Mikäli funktio on koko ajan kasvava/vähenevä jollain välillä, on se tällä välillä monotoninen.

Samankaltaiset tiedostot
Matematiikkaa kauppatieteilijöille

Juuri 6 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty Vastaus: Määrittelyehto on x 1 ja nollakohta x = 1.

B-OSA. 1. Valitse oikea vaihtoehto. Vaihtoehdoista vain yksi on oikea.

Juuri 6 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty

Derivaatan sovellukset (ääriarvotehtävät ym.)

Kertaus. x x x. K1. a) b) x 5 x 6 = x 5 6 = x 1 = 1 x, x 0. K2. a) a a a a, a > 0

VASTAA YHTEENSÄ KUUTEEN TEHTÄVÄÄN

4 Polynomifunktion kulku

3. Laadi f unktioille f (x) = 2x + 6 ja g(x) = x 2 + 7x 10 merkkikaaviot. Millä muuttujan x arvolla f unktioiden arvot ovat positiivisia?

MATP153 Approbatur 1B Harjoitus 6 Maanantai

Ratkaisuehdotus 2. kurssikokeeseen

MAA7 Kurssikoe Jussi Tyni Tee B-osion konseptiin pisteytysruudukko! Kaikkiin tehtäviin välivaiheet näkyviin! Laske huolellisesti!

Tekijä Pitkä matematiikka a) Ratkaistaan nimittäjien nollakohdat. ja x = 0. x 1= Funktion f määrittelyehto on x 1 ja x 0.

Kertaus. x x x. K1. a) b) x 5 x 6 = x 5 6 = x 1 = 1 x, x 0. K2. a) a a a a, a > 0

Matematiikan tukikurssi

Matematiikan tukikurssi

Funktion suurin ja pienin arvo DERIVAATTA,

Ratkaisuehdotus 2. kurssikoe

A-osio. Ilman laskinta. MAOL-taulukkokirja saa olla käytössä. Maksimissaan yksi tunti aikaa. Laske kaikki tehtävät:

Analyysi 1. Harjoituksia lukuihin 4 7 / Syksy Tutki funktion f(x) = x 2 + x 2 jatkuvuutta pisteissä x = 0 ja x = 1.

Maksimit ja minimit 1/5 Sisältö ESITIEDOT: reaalifunktiot, derivaatta

Matematiikan peruskurssi (MATY020) Harjoitus 7 to

Matematiikan peruskurssi (MATY020) Harjoitus 10 to

Äänekosken lukio Mab4 Matemaattinen analyysi S2016

3.1 Väliarvolause. Funktion kasvaminen ja väheneminen

Matriisit ja optimointi kauppatieteilijöille

Helsingin, Itä-Suomen, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe klo Ratkaisut ja pisteytysohjeet

11 MATEMAATTINEN ANALYYSI

Matemaattisen analyysin tukikurssi

Lisätehtäviä. Rationaalifunktio. x 2. a b ab. 6u x x x. kx x

Matematiikan tukikurssi

Helsingin, Itä-Suomen, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe klo 10-13

KERTAUSHARJOITUKSIA. 1. Rationaalifunktio a) ( ) 2 ( ) Vastaus: a) = = 267. a) a b) a. Vastaus: a) a a a a 268.

MAA02. A-osa. 1. Ratkaise. a) x 2 + 6x = 0 b) (x + 4)(x 4) = 9 a) 3x 6x

MAA7 7.3 Koe Jussi Tyni Valitse kuusi tehtävää! Tee vastauspaperiin pisteytysruudukko! Kaikkiin tehtäviin välivaiheet näkyviin!

3 Derivoituvan funktion ominaisuuksia

Huippu 7 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty

MAA2 POLYNOMIFUNKTIOT JA -YHTÄLÖT

Juuri 12 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty

Differentiaalilaskenta 1.

MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 6: Ääriarvojen luokittelu. Lagrangen kertojat.

A = (a 2x) 2. f (x) = 12x 2 8ax + a 2 = 0 x = 8a ± 64a 2 48a x = a 6 tai x = a 2.

Talousmatematiikan perusteet: Luento 6. Derivaatta ja derivaattafunktio Derivointisääntöjä Ääriarvot ja toinen derivaatta

x 7 3 4x x 7 4x 3 ( 7 4)x 3 : ( 7 4), 7 4 1,35 < ln x + 1 = ln ln u 2 3u 4 = 0 (u 4)(u + 1) = 0 ei ratkaisua

Matematiikan taito 9, RATKAISUT. , jolloin. . Vast. ]0,2] arvot.

Funktion. Käänteisfunktio. Testi 3. Kauhava Aiheet. Funktio ja funktion kuvaaja. Funktion kasvaminen ja väheneminen.

MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 3: Jatkuvuus

Vastaus: 10. Kertausharjoituksia. 1. Lukujonot lim = lim n + = = n n. Vastaus: suppenee raja-arvona Vastaus:

Johdatus reaalifunktioihin P, 5op

määrittelyjoukko. log x piirretään tangentti pisteeseen, jossa käyrä leikkaa y-akselin. Määritä millä korkeudella tangentti leikkaa y-akselin.

Linkkejä kurssi2 / Etälukio (edu.) kurssi8 / Etälukio (edu.) (Suurinta osaa tämän linkin takana olevasta materiaalista pohdimme vasta huomenna!

4. Kertausosa. 1. a) 12

MATEMATIIKAN KOE PITKÄ OPPIMÄÄRÄ Merkitään f(x) =x 3 x. Laske a) f( 2), b) f (3) ja c) YLIOPPILASTUTKINTO- LAUTAKUNTA

Talousmatematiikan perusteet: Luento 6. Derivaatta ja derivaattafunktio Derivointisääntöjä Ääriarvot ja toinen derivaatta

2 Funktion derivaatta

2 Raja-arvo ja jatkuvuus

Lue tehtävänannot huolella. Tee pisteytysruudukko 1. konseptin yläreunaan. ILMAN LASKINTA -OSIO! LASKE KAIKKI SEURAAVAT TEHTÄVÄT:

( ) < ( ) Lisätehtävät. Polynomifunktio. Epäyhtälöt 137. x < 2. d) 2 3 < 8+ < 1+ Vastaus: x < 3. Vastaus: x < 5 6. x x. x < Vastaus: x < 2

Anna jokaisen kohdan vastaus kolmen merkitsevän numeron tarkkuudella muodossa

1. Olkoon f :, Ratkaisu. Funktion f kuvaaja välillä [ 1, 3]. (b) Olkoonε>0. Valitaanδ=ε. Kun x 1 <δ, niin. = x+3 2 = x+1, 1< x<1+δ

Funktion raja-arvo ja jatkuvuus Reaali- ja kompleksifunktiot

5 Differentiaalilaskentaa

A-osa. Ratkaise kaikki tämän osan tehtävät. Tehtävät arvostellaan pistein 0-6. Taulukkokirjaa saa käyttää apuna, laskinta ei.

DIFFERENTIAALI- JA INTEGRAALILASKENTA I.1. Ritva Hurri-Syrjänen/Syksy 1999/Luennot 6. FUNKTION JATKUVUUS

7 Differentiaalilaskenta

Rollen lause polynomeille

1. a) b) Nollakohdat: 20 = c) a b a b = + ( a b)( a + b) Derivaatan kuvaajan numero. 1 f x x x g x x x x. 3. a)

TEHTÄVIEN RATKAISUT. Luku a) Merkintä f (5) tarkoittaa lukua, jonka funktio tuottaa, kun siihen syötetään luku 5.

4 FUNKTION ANALYSOINTIA

Juuri 7 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty c) sin 50 = sin ( ) = sin 130 = 0,77

Kun yhtälöä ei voi ratkaista tarkasti (esim yhtälölle x-sinx = 1 ei ole tarkkaa ratkaisua), voidaan sille etsiä likiarvo.

MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 4: Derivaatta

Juuri 12 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty

5 Rationaalifunktion kulku

JATKUVUUS. Funktio on jatkuva jos sen kuvaaja voidaan piirtää nostamatta kynää paperista.

HY, MTO / Matemaattisten tieteiden kandiohjelma Todennäköisyyslaskenta IIa, syksy 2018 Harjoitus 3 Ratkaisuehdotuksia.

PRELIMINÄÄRIKOE PITKÄ MATEMATIIKKA

MS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 6: Ääriarvojen luokittelu. Lagrangen kertojat.

läheisyydessä. Piirrä funktio f ja nämä approksimaatiot samaan kuvaan. Näyttääkö järkeenkäyvältä?

Oletetaan, että funktio f on määritelty jollakin välillä ]x 0 δ, x 0 + δ[. Sen derivaatta pisteessä x 0 on

3.4 Rationaalifunktion kulku ja asymptootit

Tekijä MAA2 Polynomifunktiot ja -yhtälöt = Vastaus a)

0 kun x < 0, 1/3 kun 0 x < 1/4, 7/11 kun 1/4 x < 6/7, 1 kun x 1, 1 kun x 6/7,

jakokulmassa x 4 x 8 x 3x

MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ HYVÄN VASTAUKSEN PIIRTEITÄ

Muista tutkia ihan aluksi määrittelyjoukot, kun törmäät seuraaviin funktioihin:

Juuri 2 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty

Matematiikan tukikurssi, kurssikerta 3

Lue tehtävänannot huolella. Tee pisteytysruudukko 1. konseptin yläreunaan.

saadaan kvanttorien järjestystä vaihtamalla ehto Tarkoittaako tämä ehto mitään järkevää ja jos, niin mitä?

Preliminäärikoe Tehtävät Pitkä matematiikka / 3

MS-A0102 Differentiaali- ja integraalilaskenta 1

Johdatus tekoälyn taustalla olevaan matematiikkaan

Kuva 1: Funktion f tasa-arvokäyriä. Ratkaisu. Suurin kasvunopeus on gradientin suuntaan. 6x 0,2

Transkriptio:

4.1 Polynomifunktion kulun tutkiminen s. 100 digijohdanto Funktio f on kasvava jollain välillä, jos ehdosta a < b seuraa ehto f(a) < f(b). Funktio f on vähenevä jollain välillä, jos ehdosta a < b seuraa ehto f(a) > f(b). Mikäli funktio on koko ajan kasvava/vähenevä jollain välillä, on se tällä välillä monotoninen.

Jos f'(x) >0 jollain välillä, on se tällöin kasvava. Jos f'(x) <0 jollain välillä, on se tällöin vähenevä. Jos f'(x) =0 kaikissa välin kohdissa, on funktio f vakiofunktio (tällä välillä). Esim. Milloin funktio f(x) = on kasvava? Kasvava, jos f'(x) >0 f'(x) = Milloin Ratkaistaan vastaava yhtälö:

Yhtälön nollakohdat ovat x= tai x= eli kun tai V: f on kasvava kun Esim. Olkoon funktio f(x) = x^5-5x Tutki milloin funktio on kasvava ja milloin vähenevä kulkukaavion avulla.

f'(x) = Milloin derivaatta on nolla? Muodostetaan kulkukaavio: Funktio on kasvava kun x<-1 ja 1<x ja funktio on vähenevä kun -1<x<1

Esim. Olkoon f(x) = x^3+x-1 Osoita, että funktiolla on täsmälleen yksi nollakohta. Määritetään ensin derivaattafunktio: f'(x) = 3x^2 +1 Sen nollakohdat ovat: 3x^2+1=0 x^2 = -1/3 => ei ratkaisuja Tehdään kulkukaavio: Funktio on kaikkialla kasvava! Siksi sillä on enintään 1 nollakohta. Bolzanon lause: Funktio f on jatkuva, ja tiedetään, että f(0) = -1<0 ja f(1) = 1>0 => välillä ]0,1[ funktiolla on ainakin 1 nollakohta =>Funktiolla on täsmälleen 1 nollakohta

4.2 Polynomifunktion ääriarvot s.109 digijohdanto Suurin ja pienin arvo suljetulla välillä Esim. Funktion f kuvaaja on annettu vieressä. Mikä on funktion suurin arvo välillä a) [-2,1]? b) [-2,3]? a) suurin arvo 2,5 (saadaan kohdassa x -1) b) suurin arvo 7,8 (saadaan kohdassa x=3) Mikä on funktion derivaatan arvo suurimman arvon kohdalla? a-kohdassa 0

Suljetulla välillä [a,b] jatkuva funktio f saa pienimmän ja suurimman arvon joko derivaatan nollakohdissa tai välin päätepisteissä a tai b. Esim. Olkoon funktio f(x) = Mikä on funktion suurin ja pienin arvo välillä [-2,2]? (f on jatkuva ja määritelty kaikkialla) On selvitettävä derivaatan nollakohdat: f'(x) = jolloin

Funktion kulkukaavio: Tästä nähdään, että funktion pienin arvo saadaan pisteessä x=1 ja suurin joko pisteessä x=-2 tai x=2. Lasketaan funktion arvot kohdissa -2,1 ja 2: Eli funktion f suurin arvo on 4 ja pienin arvo on -2,75 välillä [-2,2]

Paikalliset ääriarvot Esim. Määritä funktion f(x) = suurin ja pienin arvo. Kuvaajasta nähdään, että derivaattafunktion nollakohdat ovat x 0, x 1,2 ja x 2,6 Kohtia x 0 ja x 2,6 kutsutuaan paikallisiksi minimeiksi. Näistä jälkimmäinen on funktion pienin kohta. Kohta x 1,2 taas on paikallinen maksimi. Se ei kuitenkaan ole funktion suurin kohta, sillä tämä funktio ei saa suurinta arvoaan missään! Paikallisia minimejä ja maksimeja kutsutaan funktion paikallisiksi ääriarvoiksi. Niissä f'(x) = 0.

Ratkaistaan funktion pienin arvo selvittämällä derivaatan nollakohdat: f'(x) = jolloin Näistä pienin arvo saavutetaan kohdassa x 2,59, eli Paikalliset ääriarvot katsotaan täsmällisesti kulkukaaviosta:

Tästä voi päätellä: funktion pienin arvo on olemassa Tästä ei voi päätellä: onko funktiolla suurinta arvoa kumpi arvoista on pienin Kokeilemalla funktiolle f eri arvoja saadaan selville, että minimeistä toinen on pienin arvo maksimi ei ole suurin arvo f(0) = 0 (min1) f(1,16) 2,1 (max1) f(2,59) -1,62 (min2, pienempi) f(-1) = 11 (suurempi kuin max1)

Täsmälliset ratkaisut saadaan aina selville kulkukaaviolla ja eri funktion arvojen kokeilemisella. Kulkukaaviossa voi tulla myös tilanne Tällaista kohtaa, jossa f'(x)=0, mutta ei ole min eikä max, kutsutaan terassikohdaksi tai satulapisteeksi.

Esim. Antti rakentaa talon seinän viereen suorakulmion muotoisen koira-aitauksen. Antilla on 10m aitaa käytettävissä. Mitkä ovat aitauksen mitat, kun halutaan, että aitauksen pintaala on mahdollisimman suuri? Merkitään talon suuntaista sivua y:llä ja kahta muuta sivua x:llä. Nyt 10 = x+y+x eli y= 10-2x Toisaalta aitauksen pinta-ala on A = x y Silloin A(x) = x (10-2x) = -2x^2+10x Milloin A(x) on mahd. suuri? Määritetään derivaattafunktion A'(x) =

jolloin Eli A'(x) = 0, kun x=2,5 Tutkitaan funktion A ääriarvokohdat välillä [0,5] (x on oltava positiivinen, mutta max 5) Tehdään kulkukaavio: Nyt pinta-alafunktion suurin arvo saadaan kohdassa x=2,5 Suurin arvo on siis A(2,5) = 12,5