Erityinen suhteellisuusteoria (Harris luku 2)



Samankaltaiset tiedostot
Suhteellinen nopeus. Matkustaja P kävelee nopeudella 1.0 m/s pitkin 3.0 m/s nopeudella etenevän junan B käytävää

Moderni fysiikka. Syyslukukausi 2008 Jukka Maalampi

ELEC-A3110 Mekaniikka (5 op)

Luento 10: Työ, energia ja teho. Johdanto Työ ja kineettinen energia Teho

Klassisssa mekaniikassa määritellään liikemäärä p kl näin:

763306A JOHDATUS SUHTEELLISUUSTEORIAAN 2 Ratkaisut 3 Kevät E 1 + c 2 m 2 = E (1) p 1 = P (2) E 2 1

Nopeus, kiihtyvyys ja liikemäärä Vektorit

763105P JOHDATUS SUHTEELLISUUSTEORIAAN 1 Ratkaisut 4 Kevät 2016

S U H T E E L L I S U U S T E O R I AN P Ä Ä P I I R T E I T Ä

Luento 3: Liikkeen kuvausta, differentiaaliyhtälöt

Luento 10: Työ, energia ja teho

Luento 3: Käyräviivainen liike

Leptonit. - elektroni - myoni - tauhiukkanen - kolme erilaista neutriinoa. - neutriinojen varaus on 0 ja muiden leptonien varaus on -1

ELEC-A3110 Mekaniikka (5 op)

Shrödingerin yhtälön johto

Energia, energian säilyminen ja energiaperiaate

Voima F tekee työtä W vaikuttaessaan kappaleeseen, joka siirtyy paikasta r 1 paikkaan r 2. Työ on skalaarisuure, EI vektori!

Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2012 Insinöörivalinnan fysiikan koe , malliratkaisut

Luento 6: Suhteellinen liike ja koordinaatistomuunnoksia

Kvanttifysiikan perusteet 2017

Luento 5: Käyräviivainen liike. Käyräviivainen liike Heittoliike Ympyräliike Kulmamuuttujat θ, ω ja α Yhdistetty liike

763306A JOHDATUS SUHTEELLISUUSTEORIAAN 2 Ratkaisut 2 Kevät 2017

Suhteellisuusteoria. Jouko Nieminen Tampereen Teknillinen Yliopisto Fysiikan laitos

Luento 5: Käyräviivainen liike

Suhteellisuusteorian perusteet 2017

JOHDATUS SUHTEELLISUUSTEORIAAN

Mustan kappaleen säteily

Monissa fysiikan probleemissa vaikuttavien voimien yksityiskohtia ei tunneta

Luento 5: Käyräviivainen liike

763306A JOHDATUS SUHTEELLISUUSTEORIAAN 2 Ratkaisut 1 Kevät y' P. α φ

BM30A0240, Fysiikka L osa 4

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

ELEC-A3110 Mekaniikka (5 op)

763105P JOHDATUS SUHTEELLISUUSTEORIAAN 1 Ratkaisut 4 Kevät 2012

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

Fysiikka 8. Aine ja säteily

Luento 4: Suhteellinen liike ja koordinaatistomuunnoksia

Luento 3: Käyräviivainen liike

Suhteellisuusteoriasta, laskuista ja yksiköistä kvantti- ja hiukkasfysiikassa. Tapio Hansson

ja KVANTTITEORIA MODERNI FYSIIKKA KVANTTITEORIAN SYNTY AALTO HIUKKAS-DUALISMI EPÄTARKKUUSPERIAATE TUNNELOITUMINEN ELEKTRONIRAKENNE UUSI MAAILMANKUVA

Luku 7 Työ ja energia. Muuttuvan voiman tekemä työ Liike-energia

8 Suhteellinen liike (Relative motion)

Luento 10. Potentiaali jatkuu, voiman konservatiivisuus, dynamiikan ja energiaperiaatteen käyttö, reaalinen jousi

Luento 9: Potentiaalienergia

4) Törmäysten lisäksi rakenneosasilla ei ole mitään muuta keskinäistä tai ympäristöön suuntautuvaa vuorovoikutusta.

infoa Viikon aiheet Potenssisarja a n = c n (x x 0 ) n < 1

KERTAUSTEHTÄVIÄ KURSSIIN A-01 Mekaniikka, osa 1

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

Luento 9: Potentiaalienergia

Luento 13: Periodinen liike

JOHDATUS SUHTEELLISUUSTEORIAAN

Luento 4: Suhteellinen liike ja koordinaatistomuunnoksia

Sisällysluettelo. Alkusanat 11. A lbert E insteinin kirjoituksia

53714 Klassinen mekaniikka syyslukukausi 2010

NEWTONIN LAIT MEKANIIKAN I PERUSLAKI MEKANIIKAN II PERUSLAKI MEKANIIKAN III PERUSLAKI

53 ELEKTRONIN SUHTEELLISUUSTEOREETTINEN LIIKE- MÄÄRÄ

KVANTTITEORIA MODERNI FYSIIKKA KVANTTITEORIAN SYNTY AALTO HIUKKAS-DUALISMI EPÄTARKKUUSPERIAATE TUNNELOITUMINEN ELEKTRONIRAKENNE UUSI MAAILMANKUVA

Luento 11: Potentiaalienergia. Potentiaalienergia Konservatiiviset voimat Voima potentiaalienergiasta gradientti Esimerkkejä ja harjoituksia

YLEINEN SUHTEELLISUUSTEORIA

HARJOITUS 4 1. (E 5.29):

Ydin- ja hiukkasfysiikka 2014: Harjoitus 5 Ratkaisut 1

763306A Johdatus suhteellisuusteoriaan 2 Kevät 2013 Harjoitus 1

Luento 15: Ääniaallot, osa 2

Tarkastellaan tilannetta, jossa kappale B on levossa ennen törmäystä: v B1x = 0:

Luento 6: Suhteellinen liike ja koordinaatistomuunnoksia

763105P JOHDATUS SUHTEELLISUUSTEORIAAN 1 Ratkaisut 5 Kevät 2013

YLEINEN SUHTEELLISUUSTEORIA

LIITE 11A: VALOSÄHKÖINEN ILMIÖ

Ei-inertiaaliset koordinaatistot

4. Käyrän lokaaleja ominaisuuksia

1 Tieteellinen esitystapa, yksiköt ja dimensiot

FYSA220/K2 (FYS222/K2) Vaimeneva värähtely

Luento 7: Voima ja Liikemäärä. Superpositio Newtonin lait Tasapainotehtävät Kitkatehtävät Ympyräliike Liikemäärä

Sähkömagneettinen induktio

JOHDATUS SUHTEELLISUUSTEORIAAN P

Mekaniikkan jatkokurssi

Luvun 8 laskuesimerkit

H7 Malliratkaisut - Tehtävä 1

Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2013 Insinöörivalinnan fysiikan koe , malliratkaisut

Jakso 3: Dynamiikan perusteet Näiden tehtävien viimeinen palautus- tai näyttöpäivä on keskiviikko

l s, c p T = l v = l l s c p. Z L + Z 0

Luku 8. Mekaanisen energian säilyminen. Konservatiiviset ja eikonservatiiviset. Potentiaalienergia Voima ja potentiaalienergia.

3.4 Liike-energiasta ja potentiaalienergiasta

Jakso 6: Värähdysliikkeet Tämän jakson tehtävät on näytettävä viimeistään torstaina

Fysiikan valintakoe , vastaukset tehtäviin 1-2

kertausta Boltzmannin jakauma infoa Ideaalikaasu kertausta Maxwellin ja Boltzmannin vauhtijakauma

Mekaniikan jatkokurssi Fys102

Fysiikkaa runoilijoille Osa 2: suppea suhteellisuusteoria

Luento 13: Periodinen liike. Johdanto Harmoninen värähtely Esimerkkejä F t F r

DYNAMIIKKA II, LUENTO 5 (SYKSY 2015) Arttu Polojärvi

Luento 8. Lämpökapasiteettimallit Dulong-Petit -laki Einsteinin hilalämpömalli Debyen ääniaaltomalli. Sähkönjohtavuus Druden malli

SUHTEELLISUUSTEORIAN TEOREETTISIA KUMMAJAISIA

MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 9: Muuttujanvaihto taso- ja avaruusintegraaleissa

Aikariippuva Schrödingerin yhtälö

Mekaniikan jatkokurssi Fys102

Voima ja potentiaalienergia II Energian kvantittuminen

on radan suuntaiseen komponentti eli tangenttikomponentti ja on radan kaarevuuskeskipisteeseen osoittavaan komponentti. (ks. kuva 1).

Mekaniikan jatkokurssi Fys102

Diplomi-insino o rien ja arkkitehtien yhteisvalinta - dia-valinta 2015 Insino o rivalinnan fysiikan koe , malliratkaisut

Theory Finnish (Finland)

Transkriptio:

Erityinen suhteellisuusteoria (Harris luku 2) Yliopistonlehtori, TkT Sami Kujala Mikro- ja nanotekniikan laitos Kevät 2016

Ajan ja pituuden suhteellisuus Relativistinen työ ja kokonaisenergia SMG-aaltojen Doppler-siirtymä

Galilein muunnos Inertiaalikoordinaatistot S ja S, joissa tarkkailijat Bob ja Alice S liikkuu S:n suhteen nopeudella u +x-akselin suuntaan Koordinaatistojen origot samassa kohdassa hetkellä t = 0 = Pisteen P koordinaatit eri koordinaatistoissa x = x + ut y = y z = z t = t z y ut z r y r P x x Tämä on klassisen mekaniikan Galilein koordinaatistomuunnos Huom! Tulokset pätevät vain ed. tavalla määritellyille koordinaatistoille!

Klassisen mekaniikan havainto Galilein muunnoksen perusteella pisteen P nopeus on v = dx dt = dx dt + u = v + u Sopusoinnussa havaintojen kanssa kun vauhti on pieni Jos v = c niin klassisen mekaniikan mukaan v = v + u > c Johtopäätös: Valon nopeus ei ole vakio Vuonna 1887 tehty Michelson-Morley -koe osoitti 1. Silloin vallinneen eetteriteorian vääräksi 2. Sähkömagneettinen säteily ei tarvitse väliainetta edetäkseen 3. Sähkömagneettinen säteily etenee vakionopeudella c Erityinen suhteellisuusteoria (Harris luku 2) Sami Kujala Kevät 2016 Mikro- ja nanotekniikan laitos

Einsteinin erityinen suhteellisuusteoria Special theory of relativity Perustuu kahteen postulaattiin eli väittämään 1. Fysiikan lait samat kaikissa inertiaalikoordinaatistoissa 2. Valon nopeus vakio kaikissa inertiaalikoordinaatistoissa 1. postulaatti perustuu inertiaalikoordinaatistojen tasa-arvoisuuteen = mikään inertiaalikoordinaatisto ei ole toista inertiaalisempi 2. postulaatti johtaa siihen, että inertiaalinen havaitsija ei voi liikkua valon nopeudella = johtaisi muuten ristiriitaan Erityinen suhteellisuusteoria (Harris luku 2) Sami Kujala Kevät 2016 Mikro- ja nanotekniikan laitos

Tapahtumien samanaikaisuus Gedankenexperiment, ajatuskoe Juna liikkuu tasaisella nopeudella u c aseman suhteen Junassa tarkkailija Alice (levossa junaan nähden) Alicella käsissä kaksi salamalamppua samalla etäisyydellä Juna ohittää aseman, jossa tarkkailija Bob (levossa asemaan nähden) Alice laukaisee salamalamput samanaikaisesti molempien lamppujen valonsäteet osuvat Aliceen yhtäaikaa Bob:n koordinaatistossa Alice liikkuu nopeudella u Lamppujen valonsäteiden kuljettava eri matka osuakseen Aliceen Seuraus: Jos valonsäteet lähtevät yhtäaikaa, toisen lampun valonsäde osuu Aliceen ensiksi RISTIRIITA Ratkaisu: Jos Einsteinin 2. postulaatti hyväksytään, tapahtumien samanaikaisuus riippuu tarkkailijan liiketilasta Tapahtuma (engl. event): käsite, jolla on paikka ja aika

Ajan suhteellisuus Oletetaan samat koordinaatistot kuin äsken Junan lattialla valonlähde lähettää valopulssin, joka heijastuu junan katosta takaisin Alice näkee valopulssin kulkevan vauhdilla c ajassa t matkan 2d, missä d on vaunun korkeus 2d = c t Bob näkee mielestä valopulssi matkaa nopeudella c ajassa t matkan (2d ) 2 ( ) 2 c t = + u t Yhdistetään tulokset t = t 1 u2 c 2 = γ t

Aikadilaatio ja itseisaika Jos u c, niin γ 1 ja Newtonin mekaniikka on voimassa Koska aina u < c, niin γ 1 ja t t Aikadilaatio (time dilation): liikkuva kello käy hitaammin Yhteys käytäntöön: GPS-satelliitit olennaisesti hyvin tarkkoja kelloja ja niissä pitää ottaa aikadilaatio huomioon Miten erotetaan kumpi koordinaatistoista S ja kumpi S? Aikaväli lyhin koordinaatistossa, jossa tapahtumat sattuvat samassa paikassa itseisaika (proper time) t 0 t = γ t 0 Erityinen suhteellisuusteoria (Harris luku 2) Sami Kujala Kevät 2016 Mikro- ja nanotekniikan laitos

Pituuskontraktio Valonsäteen kulkuaika vaikuttaa mitattuun pituuteen Oletetaan edelleen samat koordinaatistot Tarkastellaan viivoitinta, jonka toisessa päässä valonlähde ja toisessa peili Kun mitta liikkuu junan mukana, Alicen mielestä valopulssi matkaa nopeudella c ajassa t matkan 2l, missä l mitan pituus Bob näkee, että valopulssi matkaa peiliin asti nopeudella c ajassa t 1 matkan l + u t 1 Heijastunut valonsäde matkaa takaisin nopeudella c ajassa t 2 matkan l u t 2, jolloin yhteisaika t = t 1 + t 2 = 2l t ( ) = = c 1 u2 v 2 1 u2 c 2 2l c 1 u2 c 2

Pituuskontraktio Josta edelleen saadaan l = l γ = l 1 u2 c 2 Bob:n mittaama pituus on pienempi kuin Alicen mittaama levossa olevan mitan pituus Suurin pituus itseispituus (proper length) l 0 Pituuskontraktio (length contraction) tapahtuu vain liikkeen suunnassa l = l 0 γ

Galilei vs. Lorentz Yhdistämällä em. tulokset saadaan johdettua muunnosyhtälöt koordinaatistosta S koordinaatistoon S Muunnosta sanotaan Lorentzin muunnokseksi Galilein muunnos x = x ut y = y z = z t = t v x = v x u Lorentzin muunnos x = γ ( x ut ) y = y z = z t = γ ( t ux/c 2) v x = v x u 1 uv x /c 2

Ajan ja pituuden suhteellisuus Relativistinen työ ja kokonaisenergia SMG-aaltojen Doppler-siirtymä

Liikemäärän säilyminen Klassinen mekaniikka: jos kokonaisliikemäärä säilyy inertiaalikoordinaatistossa S, niin se myös säilyy inertiaalikoordinaatistossa S Kuitenkin jos (esim törmäyksessä) u c niin Lorentz-muunnoksen jälkeen kokonaisliikemäärä ei säilykään? Joko liikemäärä ei säily tai liikemäärä määritelty väärin Kokeet osoittavat että liikemäärä säilyy = Relativistinen liikemäärä p = γm v = m v 1 u2 c 2 Relativista liikemäärän lauseketta käyttäen liikemäärä säilyy Lorentz-muunnoksen jälkeen Relativistinen liikemäärä klassinen liikemäärä kun u c

Newtonin toinen laki Kokeellisesti havaittu että Newtonin toinen laki edelleen voimassa, kun käytetään relativistista liikemäärää F = d p dt = dγ d u m u + γm dt dt Tasaisessa ympyräliikkeessä F u = d u/dt = a ja F = γm a Suoraviivaisessa liikkeessä F u(t) = d u/dt = a joten [ F = m u dγ dt + γ du ] =... = γ 3 ma dt Yleisessä liikkeessä voima ja kiihtyvyys voidaan jakaa radan tangentiaalisen ja normaalin suuntaisiin komponentteihin = Voima ja kiihtyvyys eivät samansuuntaiset!

Suhteellisuusteoreettinen työ Kun kappale siirtyy suoraviivaisesti paikasta x 1 paikkaan x 2, voima tekee työn W = x 2 x 1 F T dx = x 2 x 1 γ 3 ma dx a dx=v dv = 0 v mv dv = (γ 1)mc2 1 v 2 /c2 Kappaleelle tehty työ on yhtäkuin sen kineettinen energia lopuksi K = W = (γ 1)mc 2 Kineettinen energia koostuu kahdesta termistä, joista toinen riippuu sen nopeudesta ja toinen ei Termi mc 2 on kappaleen lepoenergia (rest energy), jolloin sillä kokonaisenergia E = K + mc 2 = γmc 2 Hiukkasfysiikan kokeet osoittavat, että hiukkasten massojen muutosta vastaa aina muutos systeemin energiassa E = mc 2 mukaisesti

Kokonaisenergia ja liikemäärä Etsitään yhteys kokonaisenergian ja liikemäärän välille: { { E = γmc 2 E 2 = γ 2 (mc 2 ) 2 = pc = γmvc (pc) 2 = γ 2 (mvc) 2 = E 2 (pc) 2 = m 2 c 4 = E 2 = (pc) 2 + (mc 2 ) 2 Kokonaisenergian lausekkeesta seuraa, että voi olla olemassa hiukkasia, joilla on liikemäärää ja energiaa muttei massaa Tällaisia hiukkasia ovat esimerkiksi sähkömagneettisen säteilyn kvantit eli fotonit, joille pätee E f = pc Erityinen suhteellisuusteoria (Harris luku 2) Sami Kujala Kevät 2016 Mikro- ja nanotekniikan laitos

Ajan ja pituuden suhteellisuus Relativistinen työ ja kokonaisenergia SMG-aaltojen Doppler-siirtymä

Johdanto Perustulos: ajan suhteen muuttuva virta aiheuttaa ajan suhteen muuttuvan magneettikentän Maxwellin laeista seuraa, että ajan suhteen muuttuva magneetti-/sähkökenttä aiheuttaa ajan suhteen muuttuvan sähkö-/magneettikentän Seurauksena etenevä aalto jossa kytkeytyneenä sähkö- ja magneettikenttä Radioaallot, mikroaallot, valo, gammasäteily Lähettäjän ja havaitsijan suhteellisesta liiketilasta seuraa että myös SMG-aaltojen taajuudessa Doppler-siirtymä Siirtymän matemaattinen muoto erilainen kuin ääniaalloilla Suora seuraus suhteellisuusteoriasta Erityinen suhteellisuusteoria (Harris luku 2) Sami Kujala Kevät 2016 Mikro- ja nanotekniikan laitos

Doppler-siirtymän johto Alice liikkuu vakionopeudella u (koordinaatisto S ) ja emittoi valonsäteen kohti havaitsijaa Bob Valonsäteen taajuus f Alice ja jaksonaika T Alice = 1/f Alice koordinaatistossa S Koordinaatistossa S emittoitujen aallonhuippujen aikaväli on aikadilaation takia T Bob = γt Alice Bob:n vastaanottamien aaltojen taajuus f Bob ei kuitenkaan ole f Alice /γ, Alicen liiketilan vuoksi Peräkkäiset aallonhuiput lähetetty eri pisteissä = eri kulkuajat Bob:lle Erityinen suhteellisuusteoria (Harris luku 2) Sami Kujala Kevät 2016 Mikro- ja nanotekniikan laitos

Doppler-siirtymän johto Jatkoa Bob:n koordinaatistossa ajassa T Bob jo lähetetyt aallonhuiput etenevät matkan ct Bob ja Alice etenee matkan ut Bob Huippujen välinen matka eli aallonpituus on λ Bob = (c u)t Bob joten mitattu taajuus f Bob = c (c u)t Bob Aikadilaation vuoksi T Bob = γt Alice, joten T Bob = T Alice 1 u2 /c 2 = ct Alice c2 u 2 = f Bob = c c2 u 2 c + u f Alice = c u c c u f Alice

Doppler-siirtymän johto Jatkoa SMG-aaltojen Doppler-siirtymä muotoa f Bob = c + u c u f Alice Alicen ja Bob:n keskinäinen nopeus u ainoa jolla merkitystä Ääniaaltojen tapauksessa lähettäjän ja vastaanottajan omat liiketilat (suhteessa väliaineeseen) merkityksellisiä Sovelluksena mm. tutkat, astronomia Erityinen suhteellisuusteoria (Harris luku 2) Sami Kujala Kevät 2016 Mikro- ja nanotekniikan laitos