Mat-2.148 Dynaaminen optimointi, mallivastaukset, kierros 5 1. Kotitehtävä. 2. Lasketaan aluksi korkoa korolle. Jos korkoprosentti on r, ja korko maksetaan n kertaa vuodessa t vuoden ajan, niin kokonaisvuosikorko on (1 + r/n) nt. Antamalla n saadaan jatkuvan koron prosentti lim (1 + n r/n)nt = e rt. Tätä voidaan siis käyttää tulevien voittojen/tappioiden diskonttaustekijänä nykyisyyteen. Olkoon varaston koko x(t) ja tuotantonopeus ẋ(t). Tehtävä on silloin minimoida kustannukset min J = e rt[ C 1 ẋ 2 (t) + C 2 x(t) ] dt = F (x, ẋ, t) dt reunaehdoilla x() = ja x(t ) = B. Lisäksi tulee päteä ẋ(t) kaikilla t [, T ]. Nyt F x = C 2 e rt, Fẋ = 2C 1 e rt ẋ, d dt F ẋ = 2C 1 re rt ẋ + 2C 1 e rt ẍ jolloin Eulerin yhtälö on muotoa ẍ rẋ = C 2 2C 1. (1) Ratkaistaan homogeeninen yhtälö ẍ rẋ = yritteellä x(t) = e at, jolloin sijoittamalla saadaan a 2 e at rae at = a(a r) = ja homogeenisen yhtälön ratkaisu on x(t) = k 1 + k 2 e rt. Yleisen yhtälön (1) erikoisratkaisu on suora x(t) = C 2 t, 1
jolloin yhtälön (1) täydellinen ratkaisu on muotoa x(t) = k 1 + k 2 e rt C 2 t. Vakiot k 1 ja k 2 määritetään reunaehdoista: ja ratkaisu on k 1 = k 2, k 2 = B + [C 2/( )]T e rt 1 x (t) = ( B + C 2 T ) e rt 1 e rt 1 C 2 t. Toteutuuko nyt rajoitus ẋ (t) kaikilla t [, T ]? Tarkastelemalla Eulerin yhtälöä ẍ(t) = rẋ(t) + C 2 2C 1 havaitaan, että mikäli ẋ(τ) jollakin ajan hetkellä τ, niin silloin ẍ > ja siten ẋ on aidosti kasvava ja myös pysyy aidosti kasvavana kaikilla tulevilla ajanhetkillä t > τ. Välttämätön ja riittävä ehto on siis, että ẋ (). Derivoimalla ratkaisua saadaan ẋ (t) = ( B + C 2 T ) re rt e rt 1 C 2 ja sijoittamalla t = saadaan ehto eli ( C 2 B + T ) r e rt 1 C 2 B C 2 2r 2 C 1 (e rt 1 rt ). Mikäli tämä ehto toteutuu, on x (t) optimaalinen tuotantosuunnitelma. Muussa tapauksessa joudutaan tuotannon aloitusta viivästyttämään. Epäyhtälörajoitettuja tehtäviä käsitellään myöhemmin. 2
3. Olkoon y(t) ajan hetkeen t mennessä myydyn mineraalin määrä. Tällöin ẏ(t) on myyntinopeus hetkellä t. Kokonaishyödyn maksimointitehtävä on max J = e rt ln ẏ(t) dt = missä r on diskonttauskerroin, ja reunaehdot ovat y() =, y(t ) = B. Muodostetaan Eulerin yhtälö ja ratkaistaan se: F (ẏ, t) dt, F y =, Fẏ = e rt /ẏ(t) d dt( e rt /ẏ(t) ) = e rt /ẏ(t) = C (vakio) y(t) = e rt rc + D (=vakio). Vakiot C ja D määrätään reunaehdoista: Sijoittamalla saadaan C = 1 rb (1 e rt ), D = B/(1 e rt ). y(t) = B 1 e rt 1 e rt. Optimaalinen myyntinopeus on tällöin e rt ẏ(t) = Br, t T. 1 e rt 4. Edellinen tehtävä tuottofunktiolla P (x), missä P toteuttaa ehdot: Maksimoitava tuotto: max J = P () >, P (x) <, x. e rt P (ẏ(t)) dt = F (ẏ, t) dt. 3
(a) Marginaalituotto määritellään siten, että se on tuottofunktion derivaatta P (x). Marginaalituotto kuvaa lisätuottoa, joka saadaan, kun myyntinopeutta kasvatetaan yhden yksikön verran. Nykyarvo saadaan, kun kerrotaan diskonttaustekijällä e rt. Integrandille F pätee: F y =, Fẏ = e rt P (ẏ(t)). Optimiratkaisussa tulee toteutua Eulerin yhtälö: eli d [ e rt P (ẏ(t)) ] = dt e rt P (ẏ(t)) = C (vakio), joten marginaalituoton nykyarvo optimaalisella myyntikäyrällä on siis vakio. Koska P () >, niin on itse asiassa oltava C >, joten marginaalituotto on kaikilla ajan hetkillä positiivinen. Optimiratkaisussa millään ajan hetkellä ei siis kannata vähentää myyntiä. Lisäksi myyntiä ei kannata aikaistaa, koska nykyarvo ei muutu. (b) Optimaalisella myyntikäyrälla marginaalituoton lauseke on P (ẏ(t)) = Ce rt. Derivoimalla ajan suhteen saadaan jolloin on oltava P (ẏ(t)) ÿ(t) = Cre } {{ } } {{ rt }, < > ÿ(t) <, ja siten optimaalinen myyntikäyrä ẏ(t) on aidosti vähenevä. Huomattavaa on, että olemme johtaneet voimakkaan karakterisoinnin optimaaliselle myyntistrategialle varsin yleisin oletuksin tuottofunktiosta P. Tällaisella mallilla voisi esimerkiksi yrittää selittää, miksi öljyntuottajamonopoli OPEC:in kannattaa tuottaa markkinoille koko ajan vähemmän öljyä, kun luonnonvarat hupenevat. Tässä tosin tulisi varmaankin olettaa, että tarkasteltava aikaväli on äärettömän pitkä (T ). Näitä äärettömän aikavälin variaatiotehtäviä käsitellään myöhemmin tällä kurssilla. t 4
5. Etsittävä ekstremaalit funktionaalille J = isoperimetrisellä rajoitusehdolla sekä reunaehdoilla ẋ 2 (t) dt x 2 (t) dt = 2 x() = x(1) =. Isoperimetrinen rajoite voidaan sisällyttää tehtävään seuraavasti. Olkoon ( t ) z(t) = x 2 (τ) dτ ylimääräinen tilamuuttuja em.tehtävälle, jolloin isoperimetrinen rajoitus vastaa ehtoja z() =, z(1) = 2. Derivoimalla saadaan rajoitus muodossa ż(t) = x 2 (t). Ekvivalentti funktionaali rajoitusten vallitessa on tällöin J a = g a (x, ẋ, z, ż, t) dt = {ẋ 2 (t) + p(t)[x 2 (t) ż(t)]} dt, missä p(t) on Lagrangen kerroinfunktio. Muodostamalla Eulerin yhtälöt sekä tilamuuttujalle x(t) että ylimääräiselle tilamuuttujalle z(t) saadaan välttämättömät ehdot ekstremaalille: p(t)x(t) d [2ẋ(t)] = dt d dt [ p(t)] = ẍ(t) = p(t)x(t), p(t) λ (vakio). Tällöin ratkaisut ovat tunnetusti muotoa x(t) = c 1 e t λ + c 2 e t λ. 5
Vakiot c 1,c 2 ja λ määräytyvät reunaehdoista. Jos olisi λ >, niin silloin reunaehdoista seuraa c 1 = c 2 =, eli x(t), mutta silloin isoperimetrinen rajoite ei voi toteutua. Samoin käy jos λ =. On siis oltava λ <. Olkoon ω = λ. Ratkaisut ovat tällöin muotoa Reunaehdoista seuraa, että jolloin x(t) = c 1 sin(ωt) + c 2 cos(ωt). c 1 sin(ω) =, c 2 =, x(t) = c 1 sin(πnt), Vakion c 1 kiinnittää isoperimetrinen ehto: x 2 (t) dt = c 2 1 Ekstremaaliehdokkaita ovat siis funktiot n Z\{}. sin 2 (πnt) dt = c2 1 2 = 2 c 1 = ±2. x(t) = ±2 sin(πnt), n Z\{}. Laskemalla funktionaalin arvot saadaan J(x(t)) = ẋ 2 (t) dt = 4π 2 n 2 cos 2 (πxt) dt = 2π 2 n 2, joten minimi löytyy, kun x min (t) = ± sin(πt), ja maksimia ei ole olemassa. 6. Tehtävänä etsiä funktionaalin t1 t F (t, x(t), ẋ(t)) dt maksimoiva funktio x (t), kun t ja t 1 ovat kiinteitä, mutta funktion arvot x(t ) ja x(t 1 ) ovat vapaita. Funktionaalin variaatio on standardia osittaisintegrointitemppua käyttäen δj(x, δx) = = t1 t t1 t { F x { F x d dt δx + F ẋ δẋ} dt [ F ẋ ]} δx dt + F ẋ (t 1, x(t 1 ), ẋ(t 1 ))δx(t 1 ) F ẋ (t, x(t ), ẋ(t ))δx(t ). 6
Jotta x (t) olisi ekstremaali, on oltava J(x, δx) =. Jos variaatio rajoitetaan sellaisiin pieniin muutoksiin, jossa päätepisteet pidetään paikallaan, eli δx(t ) = δx(t 1 ) =, niin silloin myös Eulerin yhtälön tulee toteutua: F x d [ F ] =, t [t, t 1 ]. dt ẋ Toisaalta päätepisteitä voidaan varioida toisistaan riippumatta valitsemalla erikseen δx(t ) = tai δx(t 1 ) =, jolloin kummankin termin erikseen tulee hävitä, ja saadaan kaksi erillistä transversaalisuusehtoa: F ẋ (t, x (t ), ẋ (t )) =, F ẋ (t 1, x (t 1 ), ẋ (t 1 )) =. 7. (a) Olkoon jälleen y(t) kumulatiivinen myynti, ẏ(t) hetkittäinen myyntivirta ja öljyn nettohinta p(ẏ(t)), missä p on vähenevä jatkuvasti derivoituva funktio. Alussa öljyä on määrä B. Tavoite on maksimoida kokonaismyynnin nykyarvo, kun myös loppuaika T on vapaa. Tällöin tehtävä on max J = e rt }{{} p(ẏ(t)) } {{ } ẏ(t) }{{} nykyarvo nettohinta myynti dt (b) Nyt reunaehdoilla y() =, y(t ) = B ja loppuaika T vapaa. F y =, Fẏ = e rt[ p (ẏ)ẏ + p(ẏ) ]. Eulerin yhtälön tulee toteutua maksimissa, joten = d F dt ẏ αe rt = p (ẏ)ẏ + p(ẏ), α on vakio. Koska loppuaika on vapaa, täytyy toteutua transversaalisuusehto (Kirk s.134-137) eli F (T, ẏ(t )) F (T, ẏ(t ))ẏ(t ) = ẏ e rt p(ẏ(t ))ẏ(t ) e rt { p (ẏ(t ))(ẏ(t )) 2 + p(ẏ(t ))ẏ(t ) } =, 7
jolloin p (ẏ(t ))(ẏ(t )) 2 =. Nyt koska p (ẏ) < kaikilla t, niin on oltava ẏ(t ) = (myyntivirta lopussa on nolla). Marginaalinen tuotto ajan hetkellä T on d [ ] p(ẏ(t ))ẏ(t ) = p (ẏ(t ))ẏ(t ) +p(ẏ(t )) = p(ẏ(t )), dẏ } {{ } = eli keskimääräinen myyntituotto hetkellä T. 8