MS-A0207 Differentiaali- ja integraalilaskenta 2 (Chem) Esimerkkejä ym., osa I

Samankaltaiset tiedostot
MS-A0207 Differentiaali- ja integraalilaskenta 2 (Chem) Esimerkkejä ym., osa I

MS-A0207 Differentiaali- ja integraalilaskenta 2 (Chem) Yhteenveto ja esimerkkejä ym., osa I

MS-A0207 Differentiaali- ja integraalilaskenta 2 (Chem) Yhteenveto ja esimerkkejä ym., osa I

MS-A0207 Differentiaali- ja integraalilaskenta 2 (Chem) Yhteenveto ja esimerkkejä ym., osa I

MS-A0207 Differentiaali- ja integraalilaskenta 2 (Chem) Yhteenveto, osa I

MS-A0207 Differentiaali- ja integraalilaskenta 2 (Chem) Tentti ja välikokeiden uusinta

Antti Rasila. Kevät Matematiikan ja systeemianalyysin laitos Aalto-yliopisto. Antti Rasila (Aalto-yliopisto) MS-A0204 Kevät / 16

MS-A0207 Differentiaali- ja integraalilaskenta 2 Luento 5: Gradientti ja suunnattu derivaatta. Vektoriarvoiset funktiot. Taylor-approksimaatio.

MS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 1: Parametrisoidut käyrät ja kaarenpituus

MS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 4: Ketjusäännöt ja lineaarinen approksimointi

MS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 3: Osittaisderivaatta

Derivaatta: funktion approksimaatio lineaarikuvauksella.

Tutki, onko seuraavilla kahden reaalimuuttujan reaaliarvoisilla funktioilla raja-arvoa origossa: x 2 + y 2, d) y 2. x + y, c) x 3

Differentiaali- ja integraalilaskenta 1 Ratkaisut 5. viikolle /

Matematiikka B1 - TUDI

Aalto-yliopiston perustieteiden korkeakoulu Matematiikan ja systeemianalyysin laitos

Diplomi-insinööri- ja arkkitehtikoulutuksen yhteisvalinta 2017 Insinöörivalinnan matematiikan koe , Ratkaisut (Sarja A)

MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 9: Muuttujanvaihto taso- ja avaruusintegraaleissa

Differentiaali- ja integraalilaskenta

MS-A0207 Differentiaali- ja integraalilaskenta 2 (CHEM) Luento 2: Usean muuttujan funktiot

MS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 1: Parametrisoidut käyrät ja kaarenpituus

MS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 2: Usean muuttujan funktiot

Vektorianalyysi I MAT Luennoitsija: Ritva Hurri-Syrjänen Luentoajat: ti: 14:15-16:00, to: 12:15-14:00 Helsingin yliopisto 21.

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 3: Vektorikentät

Matematiikan tukikurssi

Aalto-yliopiston perustieteiden korkeakoulu Matematiikan ja systeemianalyysin laitos

Matematiikka B1 - avoin yliopisto

Vektoriarvoiset funktiot Vektoriarvoisen funktion jatkuvuus ja derivoituvuus

r > y x z x = z y + y x z y + y x = r y x + y x = r

x n e x dx = n( e x ) nx n 1 ( e x ) = x n e x + ni n 1 x 4 e x dx = x 4 e x +4( x 3 e x +3( x 2 e x +2( xe x e x ))) = e x

MS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 4: Ketjusäännöt ja lineaarinen approksimointi

Insinöörimatematiikka D, laskuharjoituksien esimerkkiratkaisut

Oletetaan, että funktio f on määritelty jollakin välillä ]x 0 δ, x 0 + δ[. Sen derivaatta pisteessä x 0 on

Luento 8: Epälineaarinen optimointi

Differentiaalilaskennan tehtäviä

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 7: Pintaintegraali ja vuointegraali

Johdatus tekoälyn taustalla olevaan matematiikkaan

A B = (1, q, q 2 ) (2, 0, 2) = 2 2q q 2 = 0 q 2 = 1 q = ±1 A(±1) = (1, ±1, 1) A(1) A( 1) = (1, 1, 1) (1, 1, 1) = A( 1) A(1) A( 1) = 1

Viikon aiheet. Funktion lineaarinen approksimointi

MATEMATIIKAN PERUSKURSSI I Harjoitustehtäviä syksy Millä reaaliluvun x arvoilla. 3 4 x 2,

1.7 Gradientti ja suunnatut derivaatat

JYVÄSKYLÄN YLIOPISTO. Integraalilaskenta 2 Harjoitus Olkoon A := {(x, y) R 2 0 x π, sin x y 2 sin x}. Laske käyräintegraali

a) on lokaali käänteisfunktio, b) ei ole. Piirrä näiden pisteiden ympäristöön asetetun neliöruudukon kuva. VASTAUS:

BM20A5800 Funktiot, lineaarialgebra ja vektorit Harjoitus 4, Syksy 2016

Aalto-yliopiston perustieteiden korkeakoulu Matematiikan ja systeemianalyysin laitos. MS-A0203 Differentiaali- ja integraalilaskenta 2, kevät 2016

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt

Differentiaali- ja integraalilaskenta 1 Ratkaisut 2. viikolle /

Matematiikan tukikurssi

MS-A0102 Differentiaali- ja integraalilaskenta 1

y = 3x2 y 2 + sin(2x). x = ex y + e y2 y = ex y + 2xye y2

Mapu 1. Laskuharjoitus 3, Tehtävä 1

Luento 8: Epälineaarinen optimointi

Differentiaali- ja integraalilaskenta 2 (CHEM) MS-A0207 Hakula/Vuojamo Kurssitentti, 12.2, 2018, arvosteluperusteet

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 8: Divergenssi ja roottori. Gaussin divergenssilause.

MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 4: Derivaatta

Tilavuus puolestaan voidaan esittää funktiona V : (0, ) (0, ) R,

Differentiaali- ja integraalilaskenta 3 Mallit laskuharjoitukseen 3 /

Polkuintegraali yleistyy helposti paloitain C 1 -poluille. Määritelmä Olkoot γ : [a, b] R m paloittain C 1 -polku välin [a, b] jaon

l 1 2l + 1, c) 100 l=0 AB 3AC ja AB AC sekä vektoreiden AB ja

Differentiaali- ja integraalilaskenta 3 Harjoitus 4/ Syksy 2017

13. Taylorin polynomi; funktioiden approksimoinnista. Muodosta viidennen asteen Taylorin polynomi kehityskeskuksena origo funktiolle

MATEMATIIKAN PERUSKURSSI II

Differentiaalimuodot

Differentiaali- ja integraalilaskenta 2 TFM Laskuharjoitus 2L

3 = Lisäksi z(4, 9) = = 21, joten kysytty lineaarinen approksimaatio on. L(x,y) =

Matematiikan perusteet taloustieteilij oille I

x (t) = 2t ja y (t) = 3t 2 x (t) + + y (t) Lasketaan pari käyrän arvoa ja hahmotellaan kuvaaja: A 2 A 1

Matematiikan tukikurssi

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 5: Kaarenpituus ja skalaarikentän viivaintegraali

Vektorianalyysi II (MAT21020), syksy 2018

l 1 2l + 1, c) 100 l=0

läheisyydessä. Piirrä funktio f ja nämä approksimaatiot samaan kuvaan. Näyttääkö järkeenkäyvältä?

MS-A0003/A0005 Matriisilaskenta Laskuharjoitus 2 / vko 45

y (0) = 0 y h (x) = C 1 e 2x +C 2 e x e10x e 3 e8x dx + e x 1 3 e9x dx = e 2x 1 3 e8x 1 8 = 1 24 e10x 1 27 e10x = e 10x e10x

Ratkaisut vuosien tehtäviin

a) Mikä on integraalifunktio ja miten derivaatta liittyy siihen? Anna esimerkki = 16 3 =

12. Derivointioperaattoreista geometrisissa avaruuksissa

Tekijä Pitkä matematiikka Suoran pisteitä ovat esimerkiksi ( 5, 2), ( 2,1), (1, 0), (4, 1) ja ( 11, 4).

MS-A0207 Differentiaali- ja integraalilaskenta 2 (Chem) Esimerkkejä ym., osa II

Kuva 1: Funktion f tasa-arvokäyriä. Ratkaisu. Suurin kasvunopeus on gradientin suuntaan. 6x 0,2

x = π 3 + nπ, x + 1 f (x) = 2x (x + 1) x2 1 (x + 1) 2 = 2x2 + 2x x 2 = x2 + 2x f ( 3) = ( 3)2 + 2 ( 3) ( 3) = = 21 tosi

sin(x2 + y 2 ) x 2 + y 2

Pisteessä (1,2,0) osittaisderivaatoilla on arvot 4,1 ja 1. Täten f(1, 2, 0) = 4i + j + k. b) Mihin suuntaan pallo lähtee vierimään kohdasta

Oletetaan ensin, että tangenttitaso on olemassa. Nyt pinnalla S on koordinaattiesitys ψ, jolle pätee että kaikilla x V U

Fr ( ) Fxyz (,, ), täytyy integroida:

Ratkaisu: Ensimmäinen suunta. Olkoon f : R n R m jatkuva eli kaikilla ε > 0 on olemassa sellainen δ > 0, että. kun x a < δ. Nyt kaikilla j = 1,...

Differentiaali- ja integraalilaskenta 2

Differentiaali- ja integraalilaskenta 3 Mallit laskuharjoitusviikkoon 5 /

BM20A5840 Usean muuttujan funktiot ja sarjat Harjoitus 1, Kevät 2018

Vektoreiden A = (A1, A 2, A 3 ) ja B = (B1, B 2, B 3 ) pistetulo on. Edellisestä seuraa

Muutoksen arviointi differentiaalin avulla

Kirjoita jokaiseen koepaperiin nimesi, opiskelijanumerosi ym. tiedot! Laskin (yo-kirjoituksissa hyväksytty) on sallittu apuväline tässä kokeessa!

MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 6: Ääriarvojen luokittelu. Lagrangen kertojat.

MS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 10: Moninkertaisten integraalien sovelluksia

x + 1 πx + 2y = 6 2y = 6 x 1 2 πx y = x 1 4 πx Ikkunan pinta-ala on suorakulmion ja puoliympyrän pinta-alojen summa, eli

MS-A0104 Differentiaali- ja integraalilaskenta 1 (ELEC2) MS-A0106 Differentiaali- ja integraalilaskenta 1 (ENG2)

Vektorianalyysi I MAT Luennoitsija: Ritva Hurri-Syrjänen Luentoajat: ti: 14:15-16:00, to: 12:15-14:00 Helsingin yliopisto 23.

Differentiaali- ja integraalilaskenta 3 Mallit 2 (alkuviikko) / Syksy 2016

MATEMATIIKAN PERUSKURSSI II

Harjoitus Etsi seuraavien autonomisten yhtälöiden kriittiset pisteet ja tutki niiden stabiliteettia:

Transkriptio:

MS-A0207 Differentiaali- ja integraalilaskenta 2 (Chem) Esimerkkejä ym., osa I G. Gripenberg Aalto-yliopisto 21. tammikuuta 2016 G. Gripenberg (Aalto-yliopisto) MS-A0207 Differentiaali- ja integraalilaskenta 2 (Chem) 21. Esimerkkejä tammikuuta ym., 2016 osa I 1 / 32

Vektoreista R on reaalilukujen joukko ja R 2 = R R = { (x, y) : x, y R } on xy-tason pisteitä. Jokaista pistettä tai paria (x, y) voimme käsitellä vektorina, [ jonka ] x voimme myös esittää joko pystyvektorina (2 1-matriisina), y vaakavektorina (1 2-matriisina) [ x y ] tai muodossa xi + yj (missä siis i on positiivisen x-akselin suuntainen yksikkövektori jne.) Jos u on vaakavektori [ u(1) u(2) ] [ ] v(1) ja v on pystyvektori niin v(2) niiden matriisitulo on uv = u(1)v(1) + u(2)v(2). Jos emme tee eroa vaaka- ja pystyvektoriden välillä voimme myös kirjoittaa tätä pistetulona (sisätulona, skalaaritulona) u v. Vektorin pituuden määritelmäksi otamme u = u u. Vektorit u ja v ovat kohtisuorassa tosiaan vastaan jos u v = 0. R d = { (x 1, x 2,..., x d ) : x j R, j = 1,..., d } ja kun R 2 korvataan R d :llä niin ainoastaan kuvien piirtäminen tulee vaikeammaksi. G. Gripenberg (Aalto-yliopisto) MS-A0207 Differentiaali- ja integraalilaskenta 2 (Chem) 21. Esimerkkejä tammikuuta ym., 2016 osa I 2 / 32

Funktioista f (x) = (1 + cos(x)) cos(x) on yhden reaalimuuttujan reaaliarvoinen funktio (eli funktio: R R) jolla on kuvaaja: [ ] (1 + cos(t)) cos(t) Funktio g(t) = on yhden (1 + cos(t)) sin(t) reaalimuuttujan vektoriarvoinen funktio (eli funktio: R R 2 ) jonka kuvajoukko on käyrä: Funktio h(x, y) = (1 + cos(x)) sin(y) on kahden reaalimuuttujan reaaliarvoinen funktio (eli funktio: R 2 R), jota voi myös käsitellä yhden vektorimuuttujan ([ ]) funktiona x h = (1 + cos(x)) sin(y) ja jolla y on seuraava kuvaaja: [ ] t Huomaa, että f :n kuvaaja on käyrä, jolla on parametriesitys t. (1 + cos(t)) cos(t) G. Gripenberg (Aalto-yliopisto) MS-A0207 Differentiaali- ja integraalilaskenta 2 (Chem) 21. Esimerkkejä tammikuuta ym., 2016 osa I 3 / 32

Muuttujat, parametrit, vakiot Jos sylinterin muotoisella putkella on pituus L, sisähalkaisija r, seinämän paksuus h ja materiaalin tiheys on ρ niin putken massa m = ρ L π ( (r + h) 2 r 2). Riippuen tilanteesta voimme tämän kaavan avulla määritellä erilaisia funktioita: m = f (L) = ρ L π ( (r + h) 2 r 2) kun pidämme suureita ρ, r ja h parametreina, eli käsittelemme eripituisia putken pätkiä. m = f (L, r, h, ρ) = ρ L π ( (r + h) 2 r 2) missä meillä on neljä muuttujaa. L m = f r = ρ L π ( (r + h) 2 r 2) missä meillä on yhden h vektorimuuttujan funktio ja pidämme ρ:ta parametrina. Kaikissa näissä tapauksissa pidämme π:tä vakiona mutta jos π:n paikalle sijoitetaan (epätarkka) likiarvo ja haluamme selvittää mikä on tämän approksimaation vaikutus voi syntyä tilanteita missä π:tä käsitellään muuttujana tai parametrina. G. Gripenberg (Aalto-yliopisto) MS-A0207 Differentiaali- ja integraalilaskenta 2 (Chem) 21. Esimerkkejä tammikuuta ym., 2016 osa I 4 / 32

Muuttujat, parametrit, vakiot, jatk. Jos käytämme Matlab/Octavea voimme esimerkiksi kirjoittaa rho=7.87 f=@(l,r,h) rho*l*pi*((r+h)^2-r^2) tai jos käytämme vektoriargumenttiä rho=7.87 f=@(x) rho*x(1)*pi*((x(2)+x(3))^2-x(2)^2) Huomaa, että jos muutamme rho:n arvoa niin meidän pitää toistaa funktion f määritelmää! G. Gripenberg (Aalto-yliopisto) MS-A0207 Differentiaali- ja integraalilaskenta 2 (Chem) 21. Esimerkkejä tammikuuta ym., 2016 osa I 5 / 32

Kuristusperiaate Jos meidän pitää määrittää raja-arvo lim (x,y) (0,0) 5x 2 y 2 x 4 + y 2, niin voimme yrittää käyttää kuristusperiaatetta jos arvelemme, että raja-arvo on 0 ja silloin meidän pitää korvata 5x2 y 2 suuremmalla funktiolla x 4 +y 2 (kun olemme ottaneet itseisarvon, mikä tässä ei ole tarpeen) jolle on helpompaa osoittaa, että raja-arvo on 0. Voimme ensin todeta, että x 4 0 josta seuraa, että x 4 + y 2 y 2 jolloin 0 5x 2 y 2 x 4 + y 2 5x 2 y 2 y 2 = 5x 2. Nyt on selvää (?), että lim 5x 2 = lim 5x 2 = 5 0 2 = 0, (x,y) (0,0) x 0 ja näin ollen saamme kuristusperiaatteen nojalla 5x 2 y 2 lim (x,y) (0,0) x 4 + y 2 = 0. G. Gripenberg (Aalto-yliopisto) MS-A0207 Differentiaali- ja integraalilaskenta 2 (Chem) 21. Esimerkkejä tammikuuta ym., 2016 osa I 6 / 32

Esimerkki: Raja-arvo xy Jos haluamme määrittää raja-arvon lim 2 (x,y) (0,0), niin voimme x 2 +y 4 laskea raja-arvon sädettä (αt, βt) pitkin ja kun määrittelemme f (x, y) = xy 2 saamme x 2 +y 4 αtβ 2 t 2 lim f (αt, βt) = lim t 0+ t 0+ α 2 t 2 + β 4 t 4 = lim t αβ 2 t 0 α 2 + β 4 t 2 = 0 Tästä seuraa (ainoastaan!), että jos raja-arvo on olemassa niin se on 0. Nyt osoittautuu, että raja-arvoa ei ole olemassa koska jos valitsemme x = t 2 ja y = t ja laskemme raja-arvon kun t 0+ niin saamme t 2 t 2 (t 2 ) 2 + t 4 = 1 2 0, lim f t 0+ (t2, t) = lim t 0+ josta seuraa ettei f (x, y) ole lähellä 0 jos (x, y) on riittävän lähellä (0, 0). G. Gripenberg (Aalto-yliopisto) MS-A0207 Differentiaali- ja integraalilaskenta 2 (Chem) 21. Esimerkkejä tammikuuta ym., 2016 osa I 7 / 32

Derivoimisjärjestyksen vaihto Oleta, että funktion f (x, y) osittaisderivaatat f x (x, y), f y (x, y), f xy (x, y) ja f yx (x, y) ovat olemassa (ainakin) kaikissa pisteissä (x, y) joilla (x x 0 ) 2 + (y y 0 ) 2 < δ 2 ja, että funktiot f xy (x, y) ja f yx (x, y) ovat jatkuvia pisteessä (x 0, y 0 ). Silloin pätee f xy (x 0, y 0 ) = f yx (x 0, y 0 ). Todistus Olkoon 0 < h < δ 2 ja määrittele funktiot u ja v siten, että u(x) = f (x, y 0 + h) f (x, y 0 ) ja v(y) = f (x 0 + h, y) f (x 0, y). Funktio u on derivoituva välillä (x 0, x 0 + h) ja jatkuva välillä [x 0, x 0 + h] ja näin ollen väliarvolauseesta seuraa, että on olemassa luku θ 1 (0, 1) siten, että u(x 0 + h) u(x 0 ) = hu (x 0 + θ 1 h). (x 0, y 0 + h) (x 0 + h, y 0 + h) u(x 0 + h) u(x 0 ) = v(y 0 + h) v(y 0 ) (x 0, y 0 ) (x 0 + h, y 0 ) G. Gripenberg (Aalto-yliopisto) MS-A0207 Differentiaali- ja integraalilaskenta 2 (Chem) 21. Esimerkkejä tammikuuta ym., 2016 osa I 8 / 32

Todistus, jatk. Koska hu (x 0 + θ 1 h) = h(f x (x 0 + θ 1 h, y 0 + h) f x (x 0 + θ 1 h, y 0 )) voimme soveltaa väliarvolausetta vielä kerran funktioon y f x (x 0 + θ 1 h, y) ja saamme u(x 0 + h) u(x 0 ) = h 2 f xy (x 0 + θ 1 h, y 0 + θ 2 h), missä θ 2 (0, 1). Samalla tavalla toteamme myös, että v(y 0 + h) v(y 0 ) = h 2 f yx (x 0 + θ 4 h, y 0 + θ 3 h), missä θ 3 ja θ 4 (0, 1). Nyt u(x 0 + h) u(x 0 ) = v(y 0 + h) v(y 0 ) koska molemmat lausekkeet ovat f (x 0 + h, y 0 + h) f (x 0 + h, y 0 ) f (x 0, y 0 + h) + f (x 0, y 0 ) josta seuraa, että h 2 f xy (x 0 + θ 1 h, y 0 + θ 2 h) = h 2 f yx (x 0 + θ 4 h, y 0 + θ 3 h). Jos nyt jaamme h 2 :lla, otamme raja-arvon kun h 0 ja käytämme hyväksi oletusta, että f xy ja f yx ovat jatkuvia, niin saamme väitteen f xy (x 0, y 0 ) = f yx (x 0, y 0 ). G. Gripenberg (Aalto-yliopisto) MS-A0207 Differentiaali- ja integraalilaskenta 2 (Chem) 21. Esimerkkejä tammikuuta ym., 2016 osa I 9 / 32

Esimerkki: Osittaisderivaattoja ( Jos f (x, y, z) = ln 1 + e x+yz2) niin f :n osittaisderivaatat ovat seuraavat: f x (x, y, z) = x ln ( 1 + e x+yz2) = f y (x, y, z) = y ln ( 1 + e x+yz2) = f z (x, y, z) = x ln ( 1 + e x+yz2) = Näin ollen funktion f derivaatta eli gradientti on 1 e x+yz2, 1 + e x+yz2 1 e x+yz2 z 2, 1 + e x+yz2 1 e x+yz2 2yz. 1 + e x+yz2 f (x, y, z) = Df (x, y, z) = f (x, y, z) [ ] 1 1 = e x+yz2, e x+yz2 z 2 1, e x+yz2 2yz 1 + e x+yz2 1 + e x+yz2 1 + e x+yz2 1 1 = e x+yz2 i + e x+yz2 z 2 1 j + e x+yz2 2yz k. 1 + e x+yz2 1 + e x+yz2 1 + e x+yz2 G. Gripenberg (Aalto-yliopisto) MS-A0207 Differentiaali- ja integraalilaskenta 2 (Chem) 21. Esimerkkejä tammikuutaym., 2016 osa I 10 / 32

Esimerkki: Gradientti ja tasa-arvokäyrä Jos f (x, y) = 1 2 x 2 + y 2 niin sen gradientti eli eli derivaatta on Df (x, y) = [ x 2y ] = x i + 2y j ja erityisesti pisteessä ( 2, 1) gradientti on 2 i + 2 j. Funktion pisteen ( 2, 1) kautta kulkeva tasa-arvokäyrä on (ellipsi) { (x, y) : 1 2 x 2 + y 2 = 3 } ja alla olevasta kuviosta nähdään, että gradientti on kohtisuorassa tasa-arvokäyrää ja sen tangenttia pisteessä ( 2, 1) vastaan. Koska gradientti pisteessä (2, 1) on 2 i + 2 j niin tätä vastaan kohtisuorassa olevan, pisteen f = 8 ( 2, 1) kautta kulkevan suoran suuntavektori on 2 i + 2 j jolloin tämän suoran yhtälö on f = 3 y 1 = x + 2 eli y = x + 3. G. Gripenberg (Aalto-yliopisto) MS-A0207 Differentiaali- ja integraalilaskenta 2 (Chem) 21. Esimerkkejä tammikuutaym., 2016 osa I 11 / 32

Derivaatta ja koordinaattisysteemi Edellä annetun määritelmän mukaan esimerkiksi funktion f (x, y) = xy derivaatta eli gradientti on f (x, y) = [ y x ] = y i + x j, mutta tässä määritelmässä meillä on oletuksena, että koordinaattisysteemi on kiinnitetty. Jos valitsemme toisen, st-koordinaattisysteemin, esimerkiksi (kiertämällä xy-systeemin koordinaattiakseleita 45 ) siten, että [ ] s = 1 [ ] x + y, t 2 y x niin f (s, t) = 1 2 (s2 t 2 ) ja f (s, t) = [ s t ] = s u t v missä u ja v ovat s- ja t-akselien suuntaisia kantavektoreita, eli u = 1 2 (i + j) ja v = 1 2 (j i). Näin ollen voimme todeta, että derivaatta pisteessä x oikeasti on lineaarikuvaus h f (x)h ja tämän lineaarikuvauksen matriisiesitys (jota sitten käytetään laskuissa) riippuu käytetystä koordinaattisysteemistä. Samalla tavalla voimme sanoa, että funktion g(x) = x 2 derivaatta pisteessä x = 2 ei ole luku g (2) = 4 vaan lineaarikuvaus neljällä kertominen : t 4t. G. Gripenberg (Aalto-yliopisto) MS-A0207 Differentiaali- ja integraalilaskenta 2 (Chem) 21. Esimerkkejä tammikuutaym., 2016 osa I 12 / 32

Derivaatan tulosääntö ketjusäännön avulla Derivaatan tulosääntö sanoo tunnetusti, että (fg) = f g + fg. Vaihtoehtoinen lähestymistapa on seuraava: Kirjoita p(t) = f (t)g(t) yhdistettynä funktiona p(t) = (h k)(t) = h(k(t)) missä h : R 2 R on h ([ x y ]) = xy ja k(t) = [ f (t) g(t) ]. Derivaatan määritelmän nojalla ([ ]) h x = [ y x ] ja k (t) = y Ketjusäännön mukaan pätee silloin p (t) = h (k(t))k (t) = [ g(t) f (t) ] [ f ] (t) g (t) [ f ] (t) g. (t) = g(t)f (t) + f (t)g (t). G. Gripenberg (Aalto-yliopisto) MS-A0207 Differentiaali- ja integraalilaskenta 2 (Chem) 21. Esimerkkejä tammikuutaym., 2016 osa I 13 / 32

Laplacen yhtälö u xx + u yy = 0 napakoordinaateissa Oletamme, että u toteuttaa ns. Laplacen yhtälön u xx + u yy = 0 ja tehtävänä on selvittää minkä yhtälön funktio v(r, θ) = u(r cos(θ), r sin(θ)) toteuttaa. (Tässä siis v on funktio u esitettynä napakoordinaattien funktiona). Osittaisderivaattoja laskemalla (ja ketjusääntöä hyväksi käyttäen) toteamme, että v r (r, θ) = u x (r cos(θ), r sin(θ)) cos(θ) + u y (r cos(θ), r sin(θ)) sin(θ), v θ (r, θ) = u x (r cos(θ), r sin(θ))( r sin(θ)) + u y (r cos(θ), r sin(θ))r cos(θ). Osoittautuu, että meidän ei tarvitse laskea v rθ = v θr (mutta tämä ei ole lainkaan etukäteen selvää) mutta sen sijaan meidän pitää laskea v rr (r, θ) = u xx (r cos(θ), r sin(θ)) cos(θ) 2 + 2u xy (r cos(θ), r sin(θ)) cos(θ) sin(θ) + u yy (r cos(θ), r sin(θ)) sin(θ) 2, G. Gripenberg (Aalto-yliopisto) MS-A0207 Differentiaali- ja integraalilaskenta 2 (Chem) 21. Esimerkkejä tammikuutaym., 2016 osa I 14 / 32

ja Laplacen yhtälö napakoordinaateissa, jatkuu v θθ (r, θ) = u xx (r cos(θ), r sin(θ))r 2 sin(θ) 2 + 2u xy (r cos(θ), r sin(θ))( r 2 cos(θ) sin(θ)) + u yy (r cos(θ), r sin(θ))r 2 cos(θ) 2 u x (r cos(θ), r sin(θ))r cos(θ)) u y (r cos(θ), r sin(θ))r sin(θ). Oletuksen mukaan u xx (x, y) + u yy (x, y) = 0, erityisesti u xx (r cos(θ), r sin(θ)) + u yy (r cos(θ), r sin(θ)) = 0, ja tämän sekä kaavan cos(θ) 2 + sin(θ) 2 = 1 avulla näemme, että v rr (r, θ) + 1 r v r (r, θ) + 1 r 2 v θθ(r, θ) = 0 G. Gripenberg (Aalto-yliopisto) MS-A0207 Differentiaali- ja integraalilaskenta 2 (Chem) 21. Esimerkkejä tammikuutaym., 2016 osa I 15 / 32

Esimerkki: Suunnatut derivaatat Jos funktio f on kolmen muuttujan derivoituva funktio ja en suunnatut derivaatat pisteessä x 0 suuntiin u 1 = i + j, u 2 = j k ja u 3 = i + k ovat 1, 2 ja 3 niin voimme määrittää derivaatan pisteessä x 0 koska vektorit u 1, u 2 ja u 3 ovat lineaarisesti riippumattomia (eli erisuuntaisia): Oletamme, että f (x 0 ) = A i + B j + C k jolloin suunnatun derivaatan määritelmän nojalla saamme yhtälösysteemin 1 = D u1 f (x 0 ) = (A i + B j + C k) (i + j) 1 = 1 A + 1 B, 2 2 2 2 = D u2 f (x 0 ) = (A i + B j + C k) (j k) 1 2 = 1 2 B 1 2 C, 3 = D u3 f (x 0 ) = (A i + B j + C k) ( i + k) 1 2 = 1 2 A + 1 2 C. Matriisimuodossa tämä systeemi ja sen ratkaisu ovat 1 2 1 2 0 A 1 A 2 2 1 0 2 1 2 B = 2 B = 3 2. 1 1 2 0 2 C 3 C 2 G. Gripenberg (Aalto-yliopisto) MS-A0207 Differentiaali- ja integraalilaskenta 2 (Chem) 21. Esimerkkejä tammikuutaym., 2016 osa I 16 / 32

Esimerkki: Ketjusääntö ja virtausmekaniikka Oletamme, että neste virtaa tasossa siten, että nopeus pisteessä (x, y) hetkellä t on u(x, y, t)i + v(x, y, t)j. Jos nyt haluamme määrittää hetkellä t pisteessä (x, y) sijaitsevan nestepartikkelin kiihtyvyys niin ensin oletamme, että partikkelin sijainti hetkellä t on (X (t), Y (t)) (jolloin siis X (t) = x ja Y (t) = y jos se on pisteessä (x, y) hetkellä t). Silloin nopeus on X (t) i + Y (t) j, josta seuraa, että X (t) = u(x (t), Y (t), t) ja Y (t) = v(x (t), Y (t), t). Kiihtyvyys taas on X (t) i + Y (t) j ja ketjusäännön nojalla X (t) = u x (X (t), Y (t), t)x (t) + u y (X (t), Y (t), t)y (t) + u t (X (t), Y (t), t) = u x (X (t), Y (t), t)u(x (t), Y (t), t) + u y (X (t), Y (t), t)v(x (t), Y (t), t) + u t (X (t), Y (t), t) = u x (x, y, t)u(x, y, t) + u y (x, y, t)v(x, y, t) + u t (x, y, t), missä viimeisellä rivillä käytimme oletusta x(t) = x ja Y (t) = y. G. Gripenberg (Aalto-yliopisto) MS-A0207 Differentiaali- ja integraalilaskenta 2 (Chem) 21. Esimerkkejä tammikuutaym., 2016 osa I 17 / 32

Esimerkki: Ketjusääntö ja virtausmekaniikka, jatk. Samalla tavalla saamme Y (t) = v x (x, y, t)u(x, y, t) + v y (x, y, t)v(x, y, t) + v t (x, y, t). Näin ollen kiihtyvyys on ( ux (x, y, t)u(x, y, t) + u y (x, y, t)v(x, y, t) + u t (x, y, t) ) i + ( v x (x, y, t)u(x, y, t) + v y (x, y, t)v(x, y, t) + v t (x, y, t) ) j. Huomaa, että tämä on epälineaarinen lauseke eli jos u korvataan u 1 + u 2 :lla ja samoin v korvataan v 1 + v 2 :lla niin tulos ei ole kahden lausekkeen summa missä toisessa esiintyy u 1 ja v 1 ja toisessa u 2 ja v 2. Suuri osa virtausmekaniikan hankaluuksista on seuraus tästä epälineaarisuudesta. G. Gripenberg (Aalto-yliopisto) MS-A0207 Differentiaali- ja integraalilaskenta 2 (Chem) 21. Esimerkkejä tammikuutaym., 2016 osa I 18 / 32

Milloin pätee f(x) f(y) C x y kun kun x, y ρ? Jos f : R d R m on jatkuvasti derivoituva, niin jokainen komponentti f j, 1 j m, on jatkuvasti derivoituva ja löytyy luvut c j siten, että f j (v) C kun v ρ. Jos nyt x ja y ovat sellaisia, että x ρ ja y ρ niin määritellään funktio h kaavalla h j (t) = f j ((1 t)y + tx). Silloin h j on derivoituva reaaliarvoinen funktio ja väliarvolauseen nojalla f j (x) f j (y) = h j (1) h j (0) = h j(t j )(1 0), missä t j (0, 1). Ketjusäännön nojalla joten h j(t j ) = f j ((1 t j )y + t j x)(x y), f j (x) f j (y) = h j (1) h j (0) f j ((1 t j )y + t j x) x y c j x y, koska (1 t j )y + t j x) (1 t j ) y + t j x ρ. Näin ollen f (x) f (y) C x y missä C = c1 2 +... + c2 m. G. Gripenberg (Aalto-yliopisto) MS-A0207 Differentiaali- ja integraalilaskenta 2 (Chem) 21. Esimerkkejä tammikuutaym., 2016 osa I 19 / 32

Milloin pätee g(x) g(y) c x y kun kun x, y ρ? Ei välttämättä jos d > 1, g : R d R d on jatkuvasti derivoituva, ρ > 0 ja g (v)u > 0 kun v ρ, u R d ja u = 1 kuten seuraava esimerkki näyttää: Olkoon g(v) = Jos u = [ u1 u 2 e 2πs ρ cos( 2πt e 2πs ρ g (v) = 2π ρ ] niin ρ ) sin( 2πt ρ ) kun v = e 2πs ρ cos( 2πt ρ ) e 2πs ρ g (v)u = 2π ρ e 2πs ρ sin( 2πt ρ ) [ ] s. Silloin t 2πs e ρ sin( 2πt e 2πs ρ ρ ) cos( 2πt ρ ), [ cos( 2πt ρ )u 1 sin( 2πt ρ )u ] 2 sin( 2πt ρ )u 1 + cos( 2πt ρ )u 2, G. Gripenberg (Aalto-yliopisto) MS-A0207 Differentiaali- ja integraalilaskenta 2 (Chem) 21. Esimerkkejä tammikuutaym., 2016 osa I 20 / 32

Milloin pätee g(x) g(y) c x y kun kun x, y ρ? jatk. joten g (v)u ( 2 = 4π2 e 4πx ρ 2 ρ cos( 2πt ρ )2 u1 2 2 cos( 2πt ρ + sin( 2πt ρ )2 u 2 2 + sin( 2πt ρ )2 u 2 1 ) sin( 2πt ρ )u 1u 2 + 2 cos( 2πt 2πt ρ ) sin( ρ )u 1u 2 + cos( 2πt ρ )2 u2 2 Tästä päättelemme, että jos v ρ, niin s ρ ja kaikilla vektoreilla u. Jos nyt x = g (v)u 2π ρ e 2π u, [ ] 0 ja y = 0 ) = e 2x u 2. [ ] 0 niin g(x) g(y) = 0. ρ G. Gripenberg (Aalto-yliopisto) MS-A0207 Differentiaali- ja integraalilaskenta 2 (Chem) 21. Esimerkkejä tammikuutaym., 2016 osa I 21 / 32

Esimerkki: Tangenttitaso Jos haluamme määrittää funktion f (x, y) = x 2 y 2 kuvaajan tangenttitason kun x = 2 ja y = 1 niin kirjoitamme ensin yhtälön muodossa z = x 2 y 2 eli g(x, y, z) = 0 missä g(x, y, z) = x 2 y 2 z (vaikka se voisi yhtä hyvin olla g(x, y, z) = x 2 + y 2 + z). Funktion g derivaatta on Dg(x, y, z) = 2x i 2y j k ja pisteessä (2, 1, f (2, 1)) = (2, 1, 3) tämä derivaatta on n = 4 i 2j k. Tämä vektori on pinnan g(x, y, z) = 0 normaali pisteessä (2, 1, 3) ja samalla pinnan tässä pisteessä otetun tangenttitason normaali. Koska (2, 1, 3) on tangenttitason piste niin v = (x 2) i + (y 1) j + (z 3) k on tangenttitason suuntainen vektori jos (x, y, z) on myös tangenttitason piste. Näin ollen v on kohtisuorassa normaalia n vastaan eli v n = 0 ja tästä ehdosta saamme tangenttitason yhtälön 4(x 2) 2(y 1) (z 3) = 0 eli 4x 2y z = 3. G. Gripenberg (Aalto-yliopisto) MS-A0207 Differentiaali- ja integraalilaskenta 2 (Chem) 21. Esimerkkejä tammikuutaym., 2016 osa I 22 / 32

Lineaarinen approksimointi, suhteellinen virhe Jos meidän pitää arvioida virhettä, joka syntyy kun ympyräkartion tilavuus lasketaan kaavalla V = 1 3 πr 2 h ja tiedämme ainoastaan, että säteen r mitatun arvon virhe on korkeintaan 3% ja korkeuden h mitatun arvon virhe on korkeintaan 2% niin emme saa absoluuttista ylärajaa tilavuuden virheelle mutta saamme helposti approksimatiivisen ylärajan suhteelliselle virheelle seuraavalla tavalla: Lineaarisen approksimoinnin perusteella: V = V (r + r, h + h) V (r, h) V r (r, h) r + V h (r, h) h, josta seuraa, että 1 V V 3 2πrh r 1 3 πr 2 h + 1 3 πr 2 h 1 3 πr 2 h = 2 r r Koska oletamme, että r h r 0.03 ja h 0.02 niin V V 2 0.03 + 1 0.02 = 0.08, eli suhteellinen virhe on korkeintaan 8%. + 1 h h. G. Gripenberg (Aalto-yliopisto) MS-A0207 Differentiaali- ja integraalilaskenta 2 (Chem) 21. Esimerkkejä tammikuutaym., 2016 osa I 23 / 32

Esimerkki: Lineaarinen approksimointi Sylinterimäisen säiliön sisältämä nestemäärä, kun säiliön akseli on vaakasuorassa on V = L(r 2 arccos(1 h r ) (r h) 2hr h 2 ) missä L on säiliön pituus, joka on noin 2 m, r on säde, joka on noin 50 cm ja h on nestepinnan korkeus, joka myös on noin 50 cm. Pituuden L ja säteen r pystymme mittaamaan 1 cm tarkkuudella. Miten tarkasti meidän on mitattava h jotta saisimme nestemäärän lasketuksi 50 litran tarkkuudella? Määrittelemme f (L, r, h) = L (r 2 arccos(1 h ) r ) (r h) 2hr h 2. Silloin (funktion arccos(t) derivaatta on 1 1 t 2 ) f L (L, r, h) = ( r 2 arccos(1 h r ) (r h) 2hr h 2) f r (L, r, h) = 2Lr arccos(1 h r ) Lr 2 1 h 1 ( 1 h ) 2 r 2 L 2hr h 2 r h L(r h), 2hr h 2 G. Gripenberg (Aalto-yliopisto) MS-A0207 Differentiaali- ja integraalilaskenta 2 (Chem) 21. Esimerkkejä tammikuutaym., 2016 osa I 24 / 32

Esimerkki: Lineaarinen approksimointi, jatk. ja erityisesti f h (L, r, h) = Lr 2 1 1 ( 1 h ) 1 2 r + L 2hr h 2 r r h L(r h), 2hr h 2 f L (200, 50, 50) = π 2 f r (200, 50, 50) = π 2 2500 3927 20000 10000 10000 11416, f h (200, 50, 50) = 10000 + 10000 = 20000. Lineaarisella approksimoinnilla saamme f f L L + f r r + f h h. G. Gripenberg (Aalto-yliopisto) MS-A0207 Differentiaali- ja integraalilaskenta 2 (Chem) 21. Esimerkkejä tammikuutaym., 2016 osa I 25 / 32

Esimerkki: Lineaarinen approksimointi, jatk. josta seuraa, että f f L L + f r r + f h h 3927 1 + 11416 1 + 20000 h koska L 1 ja r 1. Jos nyt haluamme, että f 50 10 3 niin meidän täytyy vaatia, että 3927 1 + 21416 1 + 20000 h 50000, ja tästä seuraa, että pitää olla h 2.4. Huom Tässä kuten muissa vastaavissa laskuissa L on virhe tai poikkeama muuttujan L arvossa, eli L = L L 0 mutta :lla merkitään myös Laplacen differentiaalioperaattoria: u = u xx + u yy + u zz. G. Gripenberg (Aalto-yliopisto) MS-A0207 Differentiaali- ja integraalilaskenta 2 (Chem) 21. Esimerkkejä tammikuutaym., 2016 osa I 26 / 32

Esimerkki: Lineaarinen approksimointi Funktiosta f tiedämme, että f (3, 2) = 2.7, f (3.1, 2.2) = 2.75 ja f (2.9, 2.1) = 2.68. Nyt voimme seuraavalla tavalla arvioida derivaattaa käyttäen mikä on f (3.2, 1.9): Lineaarisella approksimoinnilla saamme f (3 + x, 2 + y) f (3, 2) + f x (3, 2) x + f y (3, 2) y. Jos ensin valitsemme x = 0.1 ja y = 0.2 ja sitten x = 0.1 ja y = 0.1 niin saamme yhtälösysteemin eli 2.75 = f ((3 + 0.1, 2 + 0.2) 2.7 + f x (3, 2) 0.1 + f y (3, 2) 0.2, 2.68 = f (3 0.1, 2 + 0.1) 2.7 + f x (3, 2) ( 0.1) + f y (3, 2) 0.1, 0.5 f x (3, 2) + 2f y (3, 2), 0.2 f x (3, 2) + f y (3, 2). G. Gripenberg (Aalto-yliopisto) MS-A0207 Differentiaali- ja integraalilaskenta 2 (Chem) 21. Esimerkkejä tammikuutaym., 2016 osa I 27 / 32

Esimerkki: Lineaarinen approksimointi, jatk. Laskemalla yhteen saamme ensin f y (3, 2) 0.1 ja sitten sijoittamalla tämän tuloksen ensimmäiseen yhtälöön saamme f x (3, 2) 0.5 0.2 = 0.3. Jos nyt valitsemme x = 0.2 ja y = 0.1 niin lineaarisella approksimoinnilla saamme f (3.2, 1.9) = f (3 + 0.2, 2 0.1) f (3, 2) + f x (3, 2) 0.2 + f y (3, 2) ( 0.1) 2.7 + 0.3 0.2 + 0.1 ( 0.1) Huomaa, että tässä virhelähteenä on myös epätarkkuudet osittaisderivaattojen arvoissa. = 2.7 + 0.06 0.01 = 2.75. G. Gripenberg (Aalto-yliopisto) MS-A0207 Differentiaali- ja integraalilaskenta 2 (Chem) 21. Esimerkkejä tammikuutaym., 2016 osa I 28 / 32

Differentiaali?? Sanomme, että ψ = a(x, y) dx + b(x, y) dy, on 1. kertaluvun differentiaalimuoto (tai differentiaalimuotokenttä koska kertoimet a ja b ovat muuttujien x ja y funktioita) tai lyhyemmin vain differentiaali. Tässä 1. kertaluvun tapauksessa voimme pitää dx symbolina, jota vastaa x-akselin suuntaista yksikkövektoria ja samoin dy symbolina jota vastaa y-akselin suuntaista yksikkövektoria jolloin differentiaalia ψ vastaa vektorifunktio [ a(x, y) b(x, y) ]. Tällaista differentiaalia voimme (kunhan kertoimet ovat esim. jatkuvia) integroida käyrää pitkin: Jos r(t) = x(t) i + y(t) j, t [a, b] on suunnatun käyrän C parametriesitys (ja funktiot x(t) ja y(t) ovat esim. paloittain jatkuvasti derivoituvia) niin C ψ = b a ( a(x(t), y(t))x (t) + b(x(t), y(t))y (t) ) dt. G. Gripenberg (Aalto-yliopisto) MS-A0207 Differentiaali- ja integraalilaskenta 2 (Chem) 21. Esimerkkejä tammikuutaym., 2016 osa I 29 / 32

Differentiaali??, jatk. Jos nyt a(x, y) = f x (x, y) ja b(x, y) = f y (x, y) niin ketjusäännön nojalla integroitavana on derivaatta jolloin saamme integraalin suoraan sijoittamalla ja ψ = f (r(b)) f (r(a)) = f (C:n loppupiste) f (C:n alkupiste). C Jos siis a(x, y) = f x (x, y) ja b(x, y) = f y (x, y) niin kirjoitamme ψ = df, sanomme, että ψ on funktion f kokonaisdifferentiaali ja df = f x dx + f y dy, ja tämän vastine on approksimointikaavaa f f x x + f y y. Mutta jos ei päde a(x, y) = f x (x, y) ja b(x, y) = f y (x, y) jollain funktiolla f niin C ψ on edelleen laskettavissa mutta tulos ei enää riipu pelkästään differentiaalista ψ ja käyrän päätepisteistä vaan myös siitä miten käyrä kulkee alkupisteestä loppupisteeseen. G. Gripenberg (Aalto-yliopisto) MS-A0207 Differentiaali- ja integraalilaskenta 2 (Chem) 21. Esimerkkejä tammikuutaym., 2016 osa I 30 / 32

Miksi Newtonin menetelmä konvergoi niin nopeasti kun se konvergoi? Oletamme, että funktio f : R d R d on derivoituva ja sellainen, että on olemassa vakioita L ja M siten, että f (x + v) f (x) L v ja f (x) 1 M, kaikilla x ja v R d (tai ainakin kun x = x n ja v x n+1 x n. Lisäksi oletamme, että f(x ) = 0. Jos käytämme Newtonin mentelmää yhtälösysteemin f(x) = 0 ratkaisemiseksi ja laskemme (x n ) n=0 niin pätee x n+1 x 1 2 ML x n x 2, n 1. Perustelu tähän on seuraava: Jos g : R R d on jatkuvasti derivoituva niin pätee g(1) g(0) g (0) = 1 0 (g (t) g (0)) dt. Jos g(t) = f(x + th) niin g (t) = f (x + th)h jolloin f(x + h) f(x) f (x)h = g(1) g(0) g (0) = 1 0 ( f (x + th)h f (x)h ) dt. G. Gripenberg (Aalto-yliopisto) MS-A0207 Differentiaali- ja integraalilaskenta 2 (Chem) 21. Esimerkkejä tammikuutaym., 2016 osa I 31 / 32

Miksi Newtonin menetelmä konvergoi niin nopeasti kun se konvergoi? jatk. Tästä epäyhtälöstä ja oletuksista seuraa, että f(x + h) f(x) f (x)h 1 f (x + th)h f (x)h dt 0 1 0 Lt h 2 dt = 1 2 L h 2. Jos nyt valitsemme x = x n ja h = x x n niin f(x n + h) = 0 ja x n+1 x = x n x f (x n ) 1 f(x n ) = f (x n ) 1( f(x n +h) f(x n ) f (x n )h ), ja oletuksesta edellä johdetusta epäyhtälöstä seuraa, että x n+1 x M f(x n + h) f(x n ) f (x n )h 1 2 ML x n x 2. Tästä tuloksesta seuraa, että ainakin jos 1 2 ML x m x < 1 jollain m 0 niin vektorit x n suppenevat kohti ratkaisua x ja kun x n x on riittävän pieni, niin etäisyys ratkaisuun pienenee hyvin nopeasti. G. Gripenberg (Aalto-yliopisto) MS-A0207 Differentiaali- ja integraalilaskenta 2 (Chem) 21. Esimerkkejä tammikuutaym., 2016 osa I 32 / 32