1. Työpaikan työntekijöistä laaditussa taulukossa oli mm. seuraavat rivit ja sarakkeet



Samankaltaiset tiedostot
1.Työpaikan työntekijöistä laaditussa taulukossa oli mm. seuraavat rivit ja sarakkeet

KURSSIKYSELYAINEISTO: HUOM! Aineiston tilastoyksikkömäärä 11 on kovin pieni oikean tilastotieteen tekemiseen, mutta Harjoitteluun se kelpaa kyllä!

Til.yks. x y z

Til.yks. x y z

4. Seuraavaan ristiintaulukkoon on kerätty tehtaassa valmistettujen toimivien ja ei-toimivien leikkijunien lukumäärät eri työvuoroissa:

3. a) Mitkä ovat tilastolliset mitta-asteikot? b) Millä tavalla nominaaliasteikollisen muuttujan jakauman voi esittää?

Leikkijunan kunto toimiva ei-toimiva Työvuoro aamuvuoro päivävuoro iltavuoro

Hannu mies LTK 180 Johanna nainen HuTK 168 Laura nainen LuTK 173 Jere mies NA 173 Riitta nainen LTK 164

Ennen seuraavia tehtäviä tarkista, että KUNNAT-aineistossasi on 12 muuttujaa ja 416 tilastoyksikköä.

Ennen seuraavia tehtäviä tarkista, että KUNNAT-aineistossasi on 12 muuttujaa ja 416 tilastoyksikköä.

Esimerkki 1: auringonkukan kasvun kuvailu

Näistä standardoiduista arvoista laskettu keskiarvo on nolla ja varianssi 1, näin on standardoidulle muuttujalle aina.

Esim. Pulssi-muuttujan frekvenssijakauma, aineisto luentomoniste liite 4

Kandidaatintutkielman aineistonhankinta ja analyysi

Harjoittele tulkintoja

Näistä standardoiduista arvoista laskettu keskiarvo on nolla ja varianssi 1, näin on standardoidulle muuttujalle aina.

Tulkitse tulokset. Onko muuttujien välillä riippuvuutta? Jos riippuvuutta on, niin millaista se on?

b6) samaan perusjoukkoon kohdistuu samanaikaisesti useampia tutkimuksia.

pisteet Frekvenssi frekvenssi Yhteensä

MTTTP1, luento KERTAUSTA JA TÄYDENNYSTÄ. Tunnusluvut. 1) Sijainnin tunnuslukuja. Keskilukuja moodi (Mo) mediaani (Md) keskiarvo, kaava (1)

MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MTTTP1, luento KERTAUSTA

Ilmoittaudu Weboodissa klo (sali L4) pidettävään 1. välikokeeseen!

54. Tehdään yhden selittäjän lineaarinen regressioanalyysi, kun selittäjänä on määrällinen muuttuja (ja selitettävä myös):

TUTKIMUSAINEISTON ANALYYSI. LTKY012 Timo Törmäkangas

TUTKIMUSAINEISTON KVANTITATIIVINEN ANALYYSI LTKY012. Timo Törmäkangas

Kuvioita, taulukoita ja tunnuslukuja. Aki Taanila

Metsämuuronen: Tilastollisen kuvauksen perusteet ESIPUHE... 4 SISÄLLYSLUETTELO METODOLOGIAN PERUSTEIDEN KERTAUSTA AINEISTO...

1.9 Harjoituksia. Frekvenssijakaumien harjoituksia. MAB5: Tilastotieteen lähtökohdat. a) Kaikki aakkoset b) Kirjaimet L, E, M, C, B, A ja i.

MTTTP1, luento KERTAUSTA

MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

TUTKIMUSAINEISTON ANALYYSI. LTKY012 Timo Törmäkangas

TUTKIMUSAINEISTON KVANTITATIIVINEN ANALYYSI LTKY012. Timo Törmäkangas

VIIKON VINKKI: Kannattaa tutustua ensin koko tehtävänantoon ja tehdä tehtävä vasta sitten.

Tilastotieteen johdantokurssin harjoitustyö. 1 Johdanto Aineiston kuvaus Riippuvuustarkastelut...4

Suhtautuminen Sukupuoli uudistukseen Mies Nainen Yhteensä Kannattaa Ei kannata Yhteensä

Määrällisen aineiston esittämistapoja. Aki Taanila

Sisällysluettelo ESIPUHE 1. PAINOKSEEN... 3 ESIPUHE 2. PAINOKSEEN... 3 SISÄLLYSLUETTELO... 4

7. laskuharjoituskierros, vko 10, ratkaisut

GeoGebra tutkivan oppimisen välineenä: havainto-hypoteesi-testaus

TUTKIMUSAINEISTON ANALYYSI. LTKY012 Timo Törmäkangas

TUTKIMUSAINEISTON ANALYYSI. LTKY012 Timo Törmäkangas

Mat Tilastollisen analyysin perusteet, kevät 2007

VALTIOTIETEELLINEN TIEDEKUNTA TILASTOTIETEEN VALINTAKOE Ratkaisut ja arvostelu < X 170

Huippu Kertaus Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty

Tilastomenetelmien lopputyö

Sovellettu todennäköisyyslaskenta B

MTTTP1, luento KERTAUSTA

Korrelaatiokerroin. Hanna Heikkinen. Matemaattisten tieteiden laitos. 23. toukokuuta 2012

TUTKIMUSAINEISTON KVANTITATIIVINEN ANALYYSI LTKY012. Timo Törmäkangas

Tilastollisen analyysin perusteet Luento 1: Lokaatio ja hajonta

... Vinkkejä lopputyön raportin laadintaan. Sisältö 1. Johdanto 2. Analyyseissä käytetyt muuttujat 3. Tulososa 4. Reflektio (korvaa Johtopäätökset)

Sukupuoli Mies Nainen Yht. Suhtautuminen kannattaa uudistukseen ei kannata Yht

Tarkista vielä ennen analysoinnin aloittamista seuraavat seikat:

806109P TILASTOTIETEEN PERUSMENETELMÄT I Hanna Heikkinen Esimerkkejä estimoinnista ja merkitsevyystestauksesta, syksy (1 α) = 99 1 α = 0.

Harjoitukset 2 : Monimuuttujaregressio (Palautus )

Luento KERTAUSTA Kaksiulotteinen jakauma Pisteparvi, Toyota Avensis -farmariautoja

805306A Johdatus monimuuttujamenetelmiin, 5 op

Sovellettu todennäköisyyslaskenta B

Tilastolliset toiminnot

Tilaston esittäminen frekvenssitaulukossa ja graafisesti. Keskiluvut luokittelemattomalle ja luokitellulle aineistolle: moodi, mediaani, keskiarvo.

Kvantitatiiviset menetelmät

Mediaani. Keskihajonta

Teema 5: Ristiintaulukointi

Määrällisen aineiston esittämistapoja. Aki Taanila

Matin alkuvuoden budjetti

Tilastotieteen jatkokurssi syksy 2003 Välikoe

Mitä tilastotiede on 7 Historiaa 8 Tilastotieteen nykyinen asema 9 Tilastollisen tutkimuksen vaiheet 10

Tilastotieteen kertaus. Vilkkumaa / Kuusinen 1

TUTKIMUSAINEISTON ANALYYSI. LTKY012 Timo Törmäkangas

Harjoitukset 3 : Monimuuttujaregressio 2 (Palautus )

Tilastollisten aineistojen kuvaaminen

Ohjeita tilastollisen tutkimuksen toteuttamiseksi opintojaksolla. TILTP1 ( SPSS for Windows -ohjelmiston avulla

Tehtävät 1/11. TAMPEREEN YLIOPISTO Informaatiotieteiden tiedekunta Valintakoe Matematiikka ja tilastotiede. Sukunimi (painokirjaimin)

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MONISTE 2 Kirjoittanut Elina Katainen

Johdatus tilastotieteeseen Tilastollisten aineistojen kuvaaminen. TKK (c) Ilkka Mellin (2005) 1

A-OSA. Kyseessä on binomitodennäköisyys. 30 P(Tasan 10 sadepäivää ja muut 20 poutapäiviä) 0,35 (1 0,35) ,35 0, ,

Opiskelija viipymisaika pistemäärä

1 TILASTOJEN KÄYTTÖ 7. Mitä tilastotiede on 7 Historiaa 8 Tilastotieteen nykyinen asema 9 Tilastollisen tutkimuksen vaiheet 10

r = n = 121 Tilastollista testausta varten määritetään aluksi hypoteesit.

Tehtävät. 1. Ratkaistava epäyhtälöt. a) 2(4 x) < 12, b) 5(x 2 4x + 3) < 0, c) 3 2x 4 > 6. 1/10. Sukunimi (painokirjaimin)


HAVAITUT JA ODOTETUT FREKVENSSIT

SISÄLTÖ 1 TILASTOJEN KÄYTTÖ...7 MITÄ TILASTOTIEDE ON?

MTTTA1 Tilastomenetelmien perusteet 5 op Luento , osa 1. 1 Kokonaisuudet johon opintojakso kuuluu

5 Lisa materiaali. 5.1 Ristiintaulukointi

2. Aineiston kuvailua

Kvantitatiiviset tutkimusmenetelmät maantieteessä

Matemaatikot ja tilastotieteilijät

MTTTA1 Tilastomenetelmien perusteet 5 op Luento Kokonaisuudet johon opintojakso kuuluu

Teema 3: Tilastollisia kuvia ja tunnuslukuja

Kaavakokoelma, testikaaviot ja jakaumataulukot liitteinä. Ei omia taulukoita! Laskin sallittu.

Tilastotieteen kertaus. Kuusinen/Heliövaara 1

tilastotieteen kertaus

Pylväsdiagrammi Suomen kunnat lääneittäin vuonna Piirakkadiagrammi Suomen kunnat lääneittäin vuonna 2003 LKM 14.8% 11.2% 19.7% 4.9% 3.6% 45.

Menetelmät tietosuojan toteutumisen tukena - käytännön esimerkkejä. Tilastoaineistot tutkijan työvälineenä - mahdollisuudet ja rajat 2.3.

Regressioanalyysi. Kuusinen/Heliövaara 1

TUTKIMUSOPAS. SPSS-opas

Transkriptio:

VAASAN YLIOPISTO/AVOIN YLIOPISTO TILASTOTIETEEN PERUSTEET Harjoituksia 1 KURSSIKYSELYAINEISTO: 1. Työpaikan työntekijöistä laaditussa taulukossa oli mm. seuraavat rivit ja sarakkeet Nimi Ikä v. Asema Palkka ( /kk) Lasten lkm Vatanen Antti 36 varastomies 1 900 2 Virtanen Anneli 33 johtaja 3 200 1 Virtanen Anssi 43 myyntipäällikkö 2 900 3 Voutilainen Anna 29 sihteeri 1 700 0 a) Luettele tilastoon kuuluvat tilastoyksiköt ja muuttujat. b) Mitkä muuttujat ovat kvalitatiivisia? Mitkä muuttujat ovat kvantitatiivisia? c) Miten muutat taulukkoa, kun haluat esittää sen tilastollisena havaintomatriisina? d) Mitä merkitsee aineiston käsittelyn kannalta se, että havaintomatriisissa kaksi saraketta vaihtaa paikkaa keskenään? e) Entä, jos kaksi vaakariviä vaihtaa paikkaa keskenään? f) Mitä merkitsee aineiston käsittelyn kannalta se, jos puuttuvan tiedon merkkinä on luku 0? g) Entä, jos puuttuvan tiedon paikalle ei laiteta mitään?

2. Markkinatutkimuksessa aiotaan mitata seuraavia ominaisuuksia: 1 vastaajan siviilisääty 2 vastaajan kotitalouden kuukausitulot 3 vastaajan koulutus 4 vastaajan asuinseutu 5 vastaajan mielipide tietystä myynnissä olevasta tuotteesta. Millaisina tilastollisina muuttujina voidaan ominaisuudet esittää: mitä tilastollista mitta-asteikkoa voidaan käyttää, ja millaisia arvoja muuttujat voivat saada? 3. Muodosta kurssikyselyaineiston Ydinvoima-muuttujan frekvenssijakauma taulukkona ja sopivana tilastokuviona. Millä tilastollisella mitta-asteikolla ko. muuttujan arvot on mitattu? 4. Tarkastellaan kurssikyselyaineistosta Pituus-muuttujaa. a) Määritä pituuden vaihteluväli ja vaihteluvälin pituus. b) Mikä olisi pituuden luokitteluun sopiva luokkien lukumäärä? c) Jos aineisto luokitellaan viiteen tasaväliseen luokkaan, mikä on pienin mahdollinen luokkavälin pituus? d) Luokittele havainnot viiteen tasaväliseen luokkaan niin, että ensimmäisen luokan pyöristetty alaraja on pienin muuttuja-arvo ja luokkavälin pituutena on 8 cm. e) Määritä luokkien frekvenssit, prosentuaaliset frekvenssit, summafrekvenssit ja prosentuaaliset summafrekvenssit. 5. Piirrä tehtävän 4 perusteella pituudesta a) frekvenssihistogrammi b) frekvenssimonikulmio c) prosentuaalinen summakäyrä. 6. Muodosta kurssikyselyaineiston Ikä-muuttujan runko-lehti kuvio. 7. Arvioi tehtävän 5 jonkin kuvion perusteella pituuden a) mediaani b) alakvartiili c) yläkvartiili. 8. Määritä kurssikyselyaineiston Tuuli- ja vesivoima -muuttujan mediaani, alakvartiili, yläkvartiili, suurin arvo ja pienin arvo erikseen naisille ja miehille. 9. Laske tehtävän 1 aineistosta sekä iän että lasten lukumäärän keskiarvo ja keskihajonta. Mikä on iän moodiarvo, entäs mediaaniarvo? Mikä on iän vaihteluväli, entäs vaihteluvälin pituus? 10. Laske (tai määritä muuten) kurssikyselyaineistosta Ikä-muuttujan keskiarvo, moodi, mediaani, keskihajonta, vaihteluväli ja kvartiiliväli (avuksi: x i = 880 ja x i 2 = 26878) ja kuvaile em. tunnuslukujen avulla pituuden jakauman muotoa. Muodosta myös laatikko-viikset -kuvio. 11. Laske (tai määritä muuten) kurssikyselyaineiston Pituus-muuttujasta em. tehtävässä mainitut tilastolliset tunnusluvut käyttäen tehtävässä 4 muodostettua luokiteltua frekvenssijakaumaa. Onko iällä vai pituudella suhteellisesti pienempi vaihtelu?

12. Oletetaanpa, että kurssilla on sekä rouva että herra XX. Rouvan ikä on 30 vuotta ja herran pituus on 180 cm. Kumpi on suhteellisesti ottaen lähempänä ko. ominaisuuksien keskiarvoa? 13. Seuraavassa on tilastotietoja Kuntafakta-aineistosta, jossa tilastoyksikköinä ovat Suomen kunnat v. 2003. (HUOM. Tulostuksessa desimaalimerkkinä on pilkku, ja esim. merkintä,65189 tarkoittaa lukua 0,65189.) a) Millä keskiluvulla olisi järkevä kuvata muuttujan Verotettavat tulot /asukas jakauman keskikohtaa? Miksi? b) Millä muuttujalla on pienin suhteellinen vaihtelu? c) Minkä muuttujan jakauma on huipukas? d) Minkä muuttujan jakauma on oikealle loiveneva? e) Minkä muuttujan jakauma muistuttaa eniten normaalijakaumaa? f) Vaasassa ko. muuttujien arvot olivat tuolloin 15.3, 19.00 ja 12469. Minkä muuttujan osalta Vaasa eroaa suhteellisesti ottaen vähiten keskimääräisestä Suomen kunnasta? 14. Laske seuraavasta frekvenssijakaumasta hinnan keskiarvo, varianssi ja mediaani. Mieti myös, mitä muita hajontalukuja voisit muuttujasta esittää (- laskea ei niitä nyt kuitenkaan tarvitse). Hinta lukumäärä 40 49 5 50 59 3 60 69 11 70 79 15 80 89 13

15. Muodosta kurssikyselyaineistosta ristiintaulukko muuttujista Sukupuoli ja Ansiotyö. Tutki muuttujien välistä riippuvuutta kontingenssikertoimen avulla. 16. Muodosta kurssikyselyaineistosta ristiintaulukko muuttujista Varsinainen ja Ydinvoima. Tutki muuttujien välistä riippuvuutta sopivalla riippuvuustunnusluvulla. Tulkitse tuloksesi. 17. Laske tehtävän 1. aineistosta iän ja lasten lukumäärän välisen Pearsonin korrelaatiokertoimen arvo. 18. Sähkölämmitteisen loma-asunnon sähkön kulutusta ja ulkoilman lämpötilaa seurattiin viikon ajan. Piirrä seuraavasta aineistosta pisteparvi ja laske lineaarinen korrelaatiokerroin. Ulkoilman lämpötila (ºC) 5 8 12 10-1 3 7 Sähkön kulutus (kwh) 32 28 24 19 30 26 20 (Vastaus: r = -0.583) 19. Yritys haluaa testata työnhakijansa soveltuvuustestillä. Tarjolla on kaksi eri testiä, joita kumpaakin kokeillaan. Seitsemän työnhakijaa testattiin ja saatiin tulokset: työnhakija A B C D E F G testi 1 14 6 17 17 2 8 10 testi 2 162 65 81 159 90 44 123 Tutki sopivan tilastollisen tunnusluvun avulla, onko työnhakijoiden järjestyksillä yhteyttä eri testeissä. Mitä tulos tarkoittaa käytännössä? 20. Laske kurssikyselyaineiston naisten osajoukosta Spearmanin järjestyskorrelaatio muuttujista Ydinvoima ja Tuuli- ja vesivoima ja tulkitse tulos. 21. Tutki sopivalla tilastollisella tunnusluvulla, onko seuraavan aineiston haikaranpesien ja kylän lasten määrien välillä lineaarista riippuvuutta. kylä 1 2 3 4 5 6 lasten määrä 50 10 40 20 30 20 pesien määrä 3 0 3 1 2 2

22. Yritys seurasi tuotteidensa myyntiä vuoden kuuden ensimmäisen viikon aikana sekä koko vuoden aikana. Saatiin seuraavat myyntilukemat (1000 $) 10 markkina-alueen otoksessa: Markkina- Myynti kuuden Myynti koko alue viikon aikana vuoden aikana 1 13 150 2 15 180 3 20 220 4 17 200 5 19 180 6 12 130 7 16 170 8 18 170 9 19 240 10 14 130 Piirrä pisteparvi ja arvioi summittaisesti, miten regressiosuora kulkee kuviossa. Muodosta laskemalla lineaarinen regressiomalli, jossa vuoden myyntiä selitetään kuuden ensimmäisen viikon myynnillä. Tulkitse tulokset. Laske ja tulkitse mallin selitysaste. Mikä on ennuste vuoden myynnille, kun erään alueen kuuden ensimmäisen viikon myynti oli 19 tuhatta dollaria? (Avuksi: kun x = kuuden viikon myynti ja y = vuoden myynti, ovat x i 163, xi 2 2725, y i 1770, yi 2 324900 ja x i y i 29590) 23. Tarkastellaan kurssikyselyaineiston miesten osajoukkoa. Nyt kengännumeron ja pituuden välinen korrelaatiokerroin on arvoltaan 0.801. Pituuden keskiarvo on 183.53 ja keskihajonta on 5.796. Vastaavat luvut kengännumerolle ovat 43.26 ja 1.567. Hyödynnä em. tilastollisia tunnuslukuja ja muodosta lineaarinen regressiomalli, jossa kengännumeron vaihtelua selitetään pituudella. Laske mallin selitysaste.