörajoitettuja tehtäviä käsitellään myöhemmin. 2

3. Olkoon y(t) ajan hetkeen t mennessä myydyn mineraalin määrä. Tällöin ẏ(t) on myyntinopeus hetkellä t. Kokonaishyödyn maksimointitehtävä on max J = e rt ln ẏ(t) dt = missä r on diskonttauskerroin, ja reunaehdot ovat y() =, y(t ) = B. Muodostetaan Eulerin yhtälö ja ratkaistaan se: F (ẏ, t) dt, F y =, Fẏ = e rt /ẏ(t) d dt( e rt /ẏ(t) ) = e rt /ẏ(t) = C (vakio) y(t) = e rt rc + D (=vakio). Vakiot C ja D määrätään reunaehdoista: Sijoittamalla saadaan C = 1 rb (1 e rt ), D = B/(1 e rt ). y(t) = B 1 e rt 1 e rt. Optimaalinen myyntinopeus on tällöin e rt ẏ(t) = Br, t T. 1 e rt 4. Edellinen tehtävä tuottofunktiolla P (x), missä P toteuttaa ehdot: Maksimoitava tuotto: max J = P () >, P (x) <, x. e rt P (ẏ(t)) dt = F (ẏ, t) dt. 3

(a) Marginaalituotto määritellään siten, että se on tuottofunktion derivaatta P (x). Marginaalituotto kuvaa lisätuottoa, joka saadaan, kun myyntinopeutta kasvatetaan yhden yksikön verran. Nykyarvo saadaan, kun kerrotaan diskonttaustekijällä e rt. Integrandille F pätee: F y =, Fẏ = e rt P (ẏ(t)). Optimiratkaisussa tulee toteutua Eulerin yhtälö: eli d [ e rt P (ẏ(t)) ] = dt e rt P (ẏ(t)) = C (vakio), joten marginaalituoton nykyarvo optimaalisella myyntikäyrällä on siis vakio. Koska P () >, niin on itse asiassa oltava C >, joten marginaalituotto on kaikilla ajan hetkillä positiivinen. Optimiratkaisussa millään ajan hetkellä ei siis kannata vähentää myyntiä. Lisäksi myyntiä ei kannata aikaistaa, koska nykyarvo ei muutu. (b) Optimaalisella myyntikäyrälla marginaalituoton lauseke on P (ẏ(t)) = Ce rt. Derivoimalla ajan suhteen saadaan jolloin on oltava P (ẏ(t)) ÿ(t) = Cre } {{ } } {{ rt }, < > ÿ(t) <, ja siten optimaalinen myyntikäyrä ẏ(t) on aidosti vähenevä. Huomattavaa on, että olemme johtaneet voimakkaan karakterisoinnin optimaaliselle myyntistrategialle varsin yleisin oletuksin tuottofunktiosta P. Tällaisella mallilla voisi esimerkiksi yrittää selittää, miksi öljyntuottajamonopoli OPEC:in kannattaa tuottaa markkinoille koko ajan vähemmän öljyä, kun luonnonvarat hupenevat. Tässä tosin tulisi varmaankin olettaa, että tarkasteltava aikaväli on äärettömän pitkä (T ). Näitä äärettömän aikavälin variaatiotehtäviä käsitellään myöhemmin tällä kurssilla. t 4

5. Etsittävä ekstremaalit funktionaalille J = isoperimetrisellä rajoitusehdolla sekä reunaehdoilla ẋ 2 (t) dt x 2 (t) dt = 2 x() = x(1) =. Isoperimetrinen rajoite voidaan sisällyttää tehtävään seuraavasti. Olkoon ( t ) z(t) = x 2 (τ) dτ ylimääräinen tilamuuttuja em.tehtävälle, jolloin isoperimetrinen rajoitus vastaa ehtoja z() =, z(1) = 2. Derivoimalla saadaan rajoitus muodossa ż(t) = x 2 (t). Ekvivalentti funktionaali rajoitusten vallitessa on tällöin J a = g a (x, ẋ, z, ż, t) dt = {ẋ 2 (t) + p(t)[x 2 (t) ż(t)]} dt, missä p(t) on Lagrangen kerroinfunktio. Muodostamalla Eulerin yhtälöt sekä tilamuuttujalle x(t) että ylimääräiselle tilamuuttujalle z(t) saadaan välttämättömät ehdot ekstremaalille: p(t)x(t) d [2ẋ(t)] = dt d dt [ p(t)] = ẍ(t) = p(t)x(t), p(t) λ (vakio). Tällöin ratkaisut ovat tunnetusti muotoa x(t) = c 1 e t λ + c 2 e t λ. 5

Vakiot c 1,c 2 ja λ määräytyvät reunaehdoista. Jos olisi λ >, niin silloin reunaehdoista seuraa c 1 = c 2 =, eli x(t), mutta silloin isoperimetrinen rajoite ei voi toteutua. Samoin käy jos λ =. On siis oltava λ <. Olkoon ω = λ. Ratkaisut ovat tällöin muotoa Reunaehdoista seuraa, että jolloin x(t) = c 1 sin(ωt) + c 2 cos(ωt). c 1 sin(ω) =, c 2 =, x(t) = c 1 sin(πnt), Vakion c 1 kiinnittää isoperimetrinen ehto: x 2 (t) dt = c 2 1 Ekstremaaliehdokkaita ovat siis funktiot n Z\{}. sin 2 (πnt) dt = c2 1 2 = 2 c 1 = ±2. x(t) = ±2 sin(πnt), n Z\{}. Laskemalla funktionaalin arvot saadaan J(x(t)) = ẋ 2 (t) dt = 4π 2 n 2 cos 2 (πxt) dt = 2π 2 n 2, joten minimi löytyy, kun x min (t) = ± sin(πt), ja maksimia ei ole olemassa. 6. Tehtävänä etsiä funktionaalin t1 t F (t, x(t), ẋ(t)) dt maksimoiva funktio x (t), kun t ja t 1 ovat kiinteitä, mutta funktion arvot x(t ) ja x(t 1 ) ovat vapaita. Funktionaalin variaatio on standardia osittaisintegrointitemppua käyttäen δj(x, δx) = = t1 t t1 t { F x { F x d dt δx + F ẋ δẋ} dt [ F ẋ ]} δx dt + F ẋ (t 1, x(t 1 ), ẋ(t 1 ))δx(t 1 ) F ẋ (t, x(t ), ẋ(t ))δx(t ). 6

Jotta x (t) olisi ekstremaali, on oltava J(x, δx) =. Jos variaatio rajoitetaan sellaisiin pieniin muutoksiin, jossa päätepisteet pidetään paikallaan, eli δx(t ) = δx(t 1 ) =, niin silloin myös Eulerin yhtälön tulee toteutua: F x d [ F ] =, t [t, t 1 ]. dt ẋ Toisaalta päätepisteitä voidaan varioida toisistaan riippumatta valitsemalla erikseen δx(t ) = tai δx(t 1 ) =, jolloin kummankin termin erikseen tulee hävitä, ja saadaan kaksi erillistä transversaalisuusehtoa: F ẋ (t, x (t ), ẋ (t )) =, F ẋ (t 1, x (t 1 ), ẋ (t 1 )) =. 7. (a) Olkoon jälleen y(t) kumulatiivinen myynti, ẏ(t) hetkittäinen myyntivirta ja öljyn nettohinta p(ẏ(t)), missä p on vähenevä jatkuvasti derivoituva funktio. Alussa öljyä on määrä B. Tavoite on maksimoida kokonaismyynnin nykyarvo, kun myös loppuaika T on vapaa. Tällöin tehtävä on max J = e rt }{{} p(ẏ(t)) } {{ } ẏ(t) }{{} nykyarvo nettohinta myynti dt (b) Nyt reunaehdoilla y() =, y(t ) = B ja loppuaika T vapaa. F y =, Fẏ = e rt[ p (ẏ)ẏ + p(ẏ) ]. Eulerin yhtälön tulee toteutua maksimissa, joten = d F dt ẏ αe rt = p (ẏ)ẏ + p(ẏ), α on vakio. Koska loppuaika on vapaa, täytyy toteutua transversaalisuusehto (Kirk s.134-137) eli F (T, ẏ(t )) F (T, ẏ(t ))ẏ(t ) = ẏ e rt p(ẏ(t ))ẏ(t ) e rt { p (ẏ(t ))(ẏ(t )) 2 + p(ẏ(t ))ẏ(t ) } =, 7

jolloin p (ẏ(t ))(ẏ(t )) 2 =. Nyt koska p (ẏ) < kaikilla t, niin on oltava ẏ(t ) = (myyntivirta lopussa on nolla). Marginaalinen tuotto ajan hetkellä T on d [ ] p(ẏ(t ))ẏ(t ) = p (ẏ(t ))ẏ(t ) +p(ẏ(t )) = p(ẏ(t )), dẏ } {{ } = eli keskimääräinen myyntituotto hetkellä T. 8