FoA5 Tilastollisen analyysin perusteet puheentutkimuksessa Luentokuulustelujen esimerkkivastauksia Pertti Palo 30. marraskuuta 2012
Saatteeksi Näiden vastausten ei ole tarkoitus olla malleja vaan esimerkkejä. Ne saattavat olla epäselviä tai jopa virheellisiä, missä tapauksessa siitä saa kertoa luennoitsijalle. Kun jonkin luennon kuulustelun esimerkkivastaukset ovat netissä, ei sitä luentokuulustelua enää voi suorittaa paitsi erisopimuksella (ja eri kysymyksillä).
Luento 1. 1. Palautetta tästä luennosta: Mikä luennossa oli hyvää, mikä huonoa? 2. Mitä funktio tekee? Mihin funktioita voi käyttää? 1. Ensimmäiseen kysymykseen ei yllättäen ole mallivastausta. 2. Wikipedia sanoo näin: Funktio eli kuvaus kertoo olioiden välisistä riippuvuussuhteista. Yleensä siten, että se kytkee yhden muuttujan arvoon toisen muuttujan vastaavan arvon yksikäsitteisesti: tiettyä ensimmäisen muuttujan arvoa vastaa vain yksi toisen muuttujan arvo. Toisin sanoen muuttujan arvoa vastaa vain yksi funktion arvo. Funktioita voi käyttää paitsi jatkuvien muuttujien myös diskreettien muuttujien riippuvuussuhteiden tutkimisessa, kuvailussa ja mallintamisessa.
Luento 2. 1. Mitä tarkoitetaan ehdollisella todennäköisyydellä? 2. Mitä histogrammi kuvaa? 1. Ehdollinen todennäköisyys P(A B) on todennäköisyys tapahtumalle A sillä ehdolla eli siinä tilanteessa, että tapahtuman B tiedetään jo tapahtuneen. 2. Wikipedia: Histogrammi on graafinen esitys tilastollisesta jakaumasta. Histogrammi esittää tarkasteltavan muuttujan arvojen jakautumisen jonkin valitun luokkajaon mukaisesti. Se koostuu suorakulmionmuotoisista pinnoista, joiden pinta-ala esittää kyseiseen luokkaan kuuluvien tapausten määrää. Yleensä jokaisen suorakaiteen leveys asetetaan yhtä suureksi, jolloin suorakaiteen korkeus on suoraan verrannollinen luokkaan kuuluvien tapausten määrään.
Luento 3. 1. Mitä tarkoitetaan todennäköisyysjakaumalla? 2. Mihin tilastollisella testaamisella pyritään? 1. Wikipedia: Todennäköisyysjakauma on todennäköisyyslaskennan käsite, jolla kuvataan satunnaismuuttujan todennäköisyyttä saada tietty arvo. Todennäköisyysjakauma siis kuvaa todennäköisyyden tai todennäköisyystiheyden jakautumista muuttujan eri arvojen kesken. 2. Tilastollisen testaamisen tarkoitus on käyttää epävarmaa tietoa päätöksenteon apuna. Tilastollisella testaamisella ei todisteta mitään, vaan haetaan tietoa todennäköisestä asioiden tilasta.
Luento 4. 1. Palautetta kurssista tähän mennessä: Mikä oli hyvää, mikä huonoa? 2. Mitä yhteistä on odotusarvolla ja keskiarvolla? 1. Ei mallia - ilmeisistä syistä. 2. Odotusarvo ja keskiarvo kuvaavat samaa asiaa tai samantyyppistä asiaa, mutta eri maailman asioille: Molemmat ovat painopisteitä ja odotusarvo on (teoreettisen) jakauman painopiste, siinä missä keskiarvo on otoksen painopiste. Lisäksi keskiarvo on odotusarvon estimaattori ja siten sen arvo suurissa otoksissa lähestyy odotusarvoa.
Luento 5. 1. Mitä eroa on otoksen ja jakauman tunnusluvuilla? Entä miten ne liittyvät toisiinsa? 2. Anna esimerkki kysymyksestä, johon voisi vastata tilastollisen testin avulla. 1. Ero on periaatteessa sama kuin otoksella ja jakaumalla: Otos on reaalimaailman asia - se koostuu havainnoista. Jakauma puolestaan on abstraktio ja on olemassa vain ajatelun välineenä. Otoksen tunnusluvut kuvaavat reaalisen otoksen ominaisuuksia ja jakauman tunnusluvut abstraktion ominaisuuksia. Ne liittyvät toisiinsa siksi, että otoksen tunnusluvuilla voidaan estimoida jakauman tunnuslukuja. 2. Esimerkkejä: Onko kahdella eri terapiamuodolla saatu paranemista saman verran? Ovatko eri kaupunkien [lueteltu joukko] asukkaat samaa mieltä sukupuolineutraalin avioliittolain hyväksymisestä? Ovatko eri kaupunginosien / koulutuslaitosten asukkaiden / opiskelijoiden äänestysaikeet samanlaiset?
Luento 6. 1. Mikä on korrelaation ja riippuvuuden välinen ero? 2. Mikä on luottamusväli? 1. Jos satunnaismuuttujat ovat keskenään riippuvia, voidaan toisen saaman arvon perusteella päätellä jotain toisen keskimääräisistä arvoista. Jos muuttujat korreloivat, päättely tapahtuu lineaarisesti eli funktiolla joka on tyyppi y = a + bx. Korreloivuudesta voi päätellä riippuvuuden, mutta ei päinvastoin. Eli riippuvuus on yleisempi ilmiö kuin korreloivuus. Kummastakaan ei voi päätellä kausaliteettia. (Jätskin myynti ja hukkumiskuolemat.) 2. Luottamusväli on väliestimaatti eli arvio jonkin ilmiön jostakin parametrista (ehdokkaan kannatus, puheen perustaajuus tms.) siten, että annetaan vaihteluväli, jolta kyseinen parametri annetulla todennäköisyydellä löytyy.
Luento 7. 1. Voidaanko regressioanalyysillä todistaa kausaalinen syy-seuraus-yhteys? 2. Mihin oman alasi ongelmaan voisit soveltaa regressioanalyysiä? 1. Ei voida. Ongelma on kahdessa kohtaa: Regresioanalyysilla ei voi ylipäänsä todistaa sen enempää kuin millään muullakaan tilastollisella testillä. Sen lisäksi regressioanalyysi ei käsittele kausaliteetteja vaan korrelaatioita. Tulokset eivät kerro tapahtumisen mekanismeista vaan yhdessä tapahtumisesta. 2. Esimerkiksi: Onko vanhempiin liittyvillä mittareilla ja lapsen kielihäiriöllä riippuvuussuhde? Vaikuttaako perheen lasten lukumäärä vanhempien äänihäiriöiden esiintymiseen? Vaikuttaako äidin ikä lapsen puheen ja kielen kehitykseen? Miten puhealoitteet muuttuvat kuntoutuksen edetessä? Onko puhenopueden ja lukihäiriön välillä yhteys? (Ja mitään näistä ei voida pitää kausaliteettina... )
Luento 8. Seminaari. Mallivastauksia tuli sen verran vähän, ettei niistä ole mieltä tehdä listaa. Korjaanpa tämän seuraaviin ohjeisiin.
Luento 9. Julkaistaan myöhemmin.
Luento 10. Seminaari. Julkaistaan myöhemmin mahdollisesti.