Havaitsevan tähtitieteen pk 1 Luento 5: Ilmaisimet ja uudet havaintotekniikat Jyri Näränen
Metsähovin ekskursio Keskiviikko 11.3. klo 18.30-> Tutustutaan teleskooppeihin ja observatorioalueeseen Jos sää on hyvä niin myös pyritään havaitsemaan Kulku omalla kyydillä (sijaitsee Kirkkonummella, n. 10 km päässä Veikkolasta) Lisää ohjeita lähempänä ajankohtaa
5. Ilmaisimet ja uudet havaintotekniikat 1. Silmä, valokuvaus, valomonistinputki 2. CCD 3. Kohina ja sen vaikutus havaintoihin 4. Suuret teleskoopit 5. Aktiivinen ja adaptiivinen optiikka 6. Monipeili- ja mosaiikkiteleskoopit 7. Interferometria 8. Muut 9. Avaruusteleskoopit
5.1 Silmä ja valokuvaus Silmällä tehtäviä havaintoja ei käytännössä ammattimaisessa tähtitieteessä enää käytetä Valokuvausfilmi oli huomattava parannus silmällä tehtäviin havaintoihin (mm. kyky objektiivisesti tallentaa vs. käsin piirtää), mutta filmit olivat usein hyvin epälineaarisia herkkyydessään, joten datan käsittely vaati taikuutta valokuvauslevyn kvanttihyötysuhde eli kvanttiefektiivisyys (QE) vain muutamia prosentteja Käytännössä valokuvalevyjäkään ei enää käytetä ollenkaan
5.1 Valomonistinputki Valomonistimeen osuva fotoni tuottaa elektronin (virtaa), joka vahvistetaan 10 5-10 8 -kertaiseksi Kvanttihyötysuhde on 20-30% Valomonistinputki on lineaarinen käyttöalueellaan Vielä nykyään käytössä joissain fotometreissä ja polarimetreissä Etsimenä näissäkin usein CCD Ongelmana mm. käytön hankaluus sekä korkeajännitevaatimus (turvallisuusriski)
5.2 CCD Ehdottomasti käytetyin detektori nykyaikaisessa tähtitieteessä Perustuu puolijohteissa tapahtuvaan valosähköiseen ilmiöön Lineaarinen alue hyvin laaja Kvanttiefektiivisyys erittäin hyvä Nykyisin kuvakenttäkin melko iso (esim. Fairchildilla 85 Mpix vrt. yli Gpix mosaiikit) Kuva sellaisenaan valmis digitaaliseen kuvankäsittelyyn
5.2 CCD CCDn peruskuvaelementti on pikseli, joka on positiivisella varauksella aikaansaatu potentiaalikuoppa kun saapuva fotoni irrottaa puolijohteesta elektronin, jää se kuoppaan ja tieto saapuneesta fotonista tallentuu Jokainen elektroni heikentää potentiaalia, joten pikseli voi ottaa vastaan vain tietyn määrän fotoneita ennen kuin se saturoituu Valosähköisen ilmiön tehokkuus riippuu aallonpituudesta. esim. piin valosähköinen ilmiö tapahtuu 1.14eV:n energialla eli noin 1100nm aallonpituudella tätä matalammat energiat/ suuremmat aallonpituudet eivät rekisteröidy suuret energiat taas reagoivat usein jo liian aikaisin
5.2 CCD Kennoon kerätään valoa haluttu aika, jonka jälkeen se luetaan kellottamalla Elektronit pusketaan ensin esivahvistimeen joka jälkeen kennon ulkopuoliseen vahvistimeen ja sen jälkeen analogi-digitaali muuntimeen
5.2 CCD CCD signaalin perusyksikkö on ADU (analog to digital unit, usein puhutaan myös counts:eista), joka liittyy mittattuun signaaliin vahvistuskertoimen G=ne - /ADU avulla. Tyypillisesti n=1-5 Valitaan niin, että A/D muuntimen digitointiskaala (useimmin 16 bittiä=2 16 =65536) kattaa pikselin koko tallennuskapasiteetin esim. jos pikselin tallennuskapasiteetti 100000 elektronia, niin hyvä G olisi 100000e - /65536 ADU=1.5e - /ADU
5.2 CCD Varauksensiirtotehokkuus kertoo siitä, kuinka suuri osa elektroneista oikeasti siirtyy kellotuksessa eteenpäin Jos se on huono, jää kirkkaista kohteista perään huntuja ja kuvan taustaan muodostuu selvä viimeisiä luettuja pikseleitä kohti kasvava gradientti Pimeävirta (dark current) on puolijohteessa lämpöliikkeen generoimista elektroneista johtuvaa kohinaa Piillä pimeävirta putoaa kolmasosaan, kun lämpötila putoaa kymmenen astetta tästä johtuen ammattimaiset CCD:t jäähdytetään nestetypellä erityisissä kryostaateissa (~-170 C, NIR heliumilla ~-210 C)
5.2 CCD Kaikiin CCD kuviin lisätään ennen digitointia pieni lisäjännite ns. bias, jolla estetään heikon signaalin leikkaantuminen digitoinnissa Bias vaihtelee yöstä toiseen jonkin verran Joissain kameroissa on mahdollisuus lukea 20-50 tyhjää riviä sen jälkeen kun varsinainen kuva on luettu ja tallentaa tulos kuvan yhteyteen. Tämä ns. overscan alue kertoo suoraan kuvan bias -tason.
5.3 CCD havaintojen kohina Fotonikohina johtuu Poisson statistiikasta asettaa alarajan kohinalle voidaan minimoida pidentämällä valotusta Lukukohina Pimeävirta voidaan mitata Pikselien herkkyysvaihtelut flat field -kuvat
5.3 CCD havaintojen kohina Muut kohinalähteet: kosmiset säteet blooming saturoituminen epälineaarisuus
5.4 Suuret teleskoopit Motivaattorina halu nähdä kauemmas ja himmeämpiä kohteita tästä johtuen suuret teleskoopit usein optimoituja lähi-infrapunaan (maailmankaikkeuden laajenemisesta johtuva punasiirtymä) Detektorien parannuttua, teleskooppien valonkeräyspinta-alasta tuli rajoite Kehitetty uusia tekniikoita, joilla pystytty rakentamaan yhä isompia teleskooppeja
5.5 Aktiivinen ja adaptiivinen optiikka Aktiivisella optiikalla voidaan tehdä suhteellisen hitaita (f 0.01 Hz) muutoksia peilin muotoon Käytännössä kaikki nykyaikaiset peilit ovat niin ohuita, etteivät pysy muodossaan ilman apua Voidaan aktiivisesti seurata aaltoorintaman muotoa ja/tai noudattaa ennalta rakennettua mallia Peilin ja teleskoopin lämpötilan muutoksiin voidaan reagoida aktiivisella optiikalla Myös ilmakehän hitaita muutoksia voidaan kompensoida
5.5 Aktiivinen ja adaptiivinen optiikka Adaptiivinen optiikka pyrkii korjaamaan ilmakehän muutoksia jopa 1000 kertaa sekunnissa Aaltorintaman muotoa seurataan koko ajan ja muutokset kompensoidaan kuvaan muuttamalla apupeilin muotoa Tarvitsee referenssilähteen (kohde itse, läheinen tähti, lasermajakka) Kuvan terävyys parantuu noin kymmenkertaisesti Ongelmana on verrattain pieni käyttökelpoinen kuvakenttä
5.5 Aktiivinen ja adaptiivinen optiikka Riittävän kirkasta referenssitähteä vaikea löytää Laserin avulla voidaan luoda keinotähti Käytetään hyväksi joko Rayleigh n sirontaa tai 92km korkeudella olevaa natrium kerrosta (589 nm) Laserilla ei voi poistaa kaikkia virheitä, koska valo kulkee ilmakehän läpi kahteen suuntaan Laser voi häiritä observatorion muita teleskooppeja (puhumattakaan lentoliikenteestä).
5.5 Adaptiivinen optiikka Kaavio adaptiiviselle optiikalle
5.5 Adaptiivinen optiikka Adaptiivisen optiikan vaikutus
5.5 Adaptiivinen optiikka Adaptiivisen optiikan vaikutus Uranuksen kuva (Keck)
5.6 Monipeili- ja mosaiikkiteleskoopit Suurten monoliittipeilien yläraja ~8 metriä (LBT 8.4m isoin) Yli 6m yleensä kuitenkin mosaiikkeja Mosaiikkiteleskooppi toimii kuin yksipeilinen erotuskyky ja valonkeräyskyky lasketaan kuin yhtenäiselle peilille peilien etäisyydet toistensa suhteen tunnettava erittäin tarkasti Sen sijaan monipeiliteleskooppi toimii kuin monta teleskooppia yhdessä erotuskyky sama kuin yksittäisillä peileillä. Sen sijaan valonkeräyskyky yhteenlaskettu mahdollisuus tehdä interferometriaa
5.6 Monipeili- ja mosaiikkiteleskoopit
5.7 Interferometria Ollut käytössä radiotähtitieteessä jo kauan Yhdistämällä useasta teleskoopista tuleva valo samassa vaiheessa voidaan saavuttaa resoluutio, joka on sama kuin teleskooppien välisen matkan kokoisella yksittäisellä peilillä Valonkeräyspinta-ala on peilien yhteenlaskettu pinta-ala Vaatii teleskooppien välimatkan erittäin tarkkaa hallintaa (muuttuu koko ajan) Kuva muodostetaan Fourier -muunnoksella
5.7 Interferometria Resoluution parannus saavutetaan vain baseline:n kanssa yhdensuuntaisessa suunnassa, muualla resoluutio pysyy samana, kuin yksittäisellä teleskoopilla Siksi mahdollisimman monipuolinen konfiguraatio on hyödyllinen
5.7 VLTI VLT + 4x1.8m aputeleskooppia millikaarisekuntti resoluutio 200m halkaisija
5.7 OHANA (Optical Hawaiian Array for Nanoradian Astronomy) Pohjana Keck -interferometri Keck:it on jo pystytty linkittämään valokaapelilla (Science 311 194) Valmistuttuaan halkaisija 800m ja erotuskyky alle millikaarisekunnin (lähiinfrapunassa)
5.8 Lucky -kuvaus Uusi kohinaton lukutekniikka tehnyt mahdolliseksi Kun luetaan nopeasti ja kuvista valitaan vain parhaat, niin saavutetaan jopa 5-7 kertainen parannus resoluutiossa Kohteiden oltava melko kirkkaita Tällä hetkellä vielä kuvakenttä aika rajattu
5.8 Lucky -kuvaus
5.8 Tähtitiedettä Antarktiksella Suurin osa seeingiä aiheuttavista ilmiöistä tapahtuu troposfäärissä. Antarktiksella on paikkoja, joissa tropopaussi on todella lähellä maan pintaa. Esim. Dome-C, jossa mediaani seeingiksi on mitattu 0.27 parhaaksi 0.07 Lisäksi ilma on siellä erittäin kuivaa (nir) Pitkä yö antaa mahdollisuuksia ainutlaatuiseen tieteeseen Ongelmana lähinnä kaukainen sijainti ja äärimmäiset sääolosuhteet
5.8 SALT ja HET Hobby-Eberle Telescope ja South African Large Telescope Isoja mosaiikkiteleskooppeja, jotka on rakennettu niin, että niiden pääpeilin zeniittikulma on kiinteä Voidaan liikuttaa vain atsimuuttisuunnassa Tällä saadaan aikaa huomattavia säästöjä rakennuskuluissa Apupeiliä liikuttamalla saadaan skannattua noin 70% taivaasta yön aikana (efektiivinen pinta-ala kärsii, vrt. Arecibo) Erinomaisia ns. patch-mode havaintoihin
5.8 ULTRACAM Englantilainen instrumentti, tarjoavat myös mm. ESOlle Samanaikaista CCDfotometriaa kolmella kaistalla Jopa 1/100 sekunnin aikaresoluutio Jälleen kerran, tarvitsee paljon fotoneita (sekä vertailutähden suhteelliseen fotometriaan)
5.8 Liquid mirror telescope Pyörivä neste muodostaa paraabelipinnan Heijastavana nesteenä esim. Elohopea Rajoituksena suuntaus (peiliä ei voi kääntää) Suurin käytössä oleva on Kanadassa sijaitseva 6m Large Zenith Telescope
5.9 Avaruusteleskoopit Avaruuteen siirryttäessä ilmakehän ongelmat (seeing, absorptio,...) poistuvat, tosin tulee muita ongelmia Optisella alueella käytännössä vain Hubble ja tulevaisuudessa JWST (lähi-infrapuna) Se on kuitenkin todella kallista verrattuna maanpääliseen tutkimukseen Hubble 1.5X10^9 $ + 2.5X10^8 $/vuosi JWST >3X10^9 $ Keckit ~2X10^8 $ + 2X10^7 $/vuosi E-ELT ~8X10^8 $