T Kevät 2009 Logiikka tietotekniikassa: perusteet Laskuharjoitus 8 (Predikaattilogiikka )

Samankaltaiset tiedostot
T Kevät 2006 Logiikka tietotekniikassa: perusteet Laskuharjoitus 8 (opetusmoniste, kappaleet )

T Syksy 2005 Logiikka tietotekniikassa: perusteet Laskuharjoitus 8 (opetusmoniste, kappaleet )

T Syksy 2003 Logiikka tietotekniikassa: perusteet Laskuharjoitus 8 (opetusmoniste, kappaleet )

T Kevät 2005 Logiikka tietotekniikassa: erityiskysymyksiä I Kertausta Ratkaisut

T kevät 2007 Laskennallisen logiikan jatkokurssi Laskuharjoitus 1 Ratkaisut

MS-A0402 Diskreetin matematiikan perusteet Yhteenveto, osa I

3. Predikaattilogiikka

MS-A0401 Diskreetin matematiikan perusteet Yhteenveto, osa I

T Syksy 2004 Logiikka tietotekniikassa: perusteet Laskuharjoitus 7 (opetusmoniste, kappaleet )

Relaation ominaisuuksia. Ominaisuuksia koskevia lauseita Sulkeumat. Joukossa X määritelty relaatio R on. (ir) irrefleksiivinen, jos x Rx kaikilla x X,

Joukossa X määritelty relaatio R on. (ir) irrefleksiivinen, jos x Rx kaikilla x X,

MS-A0402 Diskreetin matematiikan perusteet

T Logiikka tietotekniikassa: perusteet Kevät 2008 Laskuharjoitus 5 (lauselogiikka ) A ( B C) A B C.

Diskreetin matematiikan perusteet Laskuharjoitus 2 / vko 9

Insinöörimatematiikka A

Logiikan kertausta. TIE303 Formaalit menetelmät, kevät Antti-Juhani Kaijanaho. Jyväskylän yliopisto Tietotekniikan laitos.

Loogiset konnektiivit

Predikaattilogiikkaa

Lisää kvanttoreista ja päättelyä sekä predikaattilogiikan totuustaulukot 1. Negaation siirto kvanttorin ohi

Nimitys Symboli Merkitys Negaatio ei Konjuktio ja Disjunktio tai Implikaatio jos..., niin... Ekvivalenssi... jos ja vain jos...

Kurssikoe on maanantaina Muista ilmoittautua kokeeseen viimeistään 10 päivää ennen koetta! Ilmoittautumisohjeet löytyvät kurssin kotisivuilla.

Diskreetit rakenteet. 3. Logiikka. Oulun yliopisto Tietojenkäsittelytieteiden laitos 2015 / 2016 Periodi 1

Predikaattilogiikan malli-teoreettinen semantiikka

MS-A0402 Diskreetin matematiikan perusteet Yhteenveto ja esimerkkejä ym., osa I

811120P Diskreetit rakenteet

JOUKKO-OPIN ALKEITA. Veikko Rantala Ari Virtanen

2. Minkä joukon määrittelee kaava P 0 (x 0 ) P 1 (x 0 ) mallissa M = ({0, 1, 2, 3}, P M 0, P M 1 ), kun P M 0 = {0, 1} ja P M 1 = {1, 2}?

811120P Diskreetit rakenteet

TAMPEREEN YLIOPISTO Pro gradu -tutkielma. Heidi Luukkonen. Sahlqvistin kaavat

MS-A0402 Diskreetin matematiikan perusteet Esimerkkejä ym., osa I

Todistamisessa on tärkeää erottaa tapaukset, kun sääntö pätee joillakin tai kun sääntö pätee kaikilla. Esim. On olemassa reaaliluku x, jolle x = 5.

HY / Matematiikan ja tilastotieteen laitos Johdatus logiikkaan I, syksy 2018 Harjoitus 4 Ratkaisuehdotukset

ja s S : ϕ Υ : M,s ϕ, mutta M,s Q. Erityisesti M, t P kaikilla t S, joten

811120P Diskreetit rakenteet

MS-A0402 Diskreetin matematiikan perusteet Esimerkkejä ym., osa I

w + x + y + z =4, wx + wy + wz + xy + xz + yz =2, wxy + wxz + wyz + xyz = 4, wxyz = 1.

Huom. muista ilmoittautua kokeeseen ajoissa. Ilmoittautumisohjeet kurssin kotisivuilla.

815338A Ohjelmointikielten periaatteet

Logiikka 1/5 Sisältö ESITIEDOT:

Tehtävä 1. Arvioi mitkä seuraavista väitteistä pitävät paikkansa. Vihje: voit aloittaa kokeilemalla sopivia lukuarvoja.

Taulun avoimista haaroista saadaan kelvolliset lausejoukot

Relaatioista. 1. Relaatiot. Alustava määritelmä: Relaatio on kahden (tai useamman, saman tai eri) joukon alkioiden välinen ominaisuus tai suhde.

Kuvaus eli funktio f joukolta X joukkoon Y tarkoittaa havainnollisesti vastaavuutta, joka liittää joukon X jokaiseen alkioon joukon Y tietyn alkion.

6 Relaatiot. 6.1 Relaation määritelmä

T Syksy 2004 Logiikka tietotekniikassa: perusteet Laskuharjoitus 2 (opetusmoniste, lauselogiikka )

missä on myös käytetty monisteen kaavaa 12. Pistä perustelut kohdilleen!

Tehtäväsarja I Seuraavissa tehtävissä harjoitellaan erilaisia todistustekniikoita. Luentokalvoista 11, sekä voi olla apua.

Matematiikan tukikurssi

Johdatus diskreettiin matematiikkaan Harjoitus 1,

Diskreetin matematiikan perusteet Malliratkaisut 2 / vko 38

Johdatus logiikkaan 2

Johdatus diskreettiin matematiikkaan

Kuvaus eli funktio f joukolta X joukkoon Y tarkoittaa havainnollisesti vastaavuutta, joka liittää joukon X jokaiseen alkioon joukon Y tietyn alkion.

SAT-ongelman rajoitetut muodot

Johdatus logiikkaan I Harjoitus 4 Vihjeet

FI3 Tiedon ja todellisuuden filosofia LOGIIKKA. 1.1 Logiikan ymmärtämiseksi on tärkeää osata erottaa muoto ja sisältö toisistaan:

Alkioiden x ja y muodostama järjestetty pari on jono (x, y), jossa x on ensimmäisenä ja y toisena jäsenenä.

Johdatus yliopistomatematiikkaan

TAMPEREEN YLIOPISTO Pro gradu -tutkielma. Roosa Niemi. Riippuvuuslogiikkaa

Matematiikan tukikurssi, kurssikerta 2

811120P Diskreetit rakenteet

TIEA241 Automaatit ja kieliopit, syksy Antti-Juhani Kaijanaho. 8. syyskuuta 2016

-Matematiikka on aksiomaattinen järjestelmä. -uusi tieto voidaan perustella edellisten tietojen avulla, tätä kutsutaan todistamiseksi

Tenttiin valmentavia harjoituksia

Ratkaisu: Yksi tapa nähdä, että kaavat A (B C) ja (A B) (A C) ovat loogisesti ekvivalentit, on tehdä totuustaulu lauseelle

Lause 5. (s. 50). Olkoot A ja B joukkoja. Tällöin seuraavat ehdot ovat

MS-A0402 Diskreetin matematiikan perusteet Esimerkkejä, todistuksia ym., osa I

missä on myös käytetty monisteen kaavaa 12. Pistä perustelut kohdilleen!

ALGORITMI- MATEMATIIKKA. Keijo Ruohonen

MS-A0402 Diskreetin matematiikan perusteet Esimerkkejä, todistuksia ym., osa I

saadaan kvanttorien järjestystä vaihtamalla ehto Tarkoittaako tämä ehto mitään järkevää ja jos, niin mitä?

MS-A0401 Diskreetin matematiikan perusteet Esimerkkejä ym., osa I

Johdatus yliopistomatematiikkaan. JYM, Syksy2015 1/195

MS-A0401 Diskreetin matematiikan perusteet Esimerkkejä ym., osa I

Kesälukio 2000 PK2 Tauluharjoituksia I Mallivastaukset

Modaalilogiikan ja predikaattilogiikan kaavojen vastaavuus

j(j 1) = n(n2 1) 3 + (k + 1)k = (k + 1)(k2 k + 3k) 3 = (k + 1)(k2 + 2k + 1 1)

MS-A0401 Diskreetin matematiikan perusteet Yhteenveto ja esimerkkejä ym., osa I

= k 0 NTIME(n k + k) Siis polynomisessa ajassa epädeterministisellä Turingin koneella tunnistettavien kielten joukko

Seurauksia. Seuraus. Seuraus. Jos asteen n polynomilla P on n erisuurta nollakohtaa x 1, x 2,..., x n, niin P on muotoa

MS-A0401 Diskreetin matematiikan perusteet Yhteenveto ja esimerkkejä ym., osa I

1. Logiikan ja joukko-opin alkeet

Kurssikoe on maanantaina Muista ilmoittautua kokeeseen viimeistään 10 päivää ennen koetta! Ilmoittautumisohjeet löytyvät kurssin kotisivuilla.

T Kevät 2009 Logiikka tietotekniikassa: perusteet Laskuharjoitus 2 (lauselogiikka )

Logiikka I 7. harjoituskerran malliratkaisut Ratkaisut laati Miikka Silfverberg.

LOGIIKKA johdantoa

TIEA241 Automaatit ja kieliopit, kevät 2011 (IV) Antti-Juhani Kaijanaho. 16. maaliskuuta 2011

Approbatur 3, demo 1, ratkaisut A sanoo: Vähintään yksi meistä on retku. Tehtävänä on päätellä, mitä tyyppiä A ja B ovat.

Kuvauksista ja relaatioista. Jonna Makkonen Ilari Vallivaara

MS-A0401 Diskreetin matematiikan perusteet Esimerkkejä ym., osa I

Jokaisen parittoman kokonaisluvun toinen potenssi on pariton.

Entscheidungsproblem

Monisteen Rantala & Virtanen, Logiikkaa: teoriaa ja sovelluksia harjoitustehtävät.

T Kevät 2003 Logiikka tietotekniikassa: erityiskysymyksiä I Laskuharjoitus 11 Ratkaisut

MS-A0401 Diskreetin matematiikan perusteet Yhteenveto ja esimerkkejä ym., osa I

Insinöörimatematiikka IA

Diskreetin Matematiikan Paja Tehtäviä viikolle 2. ( ) Jeremias Berg

T Logiikka tietotekniikassa: perusteet Kevät 2008 Laskuharjoitus 11 (predikaattilogiikka )

Matemaatiikan tukikurssi

TAMPEREEN YLIOPISTO Pro gradu -tutkielma. Mari Herranen. Ultratulo

Transkriptio:

T-79.3001 Kevät 2009 Logiikka tietotekniikassa: perusteet Laskuharjoitus 8 (Predikaattilogiikka 10.3. 11.4) 26. 30.3. 2009 Ratkaisuja demotehtäviin Tehtävä 10.5 Allaolevat kolme graafia pyrkivät selventämään eri relaatioiden ominaisuuksia. Tässä solmut ovat struktuurin alkioita, ja solmuja yhdistää kaari, jos R(x, y) on tosi, silloin kun x A, y A. Loogisia rakenteita havainnollistetaan aina silloin tällöin niitä vastaavien graafien avulla. 1. 2. 3. Refleksiivisyys ( xr(x, x)) tarkoittaa sitä, että graafin kaikista solmuista on kaari takaisin itseensä, ja irrefleksiivisyys ( x R(x, x)) vastaavasti sitä, että yhdessäkään solmussa ei ole itseään osoitavaa kaarta. Graafeista ensimmäinen on refleksiivinen, toinen irrefleksiivinen ja kolmas ei ole kumpaakaan. Symmetrisyys ( x y(r(x, y) R(y, x))) tarkoittaa sitä, että aina kun solmusta x on kaari solmuun y, graafissa on myös kaari y:stä x:ään. Asymmetrisellä ( x y(r(x, y) R(y, x))) graafilla ei ole yhtään paluukaarta. Kuvan graafeista 1. on symmetrinen, 2. asymmetrinen ja 3. ei kumpaakaan. Transitiivisessa graafissa ( x y z(r(x, y) R(y, z) R(x, z))) pätee, että mikäli solmusta x päästään kaaria seuraamalla (mahdollisesti muiden solmujen kautta) solmuun y, pääsee solmusta x myös suoraan solmuun y. Kuvan graafeista ainoastaan keskimmäinen on transitiivinen. Graafin sarjallisuus ( x yr(x, y)) tarkoittaa sitä, että kaikista solmuista lähtee ainakin yksi kaari. Kuvan graafeista ensimmäinen ja viimeinen ovat sarjallisia. Ominaisuuksien ihmisten joukossa tapahtuvaa tarkastelua varten määritellään seuraavat relaatiot: T(x,y) (x tuntee y:n), N(x,y) (x on naimisissa y:n kanssa), V(x, y) (y on x:n vanhempi) ja E(x, y) (y on x:n esi-isä). Nämä relaatiot toteuttavat ominaisuuksia seuraavan taulukon mukaisesti.

Relaatio refl. irrefl. symm. asymm. trans. sarj. tuttu * * * aviopuoliso * * vanhempi * * * esi-isä * * * * Koska ihminen tuntee itsensä, ja tutut tuntevat toisensa, on T(x,y) refleksiivinen, symmetrinen ja sarjallinen. Aviopuolisot ovat naimisissa toistensa kanssa, eikä kukaan voi olla naimisissa itsensä kanssa, joten N(x, y) on irrefleksiivinen ja symmetrinen. Vanhemmuus on irrefleksiivinen, asymmetrinen (kukaan ei voi olla oma isovanhempansa) ja sarjallinen (kaikilla on vanhemmat). Esi-isä relaatio on kuten vanhemmuus, mutta sen lisäksi myös transitiivinen, koska jos Kalle on Pekan esi-isä, ja Pekka Juhan, niin Kalle on myös Juhan esi-isä. Tehtävä 10.7 a) Olkoon S siten että U = {1,2}, ja P S = { 1,1, 2,2 }. Nyt x yp(x,y) pätee (kummallekin alkiolle 1. positiossa löytyy vastine). Toisaalta y xp(x, y) ei päde koska ei ole predikaatin tulkinnassa ei ole sellaista alkiota 2. positiossa, jolle löytyisi parit siten, että molemmat alkiot esiintyisivät 1. positiossa. Näin ollen implikaatio on epätosi. b) Olkoon S, siten että U = {1} ja P S = {1},Q S = /0. Nyt implikaation vasen puoli on tosi ja oikea epätosi ja struktuuri näin vastaesimerkki. c) Lauseessa pitäisi saada disjunktio epätodeksi. Tämä edellyttää, että molemmat argumentit ovat epätosia. Koska niiden edessä on negaatio, pitää siis molemmilla puolilla negaatioiden sisällä oleva osuus olla tosi. Olkoon S siten että U = {1} ja P S = /0,R S = {1}. Nyt x(p(x) R(x)) on tosi, koska sen vasen puoli on epätosi. Samalla argumentilla x(p(x) R(x)) on tosi. Näiden vaatimusten voidaan ajatella kuvaavan osajoukkorelaatiota. Ensimäisessä tapauksessa P:n tulkinnan tulisi olla R:n tulkinnan osajoukko ja toisessa R:n tulkinnan komplementin osajoukko. Ainoa joukko, joka molemmat vaatimukset täyttää on tyhjä joukko, joka siis on asetettu P:n tulkinnaksi. Tehtävä 11.1 Muunnettaessa predikaattilogiikan lauseita normaalimuotoihin, tuli noudattaa seuraavaa algoritmia: Poistetaan konnektiivit ja.

Negaatiot sisään, kvanttorit ulos. Distribuutiosäännöillä haluttu lopullinen muoto (KNM tai DNM). a) y( xp(x,y) zq(y,z)) y( xr(x,y) xq(x,y)) y( xp(x,y) zq(y,z)) y( xr(x,y) xq(x,y)) y( x P(x,y) zq(y,z)) y( xr(x,y) xq(x,y)) y 1 ( y( x P(x,y) zq(y,z)) ( xr(x,y 1 ) xq(x,y 1 ))) y 1 y 2 (( x P(x,y 2 ) zq(y 2,z)) ( xr(x,y 1 ) xq(x,y 1 ))) y 1 y 2 x 1 x 2 z x 3 (( P(x 1,y 2 ) Q(y 2,z)) (R(x 2,y 1 ) Q(x 3,y 1 ))) Nyt havaitaan, että kvanttoreita sisältämätön osa on konjunktiivisessa normaalimuodossa. Skolemoinnissa uloimmat eksistenssikvanttorit korvataan vakioilla, ja universaalikvanttoreiden sisällä olevat Skolem-funktioilla. Tässä saadaan seuraava lause: y 2 x 1 x 2 z x 3 (( P(x 1,y 2 ) Q(y 2,z)) (R(x 2,c) Q(x 3,c))) c) x yq(x,y) ( x yp(x,y) x yp(x,y)) x yq(x, y) ( x yp(x, y) x y P(x, y)) x yq(x,y) x 1 y 1 x 2 y 2 (P(x 1,y 1 ) P(x 2,y 2 )) x 1 x 3 y 3 y 1 x 2 y 2 (Q(x 3,y 3 ) (P(x 1,y 1 ) P(x 2,y 2 ))) Lause on nyt nk. Prenex-normaalimuodossa, josta voidaan jatkaa konjunktiiviviseen normaalimuotoon. x 1 x 3 y 3 y 1 x 2 y 2 ((Q(x 3,y 3 ) P(x 1,y 1 )) (Q(x 3,y 3 ) P(x 2,y 2 ))) Skolemoinnissa x 1 korvataan vakiolla ja y 3 lausutaan x 3 :n funktiona. x 3 y 1 x 2 y 2 ((Q(x 3, f(x 3 )) P(c,y 1 )) (Q(x 3, f(x 3 )) P(x 2,y 2 )))

Tehtävä 11.2 Tehtävässä sovelletaan jo aikaisemmin tutuksi käyneitä normaalimuotosääntöjä. a) xφ(x) ψ xφ(x) ψ x φ(x) ψ x 1 ( φ(x 1 ) ψ) x 1 (φ(x 1 ) ψ) b) Vastaavasti, xφ(x) ψ x 1 (φ(x 1 ) ψ). c) φ xψ(x) φ xψ(x) x 1 ( φ ψ(x 1 )) x 1 (φ ψ(x 1 )) d) Vastaavasti, φ xψ(x) x 1 (φ ψ(x 1 )). Säännönmukaisuutena voidaan havaita, että mikäli kvantifiointi on implikaation vasemmalla puolella, muuttuu kvanttori. Oikealla puolella se säilyy. Tehtävä 11.4 a) Lause x((p(x) P(a)) (P(x) P(b))): Eliminoidaan implikaatiot: x(( P(x) P(a)) ( P(x) P(b))). Viedään kvanttorin x sisään: x (( P(x) P(a)) ( P(x) P(b))). Viedään negaatiot lausekkeiden sisään: x((p(x) P(a)) (P(x) P(b))). Tuodaan P(x) ulos: x(p(x) ( P(a) P(b))). Jätetään universaalikvanttorit pois: P(x) ( P(a) P(b)). Muodostetaan klausuuliesitys: {{P(x)}, { P(a), P(b)}}. b) Lause y xp(x, y): Skolemointi: yp( f(y), y). Jätetään universaalikvanttorit pois: P( f(y), y). Muodostetaan klausuuliesitys: {{P( f(y), y)}}.

c) Lause y xg(x, y): Viedään kvanttorin y sisään: y xg(x,y). Viedään kvanttorin x sisään: y x G(x,y) Skolemointi: x G(x, c). Jätetään universaalikvanttorit pois: G(x,c). Muodostetaan klausuuliesitys: {{ G(x, c)}}. d) Lause x y z(p(x,z) P(z,y) G(x,y)): Eliminoidaan implikaatio: x y z( (P(x, z) P(z, y)) G(x, y)). Viedään negaatiot lausekkeen sisään: x y z(( P(x,z) P(z,y)) G(x,y)). Viedään G(x,y) lausekkeen sisään: x y z(( P(x,z) G(x,y)) ( P(z,y) G(x,y))). Skolemointi: y z(( P(c,z) G(c,y)) ( P(z,y) G(c,y))). Skolemointi: y(( P(c, f(y)) G(c,y)) ( P( f(y),y) G(c,y))). Jätetään universaalikvanttorit pois: ( P(c, f(y)) G(c,y)) ( P( f(y),y) G(c,y)). Muodostetaan klausuuliesitys: {{ P(c, f(y)), G(c,y)}, { P( f(y),y), G(c,y)}}.