3 Suorat ja tasot. 3.1 Suora. Tässä luvussa käsitellään avaruuksien R 2 ja R 3 suoria ja tasoja vektoreiden näkökulmasta.



Samankaltaiset tiedostot
Vektorien pistetulo on aina reaaliluku. Esimerkiksi vektorien v = (3, 2, 0) ja w = (1, 2, 3) pistetulo on

Yhteenlaskun ja skalaarilla kertomisen ominaisuuksia

Taso 1/5 Sisältö ESITIEDOT: vektori, koordinaatistot, piste, suora

Johdatus lineaarialgebraan

7 Vapaus. 7.1 Vapauden määritelmä

Lineaarialgebra ja matriisilaskenta I, HY Kurssikoe Ratkaisuehdotus. 1. (35 pistettä)

Ristitulolle saadaan toinen muistisääntö determinantin avulla. Vektoreiden v ja w ristitulo saadaan laskemalla determinantti

Johdatus lineaarialgebraan

Suorat ja tasot, L6. Suuntajana. Suora xy-tasossa. Suora xyzkoordinaatistossa. Taso xyzkoordinaatistossa. Tason koordinaattimuotoinen yhtälö.

Vektorit, suorat ja tasot

Suora 1/5 Sisältö ESITIEDOT: vektori, koordinaatistot, piste

Johdatus lineaarialgebraan

Suora. Määritelmä. Oletetaan, että n = 2 tai n = 3. Avaruuden R n suora on joukko. { p + t v t R},

Lineaarikombinaatio, lineaarinen riippuvuus/riippumattomuus

Bijektio. Voidaan päätellä, että kuvaus on bijektio, jos ja vain jos maalin jokaiselle alkiolle kuvautuu tasan yksi lähdön alkio.

Kannan vektorit siis virittävät aliavaruuden, ja lisäksi kanta on vapaa. Lauseesta 7.6 saadaan seuraava hyvin käyttökelpoinen tulos:

9 Matriisit. 9.1 Matriisien laskutoimituksia

Kuvaus. Määritelmä. LM2, Kesä /160

Avaruuden kolme sellaista pistettä, jotka eivät sijaitse samalla suoralla, määräävät

Ota tämä paperi mukaan, merkkaa siihen omat vastauksesi ja tarkista oikeat vastaukset klo 11:30 jälkeen osoitteesta

Tekijä Pitkä matematiikka Suoran pisteitä ovat esimerkiksi ( 5, 2), ( 2,1), (1, 0), (4, 1) ja ( 11, 4).

3 Skalaari ja vektori

Suorista ja tasoista LaMa 1 syksyllä 2009

Tekijä Pitkä matematiikka Poistetaan yhtälöparista muuttuja s ja ratkaistaan muuttuja r.

TASON YHTÄLÖT. Tason esitystapoja ovat: vektoriyhtälö, parametriesitys (2 parametria), normaalimuotoinen yhtälö ja koordinaattiyhtälö.

Tekijä Pitkä matematiikka b) Kuvasta nähdään, että b = i 4 j. c) Käytetään a- ja b-kohtien tuloksia ja muokataan lauseketta.

Tekijä Pitkä matematiikka On osoitettava, että jana DE sivun AB kanssa yhdensuuntainen ja sen pituus on 4 5

Vektoreiden virittämä aliavaruus

Yleistä vektoreista GeoGebralla

Matikkaa KA1-kurssilaisille, osa 3: suoran piirtäminen koordinaatistoon

Lineaarialgebra ja matriisilaskenta I. LM1, Kesä /218

Lineaarialgebra ja matriisilaskenta II. LM2, Kesä /141

1.1 Vektorit. MS-A0007 Matriisilaskenta. 1.1 Vektorit. 1.1 Vektorit. Reaalinen n-ulotteinen avaruus on joukko. x 1. R n. 1. Vektorit ja kompleksiluvut

Vapaus. Määritelmä. Vektorijono ( v 1, v 2,..., v k ) on vapaa eli lineaarisesti riippumaton, jos seuraava ehto pätee:

Lineaarikuvauksen R n R m matriisi

Vapaus. Määritelmä. jos c 1 v 1 + c 2 v c k v k = 0 joillakin c 1,..., c k R, niin c 1 = 0, c 2 = 0,..., c k = 0.

Tehtävä 1. Arvioi mitkä seuraavista väitteistä pitävät paikkansa. Vihje: voit aloittaa kokeilemalla sopivia lukuarvoja.

JAKSO 2 KANTA JA KOORDINAATIT

Kertausta: avaruuden R n vektoreiden pistetulo

Vektorien virittämä aliavaruus

Ominaisarvo ja ominaisvektori

Avaruuden R n aliavaruus

9. Vektorit. 9.1 Skalaarit ja vektorit. 9.2 Vektorit tasossa

BM20A5800 Funktiot, lineaarialgebra ja vektorit Harjoitus 4, Syksy 2016

MAA15 Vektorilaskennan jatkokurssi, tehtävämoniste

Tämän luvun tarkoituksena on antaa perustaidot kompleksiluvuilla laskemiseen sekä niiden geometriseen tulkintaan. { (a, b) a, b œ R }

Havainnollistuksia: Merkitään w = ( 4, 3) ja v = ( 3, 2). Tällöin. w w = ( 4) 2 + ( 3) 2 = 25 = 5. v = ( 3) = 13. v = v.

Lineaarialgebra ja matriisilaskenta I

Vektorit. Kertausta Seppo Lustig (Lähde: avoinoppikirja.fi)

Lineaarialgebra ja matriisilaskenta I

Insinöörimatematiikka D

Vastaavasti, jos vektori kerrotaan positiivisella reaaliluvulla λ, niin

Jokaisen parittoman kokonaisluvun toinen potenssi on pariton.

Lineaariavaruudet. Span. Sisätulo. Normi. Matriisinormit. Matriisinormit. aiheita. Aiheet. Reaalinen lineaariavaruus. Span. Sisätulo.

Johdatus lineaarialgebraan

6 Vektoriavaruus R n. 6.1 Lineaarikombinaatio

0, niin vektorit eivät ole kohtisuorassa toisiaan vastaan.

1 Lineaariavaruus eli Vektoriavaruus

802320A LINEAARIALGEBRA OSA I

GEOMETRIA MAA3 Geometrian perusobjekteja ja suureita

Algebra I, harjoitus 5,

Ortogonaaliprojektio äärellisulotteiselle aliavaruudelle

Tekijä Pitkä matematiikka

Suora. Hannu Lehto. Lahden Lyseon lukio

Matriisit. Määritelmä 1 Reaaliluvuista a ij, missä i = 1,..., k ja j = 1,..., n, muodostettua kaaviota a 11 a 12 a 1n a 21 a 22 a 2n A =

5 Lineaariset yhtälöryhmät

Lineaarialgebra ja matriisilaskenta I

Insinöörimatematiikka D, laskuharjoituksien esimerkkiratkaisut

1 Kannat ja kannanvaihto

3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä

Johdatus lineaarialgebraan

VEKTORIT paikkavektori OA

Koodausteoria, Kesä 2014

Ominaisvektoreiden lineaarinen riippumattomuus

Ratkaisu: a) Kahden joukon yhdisteseen poimitaan kaikki alkiot jotka ovat jommassakummassa joukossa (eikä mitään muuta).

Vapaus. Määritelmä. jos c 1 v 1 + c 2 v c k v k = 0 joillakin c 1,..., c k R, niin c 1 = 0, c 2 = 0,..., c k = 0.

HY / Avoin yliopisto Lineaarialgebra ja matriisilaskenta II, kesä 2015 Harjoitus 1 Ratkaisut palautettava viimeistään maanantaina klo

Ortogonaalinen ja ortonormaali kanta

POHDIN - projekti. Funktio. Vektoriarvoinen funktio

Surjektion käsitteen avulla kuvauksia voidaan luokitella sen mukaan, kuvautuuko kaikille maalin alkioille jokin alkio vai ei.

l 1 2l + 1, c) 100 l=0 AB 3AC ja AB AC sekä vektoreiden AB ja

Kertausta: avaruuden R n vektoreiden pistetulo

l 1 2l + 1, c) 100 l=0

Juuri 4 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty Kertaus. b) B = (3, 0, 5) K2. ( )

Juuri Kertaus Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty

1 Sisätulo- ja normiavaruudet

802320A LINEAARIALGEBRA OSA II

MS-A0002 Matriisilaskenta Luento 1:Vektorit ja lineaariyhdistelyt

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt

Ratkaisut vuosien tehtäviin

A-osio. Tehdään ilman laskinta ja taulukkokirjaa! Valitse tehtävistä A1-A3 kaksi ja vastaa niihin. Maksimissaan tunti aikaa suorittaa A-osiota.

1. Osoita, että joukon X osajoukoille A ja B on voimassa toinen ns. de Morganin laki (A B) = A B.

Johdatus matematiikkaan

-Matematiikka on aksiomaattinen järjestelmä. -uusi tieto voidaan perustella edellisten tietojen avulla, tätä kutsutaan todistamiseksi

Ensimmäisen asteen polynomifunktio

Insinöörimatematiikka D

Transkriptio:

3 Suorat ja tasot Tässä luvussa käsitellään avaruuksien R 2 ja R 3 suoria ja tasoja vektoreiden näkökulmasta. 3.1 Suora Havaitsimme skalaarikertolaskun tulkinnan yhteydessä, että jos on mikä tahansa nollasta poikkeava tason R 2 vektori ja t on jokin reaaliluku, niin vektori t on yhdensuuntainen vektorin kanssa. Tällöin nähdään myös, että näitä vektoreita vastaavat koordinaatiston pisteet sijaitsevat samalla suoralla. Voidaan siis sanoa, että vektorijoukkoa {t t R} (1) vastaava pistejoukko muodostaa koordinaatiston suoran. Kullakin kertoimen t valinnalla saadaan jokin suoran pisteistä. Jos valitaan t = 1, saadaan alkuperäinen piste. Kun edellä mainitussa esityksessä t valitaan t = 0, saadaan nollavektori 0. Nollavektori on siis aina mukana muotoa (1) olevassa suorassa. Jos halutaan muodostaa vektoreista suora, joka ei kulje origon kautta, on origo ensin siirrettävä haluttuun paikkaan. Tämä näkyy seuraavassa määritelmässä. Määritelmä toimii yhtä hyvin kaksi- kuin kolmiulotteisessakin avaruudessa. Määritelmä 3.1. lkoon n = 2 tai n = 3. Avaruuden R n suora on joukko { + t t R}, missä R n ja R n \ { 0}. Vektoria kutsutaan suoran paikkavektoriksi ja vektoria suoran suuntavektoriksi. lkoon S avaruuden R 2 suora. Jos (a, b) S, niin sanotaan, että piste (a, b) on suoralla S tai että suora S kulkee pisteen (a, b) kautta. Vastaavia ilmauksia käytetään avaruudessa R 3. Huom. Yllä ei ole annettu mitä tahansa suoran kuvailua, vaan suoran määritelmä. Emme siis ole lähteneet esimerkiksi jostakin suoran geometrisestä muotoilusta ja ilmaisseet saman asian vektoreilla, vaan määritelleet suoran käsitteen tämän kurssin tarpeita varten uudelleen. Esimerkki 3.2. Esimerkiksi joukko S = {( 1, 2) + t( 2, 1) t R} on suora. Se on piirretty kuvaan 3.8. Määritelmän mukaan mikä tahansa suoran S piste voidaan kirjoittaa summana vektorista = ( 1, 2) ja jostakin vektorin = ( 2, 1) skalaarimonikerrasta. Esimerkiksi ( 5, 0) = +2 ja (3, 4) = 2, joten ( 5, 0) S ja (3, 4) S. Siis suora S kulkee pisteiden ( 5, 0) ja (3, 4) kautta. 11

(3,4) = ( 2, 1) = ( 1, 2) (4,2) ( 5, 0) Kuva 3.8: Suora S avaruudessa R 2. Toisaalta piste (4, 2) ei ole suoralla S. Jos nimittäin (4, 2) = ( 1, 2)+t( 2, 1) jollakin t R, niin 4 = 1 2t ja 2 = 2 t. Ensimmäisen yhtälön perusteella t = 5/2 ja toisen perusteella t = 0. Tämä on mahdotonta, joten ei ole olemassa sellaista lukua t R, jolle pätee (4, 2) = ( 1, 2) + t( 2, 1). Siispä (4, 2) / S. Ryhdytään seuraavaksi määrittämään suoraa, joka kulkee annettujen pisteiden kautta. Sitä ennen otetaan käyttöön muutama merkintä. letetaan, että A ja B ovat avaruuden R 2 tai R 3 pisteitä. Vektori AB on vektori, jota vastaavan suuntajanan alkupiste on A ja päätepiste on B (ks. kuva 3.9). rigoa on tapana merkitä kirjaimella. Siten pisteen A paikkavektorille saadaan merkintä A. B AB = B A B A A Kuva 3.9: Vektorit A, B ja AB. Esimerkki 3.3. Tutkitaan, millainen on pisteiden A = ( 1, 5) ja B = (2, 2) kautta kulkeva suora. Tätä varten tarvitaan suoralle paikkavektori. Paikkavektoriksi käy minkä tahansa suoran pisteen paikkavektori, esimerkiksi vektori A = ( 1, 5). Suuntavektoriksi käy mikä tahansa suoran suuntainen vektori, esimerkiksi vektori AB = B A = (2, 2) ( 1, 5) = (3, 3). Näin saadaan suora {( 1, 5) + t(3, 3) t R}. 12

A = ( 1,5) AB = (3, 3) Kuva 3.10: Suora {( 1, 5) + t(3, 3) t R}. Varmistutaan vielä siitä, että annetut pisteet A ja B todellakin ovat suoralla. Huomataan, että ( 1, 5) = ( 1, 5) + 0 (3, 3) ja (2, 2) = ( 1, 5) + (3, 3). Siten pisteet A ja B ovat suoralla. Vastaavalla menetelmällä on aina mahdollista määrittää kahden pisteen kautta kulkeva suora, vaikka asiaa ei sen tarkemmin tässä osoitetakaan. Suoran paikka- ja suuntavektorit eivät ole yksikäsitteisiä, sillä sama suora voidaan kirjoittaa joukkona { + t t R} usealla eri tavalla. Itse asiassa on mahdollista osoittaa, että vektoriksi voidaan valita suoran minkä tahansa pisteen paikkavektori vektoriksi voidaan valita mikä tahansa suoran suuntainen vektori. Väitteitä ei todisteta tässä; todistukset voi halutessaan laatia hieman haastavampana harjoitustehtävänä. Esimerkki 3.4. Esimerkin 3.2 suoralle S = {( 1, 2)+t( 2, 1) t R} on mahdollista valita paikkavektoriksi piste (3, 4) ja suuntavektoriksi vektori ( 4, 2). Tällöin S voidaan kirjoittaa muodossa {(3, 4) + s( 4, 2) s R}. Vaikka tämä joukko onkin äkkiseltään katsottuna erilainen kuin suoran S alkuperäinen määritelmä, on joukoissa täsmälleen samat alkiot. Asiaa on havainnollistettu kuvassa 3.11. soitetaan vielä huolellisesti, että joukot S = {( 1, 2) + t( 2, 1) t R} ja S = {(3, 4) + s( 4, 2) s R} ovat samat. Kaksi joukkoa osoitetaan samoiksi näyttämällä, että kumpikin on toisen osajoukko. : soitetaan ensin, että S S. Tämä tehdään näyttämällä, että jokainen joukon S alkio on joukossa S. letetaan, että ā S. Joukon S määritelmän 13

= ( 2, 1) = (3, 4) = ( 1,2) = ( 4, 2) Kuva 3.11: Suoran paikkavektori ja suuntavektori eivät ole yksikäsitteisiä. perusteella pätee ā = ( 1, 2) + t( 2, 1) jollakin t R. Huomataan, että ā = ( 1, 2) + t( 2, 1) = ( 1, 2) + ( 2 + 2 + t)( 2, 1) = ( 1, 2) 2( 2, 1) + (2 + t)( 2, 1) = (3, 4) + (2 + t)( 2, 1) = (3, 4) + 2 + t ( 4, 2). 2 Koska (2 + t)/2 R, viimeisestä muodosta nähdään, että ā S. (Joukon S määritelmässä voidaan valita s = (2 + t)/2.) n siis osoitettu, että S S. : soitetaan sitten, että S S, eli näytetään, että jokainen joukon S alkio on joukossa S. letetaan, että ā S. Nyt ā = (3, 4) + s( 4, 2) jollakin s R. Huomataan, että ā = (3, 4) + s( 4, 2) = (3, 4) + ( 4, 2) + (s 1)( 4, 2) = ( 1, 2) + (s 1)( 4, 2) = ( 1, 2) + 2(s 1)( 2, 1). Koska 2(s 1) R, nähdään, että ā S. Näin on osoitettu, että S S. 3.2 Taso Kolmiulotteisessa avaruudessa voidaan määritellä tasot samaan tapaan kuin suorat. Nyt tarvitaan kuitenkin kahta suuntavektoria, ja näiden täytyy olla erisuuntaiset. Määritelmä 3.5. Avaruuden R 3 taso on joukko { + s + t w s, t R}, missä R 3,, w R 3 \{ 0} ja vektorit ja w eivät ole yhdensuuntaiset. Vektoria kutsutaan tason paikkavektoriksi ja vektoreita ja w tason suuntavektoreiksi. lkoon T avaruuden R 3 taso. Jos (a, b, c) T, niin sanotaan, että piste (a, b, c) on tasossa T tai että taso T kulkee pisteen (a, b, c) kautta. Tasoa ja siinä olevaa pistettä on havainnollistettu kuvassa 3.12. 14

w (a,b,c) Kuva 3.12: Piste (a, b, c) on tasossa T. Kuten suorien kohdalla voidaan tasojenkin tapauksessa osoittaa, että sama taso on mahdollista kirjoittaa usealla eri tavalla joukkona { + s w + t s, t R}. Tarkemmin sanoen vektoriksi voidaan valita tason minkä tahansa pisteen paikkavektori vektoreiksi w ja voidaan valita mitkä tahansa tason suuntaisen vektorit, kunhan w ja eivät ole yhdensuuntaiset. Tilannetta on havainnollistettu kuvassa 3.13. Tarkka todistus jätetään jälleen (haastavaksi) harjoitustehtäväksi. w w Kuva 3.13: Taso voidaan kirjoittaa eri tavoin joukkona { + s w + t s, t R}. Esimerkki 3.6. Määritetään pisteiden A = (0, 1, 0), B = ( 1, 3, 2) ja C = ( 2, 0, 1) kautta kulkeva taso T. Valitaan ensin tason paikkavektori. Esimerkiksi tason pisteen A paikkavektori A = (0, 1, 0) käy tähän tarkoitukseen. Lisäksi tarvitaan tason suuntaiset suuntavektorit: AB = B A = ( 1, 2, 2) ja AC = C A = ( 2, 1, 1). Huomaa, että vektorit eivät ole yhdensuuntaiset, sillä AB rac kaikilla nollasta poikkeavilla reaaliluvuilla r. (Tämä pitäisi tietysti todistaa täsmällisesti, mutta sivuutamme sen.) Näin saadaan taso T = { A + sab + tac s, t R } = {(0, 1, 0) + s( 1, 2, 2) + t( 2, 1, 1) s, t R}. 15