SMG-4450 Aurinkosähkö



Samankaltaiset tiedostot
SMG-4450 Aurinkosähkö

DEE Aurinkosähkön perusteet

DEE Aurinkosähkön perusteet

SMG-4300: Yhteenveto ensimmäisestä luennosta

SMG-4300 Aurinkosähkö ja Tuulivoima

TASASUUNTAUS JA PUOLIJOHTEET

Kuva 6.6 esittää moniliitosaurinkokennojen toimintaperiaatteen. Päällimmäisen

SMG-4450 Aurinkosähkö

PUOLIJOHTEISTA. Yleistä

3.1 Varhaiset atomimallit (1/3)

DEE Aurinkosähkön perusteet

SMG-4300: Yhteenveto kolmannesta luennosta. PN-liitokseen perustuva aurinkokenno on kuin diodi, jossa auringonsäteily synnyttää estosuuntaisen virran.

Jukka Kitunen Aurinkosähkön soveltuvuus hajautettuun energiantuotantoon Suomessa. Diplomityö

DEE Aurinkosähkön perusteet

Luento 12. Kiinteät aineet

Puolijohteet. luku 7(-7.3)

PUOLIJOHTEET tyhjennysalue

SMG-4450 Aurinkosähkö

DEE Aurinkosähkön perusteet

DEE Aurinkosähkön perusteet

TUOMAS LAPP AURINKOVOIMALAN KÄYTTÖ LISÄENERGIAN LÄHTEENÄ KIILTO OY:SSÄ

SMG-4300: Yhteenveto toisesta luennosta. Miten puolijohde eroaa johteista ja eristeistä elektronivyörakenteen kannalta?

SMG-4450 Aurinkosähkö

SMG-4050 Energian varastointi ja uudet energialähteet

Väriaineaurinkokenno (Dye-sensitized solar cell, DSSC) 4. Kennon komponenteista huokoinen puolijohde

Valosähköinen ilmiö. Kirkas valkoinen valo. Himmeä valkoinen valo. Kirkas uv-valo. Himmeä uv-valo

ARTO HILTUNEN AURINKOKENNON MAKSIMITEHOPISTEEN RIIPPUVUUS TOIMINTAOLOSUHTEISTA Kandidaatintyö

Vyöteoria. Orbitaalivyöt

Kemian syventävät kurssit

Nanoteknologia aurinkokennoissa

Atomien rakenteesta. Tapio Hansson

DIODIN OMINAISKÄYRÄ TRANSISTORIN OMINAISKÄYRÄSTÖ

Synkrotronisäteily ja elektronispektroskopia. Tutkimus Oulun yliopistossa

1 a) Eristeiden, puolijohteiden ja metallien tyypilliset energiakaistarakenteet.

Fysikaalisten tieteiden esittely puolijohdesuperhiloista

Fysiikka 8. Aine ja säteily

Määritelmä, metallisidos, metallihila:

Voima ja potentiaalienergia II Energian kvantittuminen

FYSIIKKA. Pasi Ketolainen Mirjami Kiuru. Helsingissä Kustannusosakeyhtiö Otava

10. Puolijohteet Itseispuolijohde

Valosähköisten aurinkopaneeleiden hyötysuhteet

KEMIA. Kemia on tiede joka tutkii aineen koostumuksia, ominaisuuksia ja muuttumista.

KEMIAN MIKROMAAILMA, KE2 Kvanttimekaaninen atomimalli

Havaitsevan tähtitieteen peruskurssi I

SÄHKÖ KÄSITTEENÄ. Yleisnimitys suurelle joukolle ilmiöitä ja käsitteitä:

ψ(x) = A cos(kx) + B sin(kx). (2) k = nπ a. (3) E = n 2 π2 2 2ma 2 n2 E 0. (4)

FYSA220/1 (FYS222/1) HALLIN ILMIÖ

HALLIN ILMIÖ 1. TUTKITTAVAN ILMIÖN TEORIAA

OPETUSSUUNNITELMALOMAKE

Kvantittuminen. E = hf f on säteilyn taajuus h on Planckin vakio h = 6, Js = 4, evs. Planckin kvanttihypoteesi

PUOLIJOHTEISTA. Yleistä

Kvanttifysiikan perusteet 2017

Kvanttisointi Aiheet:

9. JAKSOLLINEN JÄRJESTELMÄ

2. Fotonit, elektronit ja atomit

ERIKA KAITARANTA AURINKOKENNON JA KERÄIMEN YHDISTÄMINEN ENERGIANTUOTON KASVATTAMISEKSI

Faasialueiden nimeäminen/tunnistaminen (eutek1sessa) tasapainopiirroksessa yleises1

Hiukkasfysiikan luento Pentti Korpi. Lapuan matemaattisluonnontieteellinen seura

SÄHKÖMAGNETISMI: kevät 2017

JARNO KESKINEN SÄHKÖENERGIAN TUOTANTOON SOVELTUVAT AURINKOKENNOTEKNOLOGIAT JA NIIDEN KEHITTYMINEN Diplomityö

erilaisten mittausmenetelmien avulla

Aalto-yliopisto Kemian tekniikan korkeakoulu Kemian laitos Epäorgaaninen kemia Fysikaalinen kemia Litiumioniakku

1 Johdanto. energiavyö, saavutetaan (1) missä E on

Luento 8. Lämpökapasiteettimallit Dulong-Petit -laki Einsteinin hilalämpömalli Debyen ääniaaltomalli. Sähkönjohtavuus Druden malli

TL6931 RF-ASIC. Tavoitteet

Perusvuorovaikutukset. Tapio Hansson

Sähkötekniikka ja elektroniikka

ULKOELEKTRONIRAKENNE JA METALLILUONNE

1. Materiaalien rakenne

Atomimallit. Tapio Hansson

SMG-4500 Tuulivoima. Neljännen luennon aihepiirit. Tuulivoimalan rakenne. Tuuliturbiinin toiminta TUULIVOIMALAN RAKENNE

DEE-11110: SÄHKÖTEKNIIKAN PERUSTEET

4 ev OY/MFP R Materiaalifysiikan perusteet P Ratkaisut 6, Kevät 2017

Aurinkopaneelit tansanialaisessa oppimisympäristössä

Aikaerotteinen spektroskopia valokemian tutkimuksessa

SMG-4450 Aurinkosähkö

PHYS-C0240 Materiaalifysiikka (5op), kevät 2016

Suhteellisuusteoriasta, laskuista ja yksiköistä kvantti- ja hiukkasfysiikassa. Tapio Hansson

AURINKOSÄHKÖVOIMALAN TASAINEN TUOTANTO SUOMEN OLOSUHTEISSA

&()'#*#+)##'% +'##$,),#%'

Neutriino-oskillaatiot

TAAMIR FAREED VILLE LAMBERG JOUNI LANTTO TUOMO VORNANEN. HAJAUTETTU ENERGIANTUOTANTO Harjoitustyö. Tarkastaja: Aki Korpela

Neutriinokuljetus koherentissa kvasihiukkasapproksimaatiossa

elektroni = -varautunut tosi pieni hiukkanen nukleoni = protoni/neutroni

MIKKELIN LUKIO SPEKTROMETRIA. NOT-tiedekoulu La Palma

AURINKOSÄHKÖN HYÖDYNTÄMISMAHDOLLISUUDET SUOMESSA

Maailmankaikkeuden syntynäkemys (nykykäsitys 2016)

Luento 1: Sisältö. Vyörakenteen muodostuminen Molekyyliorbitaalien muodostuminen Atomiketju Energia-aukko

Nyt n = 1. Tästä ratkaistaan kuopan leveys L ja saadaan sijoittamalla elektronin massa ja vakiot

Fysiikan ja kemian perusteet ja pedagogiikka Kari Sormunen Kevät 2012

Perusvuorovaikutukset. Tapio Hansson

PUOLIJOHTEEN SÄHKÖNJOHTAVUUS

Hapettimen sitoessa elektronin muodostuu pelkistin (hapetin pelkistyy) ja pelkistimen luovuttaessa elektronin muodostuu hapetin (pelkistin hapettuu).

Mustan kappaleen säteily

Luku 2: Atomisidokset ja ominaisuudet

Hiukkaskiihdyttimet ja -ilmaisimet

Käytetään nykyaikaista kvanttimekaanista atomimallia, Bohrin vetyatomi toimii samoin.

FRANCKIN JA HERTZIN KOE

ja KVANTTITEORIA MODERNI FYSIIKKA KVANTTITEORIAN SYNTY AALTO HIUKKAS-DUALISMI EPÄTARKKUUSPERIAATE TUNNELOITUMINEN ELEKTRONIRAKENNE UUSI MAAILMANKUVA

ANNA HAKKARAINEN PIIKARBIDI-DIODI-AURINKOSÄHKÖVAIHTOSUUNTAAJAN HYÖ- TYSUHDETARKASTELU

Transkriptio:

SMG-4450 Aurinkosähkö Toisen luennon aihepiirit Lyhyt katsaus aurinkosähkön historiaan Valosähköinen ilmiö: Mistä tässä luonnonilmiössä on kyse? Piihin perustuvan puolijohdeaurinkokennon toimintaperiaate Miksi ja miten auringonsäteily synnyttää puolijohteeseen vapaita varauksia? Miksi puhdas puolijohde ei toimi aurinkokennona? Miksi pn-liitos toimii aurinkokennona? 1 AURINKOSÄHKÖN HISTORIA (1/2) Ranskalainen Becquerel havaitsi 1839, että elektrolyyttiin upotettujen elektrodien välinen jännite riippuu valon määrästä. Vuonna 1873 englantilainen Smith havaitsi saman ilmiön ensimmäisen kerran kiinteässä aineessa, seleenissä. Yhdysvaltalainen Fritts rakensi 1883 ensimmäisen toiminnallisen aurinkokennon. Materiaali oli seleeni. Aurinkokennojen nykyisen aikakauden katsotaan alkavan vuodesta 1954, jolloin yhdysvaltalaisessa Bell Labs -tutkimuskeskuksessa havaittiin valosähköinen ilmiö piistä valmistetussa pn-liitoksessa. Tämän havainnon perusteella valmistettiin vielä samana vuonna aurinkokenno, joka muunsi auringonvaloa sähköksi ylivoimaisella hyötysuhteella (6%). Puolijohdeaurinkokennojen perusteoria ymmärrettiin vuoteen 1960 mennessä. 2 1

AURINKOSÄHKÖN HISTORIA (2/2) Vuotta 1973 pidetään merkittävänä aurinkosähkön historiassa. Yhdysvalloissa syntyi Cherry Hill -konferenssin seurauksena US Energy Research and Development Agency (myöhemmin US Dept. of Energy), joka alkoi merkittävästi rahoittaa uusiutuvien energiamuotojen tutkimusta. Öljykriisi sai monet valtiot panostamaan uusiutuviin energiamuotoihin. 1980-luvulla piipohjaisten aurinkokennojen valmistustekniikka alkoi olla kypsää. Suurehkoja tehtaita nousi Yhdysvaltoihin, Japaniin ja Eurooppaan. Ongelmana oli kuitenkin aurinkokennojen korkea hinta. Öljyn hinnan nousu ja ilmastonmuutos ovat lisänneet uusiutuvien energiamuotojen suosiota ja tarpeellisuutta. Saksa, Japani ja Espanja ovat tänä päivänä edelläkävijöitä aurinkosähkön hyödyntäjinä hajautetussa energiantuotannossa. Viime vuosina aurinkosähkön maailmanlaajuinen kasvu on ollut erittäin voimakasta. Vuoden 2011 kokonaiskapasiteetti oli 70 GW, josta noin 30 GW asennettiin 2011. 3 VALOSÄHKÖINEN ILMIÖ (photoelectric effect) (1/2) Valosähköinen ilmiö on pohjimmiltaan sähkömagneettisen säteilyn ja sähkövarausten välistä vuorovaikutusta. Kyse on siitä, että aineen elektronit voivat saada niin paljon energiaa sähkömagneettisesta säteilystä, että ne irtautuvat atomiytimen vetovoimasta. Ilmiön huomasi vuonna 1887 saksalainen fyysikko Heinrich Hertz, joka tarkasteli kahden vastakkaismerkkisesti varatun metallipallon välistä läpilyöntiä. Hertz huomasi, että läpilyöntijännite riippuu metallipalloihin kohdistuvan valon määrästä. Havainto aiheutti hämmennystä, sillä valon ei vielä tässä vaiheessa ymmärretty olevan sähkömagneettista säteilyä. 4 2

VALOSÄHKÖINEN ILMIÖ (photoelectric effect) (2/2) Saksalaiset fyysikot Hallwachs ja Lenard jatkoivat Hertzin havaitseman ilmiön tutkimista ja tekivät seuraavanlaisia havaintoja. 5 VALOSÄHKÖINEN ILMIÖ JA AURINKOKENNOT (1/2) Kaikkien puolijohdetekniikkaan perustuvien aurinkokennojen taustalla on valosähköinen ilmiö, joka on pohjimmiltaan sähkömagneettisen säteilyn fotonien ja aineen elektronien välistä vuorovaikutusta. Yksinkertaisesti selitettynä osa aurinkokennoon osuvien fotonien energiasta siirtyy kennomateriaalin elektroneille, ja kennon rakenteen ansiosta tämä energia saadaan hyödynnettyä sähkövirtana ja jännitteenä. Seuraavassa aletaan tarkastella puolijohteita ja niistä valmistettuja aurinkokennoja. Tavoitteena on selvittää, mitä fotonin absorboituminen tarkoittaa puolijohteessa. mikä on se kennon rakenne, jonka ansiosta osa fotonien energiasta saadaan hyötykäyttöön. 6 3

VALOSÄHKÖINEN ILMIÖ JA AURINKOKENNOT (2/2) Tavoitteena on yrittää ymmärtää, miksi valolle altistettuun pn-liitokseen syntyy oheisen kuvan suuntainen sähkövirta. 7 ELEKTRONIN ENERGIATILAMALLIT (1/3) Vapaassa tilassa olevan elektronin energia ei ole sidottu. Vapaassa tilassa olevan atomin elektroneilla on tietty määrä sallittuja energiatiloja. Elektronin on sijaittava atomin jollain elektronikuorella. Jos atomin yksittäisen elektronin energia kasvaa ulointa elektronikuorta vastaavaa energiaa suuremmaksi, elektroni irtoaa atomista, jolloin siitä tulee vapaassa tilassa oleva elektroni. Materiaalin kiderakenteessa atomit ovat niin lähekkäin, että ne vuorovaikuttavat keskenään. Elektronin sallitut energiatilat levittäytyvät kiderakenteessa sallituiksi energiavöiksi. Energiavyö siis koostuu lähekkäisistä ja osittain päällekkäisistä elektronin sallituista energiatiloista. 8 4

ELEKTRONIN ENERGIATILAMALLIT (2/3) Alhaisissa lämpötiloissa kiderakenteen elektronit miehittävät mahdollisimman alhaiset energiatilat. Tämä ei kuitenkaan tarkoita sitä, että kaikki elektronit olisivat atomin alhaisimmalla sallitulla energiatasolla. Wolfgang Pauli havaitsi vuonna 1925, että atomin kaikilla elektroneilla täytyy olla erilainen kvanttimekaaninen tila. Paulin kieltosääntö: Jokaisella sallitulla energiatasolla voi olla korkeintaan kaksi elektronia. Näiden elektronien spinmomenttien on oltava vastakkaiset. Paulin kieltosäännöstä seuraa, että absoluuttisessa nollapisteessä kaikki kiderakenteen sallitut energiatilat ovat elektronien miehittämiä tiettyyn materiaalille ominaiseen energia-tasoon, Fermienergiaan, asti. 9 ELEKTRONIN ENERGIATILAMALLIT (3/3) Kun lämpötila kasvaa, joidenkin elektronien energia ylittää Fermi-energian. Fermi-Dirac-jakauma antaa todennäköisyyden sille, että aineen kiderakenteesta löytyy elektroni, jolla on energia W. 10 5

PUOLIJOHTEISTA (1/3) Tarkastellaan materiaaleja, joiden Fermi-energia osuu energiavöiden väliin. Fermi-energian alapuolista energiavyötä kutsutaan valenssivyöksi, ja Fermienergian yläpuolella oleva energiavyö on johtavuusvyö. Energiavyömallilla mallinnetaan elektronien energiaa materiaalin kiderakenteessa. Mieti, mitkä ovat valenssi- ja johtavuusvyön fysikaaliset tulkinnat. Mitä se tarkoittaa, että "täyden energiavyön elektroneilla ei ole tilaa liikkua"? Alhaisissa lämpötiloissa puolijohde ei johda sähköä, koska valenssivyö on täynnä, ja johtavuusvyö on tyhjä. Kun lämpötila kasvaa, osalla valenssivyön elektroneista saattaa olla niin paljon energiaa, että ne siirtyvät johtavuusvyölle. 11 PUOLIJOHTEISTA (2/3) Elektronit ovat varauksenkuljettajia sekä johtavuus- että valenssivyöllä. Kun tarkastellaan elektronien liikettä valenssivyöllä, näyttää siltä, kuin tyhjä elektronipaikka liikkuisi. Siksi valenssivyöllä tapahtuva elektronien liike on yksinkertaisinta kuvata positiivisesti varautuneen aukon liikkeenä. Tyhjällä elektronipaikalla ei tietenkään todellisuudessa ole varausta, mutta negatiivisen varauksen liike tiettyyn suuntaan voidaan mallintaa itseisarvoltaan yhtäsuuren positiivisen varauksen liikkeenä vastakkaiseen suuntaan. Miksi aurinkokennot valmistetaan puolijohteista? 12 6

PUOLIJOHTEISTA (3/3) Pii on aurinkokennojen yleisin raaka-aine. Piin energia-aukon (W g ) suuruus on 1.09 ev. Millä välillä fotonin energia vaihtelee auringosäteilyn energiaspektrissä? Valtaosa AM1.5-säteilystä pystyy synnyttämään piihin vapaita varauksenkuljettajia. 13 MIKSI AURINKOKENNOJA EI VALMISTETA PUHTAISTA PUOLIJOHTEISTA? Jos aurinkokennot valmistettaisiin puhtaasta puolijohteesta: Auringonsäteily kyllä synnyttäisi materiaaliin vapaita varauksenkuljettajia. Johtavuusvyölle nousseet elektronit palaisivat takaisin valenssivyölle, sillä ei ole olemassa voimaa, joka erottelisi syntyneet elektronit ja aukot on toisistaan. Johtavuusvyölle nousseiden elektronien putoamista takaisin valenssivyölle kutsutaan rekombinaatioksi. Tällöin auringonsäteilyn synnyttämä varauksenkuljettajapari menetetään. Jos aurinkokenno valmistetaan puhtaasta puolijohteesta, auringonsäteilyn synnyttämiä varauksenkuljettajia ei saada hyödynnettyä sähkötehon tuottamiseen. Syntyneet varauksenkuljettajat (elektronit ja aukot) saadaan eroteltua kennon rakenteen (kalvo 6) avulla. Seuraavassa aletaan tarkastella tätä rakennetta. 14 7

PUHTAASTA PUOLIJOHTEESTA N- JA P-TYYPPISEKSI (1/2) Puhdas pii (Si) Puhtaan piin kiderakenne on sellainen, että uloimman elektronikuoren kaikki neljä elektronia osallistuvat atomien välisiin sidoksiin. n-tyyppi: fosforilla (P) seostettu pii P:n uloimman elektronikuoren neljä elektronia osallistuvat piin kiderakenteessa atomien välisiin sidoksiin. Kiderakenteeseen jää yksi ylimääräinen elektroni, joka on kiinni P-atomissa. p-tyyppi: boorilla (B) seostettu pii B:n uloimman elektronikuoren kaikki kolme elektronia osallistuvat piin kiderakenteessa atomien välisiin sidoksiin. Siihen sidokseen, johon B-atomi liittyy, jää yhden elektronin vaje, jota kutsutaan aukoksi. 15 PUHTAASTA PUOLIJOHTEESTA N- JA P-TYYPPISEKSI (2/2) Kun tarkastellaan valolle altistamatonta seostettua puolijohdetta absoluuttisessa nollapisteessä, materiaalin kiderakenteessa ei ole vapaita varauksenkuljettajia. Kun tarkastellaan valolle altistamatonta seostettua puolijohdetta huoneenlämpötilassa, n-tyypin puolijohteen kiderakenteessa on vapaasti liikkuvia elektroneja. Kiderakenteessa on siis elektroneja, joiden energia osuu johtavuusvyölle. p-tyypin puolijohteen kiderakenteessa on vapaita elektronitiloja (aukkoja), joihin viereiset valenssivyön elektronit voivat siirtyä. Kun ollaan huoneenlämpötilassa, n-tyypin puolijohteessa on elektroneja johtavuusvyöllä, ja p-tyypin puolijohteessa on aukkoja valenssivyöllä. Puolijohteen sähkönjohtavuutta saadaan kasvatettua seostamisen avulla, sillä seostaminen tekee varausten liikkumisen kiderakenteessa mahdolliseksi. Koska johtavuusvyön elektronit pääasiassa synnyttävät n-tyypin puolijohteen sähkövirran, niitä kutsutaan enemmistövarauksenkuljettajiksi. Vastaavasti valenssivyön aukot ovat n-tyypin puolijohteessa vähemmistövarauksenkuljettajia. P-tyypin puolijohteessa tilanne on päinvastainen. 16 8

PN-LIITOS (1/2) Kun p- ja n-tyypin puolijohteet viedään yhteen, syntyy pn-liitos. 17 PN-LIITOS (2/2) Tyhjennysalueeseen syntyy sähkökenttä, jonka suunta on n-puolelta p-puolelle. 18 9

PN-LIITOKSEN TOIMIMINEN AURINKOKENNONA Auringonsäteily synnyttää sähkövirran pn-liitokseen! Tyhjennysalue on varauksenkuljettajia erottelevan sähkökenttänsä vuoksi se rakenne (sivu 6), jonka ansiosta aurinkokennosta saadaan sähkötehoa. 19 SUORAN JA EPÄSUORAN ENERGIA-AUKON PUOLIJOHTEET (1/2) Puolijohteet jaetaan kahteen luokkaan sen mukaan, miten elektronin liikemäärä p vaikuttaa energia-aukon suuruuteen W cmin W vmax. Elektronien liikemäärä vaihtelee jatkuvasti, sillä ne vuorovaikuttavat kiderakenteen mekaanista värähtelyliikettä mallintavan hiukkasen, fononin, kanssa. Fononilla on paljon liikemäärää mutta vähän energiaa. SMG-säteilyä mallintavalla fotonilla tilanne on päinvastainen. Suoran energia-aukon puolijohteilla elektronin liikemäärä ei juurikaan vaikuta energia-aukon suuruuteen. Kiinteän olomuodon fysiikan kirjoissa asia esitetään niin, että W vmax ja W cmin osuvat samalle elektronin liikemäärän arvolle. Valenssielektronien virittyminen johtavuusvyölle toteutuu pelkkien fotonien avulla. 20 10

SUORAN JA EPÄSUORAN ENERGIA-AUKON PUOLIJOHTEET (2/2) Epäsuoran energia-aukon puolijohteissa elektronin liikemäärä vaikuttaa merkittävästi energia-aukon suuruuteen. KOF:n kirjoissa asia esitetään niin, että epäsuoran energia-aukon puolijohteissa W vmax ja W cmin osuvat liikemäärän eri arvoille. Jotta valenssielektroni voi virittyä johtavuusvyölle minimienergialla, elektronin liikemäärän on oltava juuri sopiva. Valenssielektronien virittyminen johtavuusvyölle vaatii fotonivuorovaikutuksen lisäksi myös fononivuorovaikutuksen. Fononivuorovaikutuksen vaatimus vaikuttaa merkittävästi aineen kykyyn absorboida sähkömagneettista säteilyä Suoran energia-aukon materiaalista voidaan valmistaa huomattavasti ohuempi aurinkokenno (~1 m) kuin epäsuoran energia-aukon materiaalista (~100 m). 21 11