The CCR Model and Production Correspondence

Samankaltaiset tiedostot
Returns to Scale II. S ysteemianalyysin. Laboratorio. Esitelmä 8 Timo Salminen. Teknillinen korkeakoulu

Capacity Utilization

Alternative DEA Models

16. Allocation Models

Other approaches to restrict multipliers

Efficiency change over time

Returns to Scale Chapters

11. Models With Restricted Multipliers Assurance Region Method

Toppila/Kivistö Vastaa kaikkin neljään tehtävään, jotka kukin arvostellaan asteikolla 0-6 pistettä.

Mat Seminar on Optimization. Data Envelopment Analysis. Economies of Scope S ysteemianalyysin. Laboratorio. Teknillinen korkeakoulu

The Viking Battle - Part Version: Finnish

Capacity utilization

Bounds on non-surjective cellular automata

On instrument costs in decentralized macroeconomic decision making (Helsingin Kauppakorkeakoulun julkaisuja ; D-31)

Categorical Decision Making Units and Comparison of Efficiency between Different Systems

Operatioanalyysi 2011, Harjoitus 2, viikko 38

Operatioanalyysi 2011, Harjoitus 4, viikko 40

On instrument costs in decentralized macroeconomic decision making (Helsingin Kauppakorkeakoulun julkaisuja ; D-31)

19. Statistical Approaches to. Data Variations Tuomas Koivunen S ysteemianalyysin. Laboratorio. Optimointiopin seminaari - Syksy 2007

812336A C++ -kielen perusteet,

Information on preparing Presentation

DATA ENVELOPMENT ANALYSIS

SIMULINK S-funktiot. SIMULINK S-funktiot

LYTH-CONS CONSISTENCY TRANSMITTER

Uusi Ajatus Löytyy Luonnosta 4 (käsikirja) (Finnish Edition)

x = y x i = y i i = 1, 2; x + y = (x 1 + y 1, x 2 + y 2 ); x y = (x 1 y 1, x 2 + y 2 );

Results on the new polydrug use questions in the Finnish TDI data

On instrument costs in decentralized macroeconomic decision making (Helsingin Kauppakorkeakoulun julkaisuja ; D-31)

Statistical design. Tuomas Selander

make and make and make ThinkMath 2017

Tietorakenteet ja algoritmit

Operatioanalyysi 2011, Harjoitus 3, viikko 39

Huom. tämä kulma on yhtä suuri kuin ohjauskulman muutos. lasketaan ajoneuvon keskipisteen ympyräkaaren jänteen pituus

S SÄHKÖTEKNIIKKA JA ELEKTRONIIKKA

A DEA Game II. Juha Saloheimo S ysteemianalyysin. Laboratorio. Teknillinen korkeakoulu

Kvanttilaskenta - 1. tehtävät

Salasanan vaihto uuteen / How to change password

1.3Lohkorakenne muodostetaan käyttämällä a) puolipistettä b) aaltosulkeita c) BEGIN ja END lausekkeita d) sisennystä

Network to Get Work. Tehtäviä opiskelijoille Assignments for students.

KONEISTUSKOKOONPANON TEKEMINEN NX10-YMPÄRISTÖSSÄ

Exercise 1. (session: )

anna minun kertoa let me tell you

Ohjelmointikielet ja -paradigmat 5op. Markus Norrena

Constructive Alignment in Specialisation Studies in Industrial Pharmacy in Finland

Uusia kokeellisia töitä opiskelijoiden tutkimustaitojen kehittämiseen

A DEA Game I Chapters

Hankkeiden vaikuttavuus: Työkaluja hankesuunnittelun tueksi

Curriculum. Gym card

Topologies on pseudoinnite paths

TAMPEREEN TEKNILLINEN YLIOPISTO Teollisuustalous

800323A KUNTALAAJENNUKSET OSA II FIELD EXTENSIONS PART II

BLOCKCHAINS AND ODR: SMART CONTRACTS AS AN ALTERNATIVE TO ENFORCEMENT

MUSEOT KULTTUURIPALVELUINA

4x4cup Rastikuvien tulkinta

Use of Stochastic Compromise Programming to develop forest management alternatives for ecosystem services

Strict singularity of a Volterra-type integral operator on H p

FinFamily PostgreSQL installation ( ) FinFamily PostgreSQL

Kysymys 5 Compared to the workload, the number of credits awarded was (1 credits equals 27 working hours): (4)

Alternatives to the DFT

C++11 seminaari, kevät Johannes Koskinen

Voice Over LTE (VoLTE) By Miikka Poikselkä;Harri Holma;Jukka Hongisto

1. Liikkuvat määreet

MRI-sovellukset. Ryhmän 6 LH:t (8.22 & 9.25)

FinFamily Installation and importing data ( ) FinFamily Asennus / Installation

1.3 Lohkorakenne muodostetaan käyttämällä a) puolipistettä b) aaltosulkeita c) BEGIN ja END lausekkeita d) sisennystä

ETELÄESPLANADI HELSINKI

Information on Finnish Language Courses Spring Semester 2017 Jenni Laine

Sisällysluettelo Table of contents

21~--~--~r--1~~--~--~~r--1~

LX 70. Ominaisuuksien mittaustulokset 1-kerroksinen 2-kerroksinen. Fyysiset ominaisuudet, nimellisarvot. Kalvon ominaisuudet

Innovative and responsible public procurement Urban Agenda kumppanuusryhmä. public-procurement

Särmäystyökalut kuvasto Press brake tools catalogue

TIETEEN PÄIVÄT OULUSSA

Infrastruktuurin asemoituminen kansalliseen ja kansainväliseen kenttään Outi Ala-Honkola Tiedeasiantuntija

Ostamisen muutos muutti myynnin. Technopolis Business Breakfast

Työsuojelurahaston Tutkimus tutuksi - PalveluPulssi Peter Michelsson Wallstreet Asset Management Oy

Green Growth Sessio - Millaisilla kansainvälistymismalleilla kasvumarkkinoille?

Tilausvahvistus. Anttolan Urheilijat HENNA-RIIKKA HAIKONEN KUMMANNIEMENTIE 5 B RAHULA. Anttolan Urheilijat

Digital Admap Native. Campaign: Kesko supermarket

Miehittämätön meriliikenne

Käyttöliittymät II. Käyttöliittymät I Kertaus peruskurssilta. Keskeisin kälikurssilla opittu asia?

Ajettavat luokat: SM: S1 (25 aika-ajon nopeinta)

Expression of interest

Rekisteröiminen - FAQ

Miten koulut voivat? Peruskoulujen eriytyminen ja tuki Helsingin metropolialueella

Nuku hyvin, pieni susi -????????????,?????????????????. Kaksikielinen satukirja (suomi - venäjä) ( (Finnish Edition)

Guidebook for Multicultural TUT Users

Choose Finland-Helsinki Valitse Finland-Helsinki

1. SIT. The handler and dog stop with the dog sitting at heel. When the dog is sitting, the handler cues the dog to heel forward.

Supplementary information: Biocatalysis on the surface of Escherichia coli: melanin pigmentation of the cell. exterior

Kaivostoiminnan eri vaiheiden kumulatiivisten vaikutusten huomioimisen kehittäminen suomalaisessa luonnonsuojelulainsäädännössä

Kvanttilaskenta - 2. tehtävät

VAASAN YLIOPISTO Humanististen tieteiden kandidaatin tutkinto / Filosofian maisterin tutkinto

National Building Code of Finland, Part D1, Building Water Supply and Sewerage Systems, Regulations and guidelines 2007

Suihkukoneet 1:73 ja pienemmät. Potkurikoneet 1:72-1:49. Suihkukoneet 1:72-1:49. Potkurikoneet 1:35 ja suuremmat. Suihkukoneet 1:35 ja suuremmat

AYYE 9/ HOUSING POLICY

Tarua vai totta: sähkön vähittäismarkkina ei toimi? Satu Viljainen Professori, sähkömarkkinat

Gap-filling methods for CH 4 data

RULLARADAT RULLADAT ROLLER TABLES

Information on Finnish Language Courses Spring Semester 2018 Päivi Paukku & Jenni Laine Centre for Language and Communication Studies

Transkriptio:

The CCR Model and Production Correspondence Tim Schöneberg The 19th of September

Agenda Introduction Definitions Production Possiblity Set CCR Model and the Dual Problem Input excesses and output shortfalls Reference Set and imporvement Home Assignment

Introduction Until now, we have been dealing with positive input and output vectors From now on, we relax this assumption We also allow semipositive input and output vectors

Definitions Semipositive: A vector is called semipositive if

Definitions Activity A pair of semipositive input and ouptut is called activity

Production Possibility Set Production Possibility Set The set of feasible activities is called Production Possibility Set P. The activities belong to P

Production Possibility Set Properties of the Production Possibility Set belongs to P belongs to P for any positive scalar t. Constant returns-to-scale assumption : and in P Any linear combination of activities in P belongs to P

Production Possibility Set P can be definded as for any semipositve vector with and

Dual Problem Dual Optimality, no feasibility Optimality and feasibility Primal Feasibility, no optimality

CCR Model and Dual Problem CCR Model formulation for Max Subject to

CCR Model and Dual Problem Dual Problem of : Min Subject to

CCR Model and Dual Problem Correspondences Primal Constraint Dual Variable Primal Variable Dual Constraint

CCR Model and Dual Problem Observations has a feasible solution adsd,, There is no hence is semipositive due to because of Thus

CCR Model and Dual Problem Constraints and require the activity to belong to P The Objective Funktion Min tries to reduce the input vector to without leaving P

Input excesses & output shortfalls If, outperforms Regarding this property, we define two slack vectors Input excesses, Output shortfalls, # They represent the possible improvement

Input excesses & output shortfalls How to determine the slack Vectors Phase 1: Solve to get optimal objective value Phase 2: Solve following LP Max Subject to

Input excesses & output shortfalls Max-slack Solution: An optimal solution of Phase 2 is called max-slack solution Zero-slack Activity If a max-slack-solution satisfies and asddsa it is called zero-slack activity

Input excesses & output shortfalls New definition of CCR-Efficiency: An optimal solution is called CCR-Efficient if and only if Pareto-Koopmans Efficiency: A DMU is fully efficient if and only if it is not possible to improve any input or output without worsening some other input or output

Are both definitions equivalent? Old definition

Are both definitions equivalent? Proof v and u are dual multipliers corresponding to Complementary conditions between optimal solutions of and for : and

Are both definitions equivalent? Proof with case differentiation 1. If, the DMU is inefficient 2. If and is not zero-slack then because of and the elements of corresponding to the positive slacks must be zero. DMU is CCR-inefficient 3. If and zero-slack then by strong theorem of complementary must be positive

Reference Set and improvement in efficiency Reference Set of an inefficient : based on the max-slack solution

Improvement in efficiency Optimal solution can be expressed as This can be interpreted as

Improvement in efficiency Based on this formula, we can calculate the required improvement as follows Thus, we have a formula for improvement This is called CCR-Projection

Improvement in efficiency The point with coordinates is the point on the efficient frontier used to evaluate the performance of The CCR Projection identifies this point as a positive combination of other DMU s

Improvement in efficiency For an improved activity there exists an optimal solution for which satisfies and This is true because of the strong theorem of complementary, since is zero-slack

Improvement in efficiency Proposition: Any semipositive combination of DMUs in is CCR-efficient Proof: Let the combined activity be add and So satisfies and asdd,, Thus, it is CCR- Efficient by the older Definition.

Home Assignment Create the Dual Model for DMU A from the last home assignment Solve it with the 2-Phase method and compute the max-slack vectors and Include both the model and the slack vector results in your answer

Thank you for Listening!

References Lecture Material from Operations Research A, Koberstein, WS 2006/2007

Theorem of strong complementary

Theorem of strong complementary For all primal decision variables: Either the variable is zero or The corresponding dual constraint is true with equality, thus the slack is zero For all dual decision variables: Either the variable is zero or The corresponding primal constraint is true with equality, thus the slack is zero