Helsingin matematiikkalukio Muuttuva puoluekenttä Matemaattinen mallinnus Tekijä: Niko Ilomäki Ohjaaja: Miika Nikula 28. marraskuuta 2011
Tiivistelmä Fysiikan tilastolliset mallit ja niiden Monte Carlo -simulaatiot ovat olleet keskeinen fysiikan tutkimushaara viime vuosikymmeninä. Tutkimuksen määrästä huolimatta niitä on sovellettu varsin vähän fysiikan ulkopuolisiin tutkimusasetteluihin. Pottsin malli on fysiikassa keskeinen hilamalli, jota on sovellettu menestyksekkäästi monien fysikaalisten ilmiöiden tutkimiseen. Tutkielmassa analysoidaan miten Pottsin malli asteiltaan potenssijakautuneisiin verkkoihin sovellettuna toimii yhteiskuntatieteellisen tutkimuksen välineenä. Tutkimuskysymyksenä on uuden puolueen kannatuksen muutokset sen alkutaipaleella. Tämän tutkimiseen käytetään edellä mainittua Pottsin mallia verkoille. Saadut tulokset implikoivat ulkoisen kentän suurta vaikutusta mallin käyttäytymiseen. Jatkotutkimusta tarvitaankin ennen kaikkea mallin ulkoisen kentän suhteesta empiirisesti havaittuihin muuttujiin.
Sisältö 1 Johdanto................................ 1 1.1 Huomautus............................... 1 2 Historiaa................................. 4 3 Teoriaa................................. 4 3.1 Isingin ja Pottsin mallit........................ 4 3.2 Universaaliusperiaate.......................... 5 4 Toteutus................................. 5 4.1 Tutkimuskysymys........................... 5 4.2 Algoritmit................................ 5 4.3 SW-algoritmi.............................. 6 4.4 Parametrit................................ 6 4.5 Konjektuuri............................... 6 4.6 Simulaatiot............................... 7 5 Tulokset................................. 7 6 Johtopäätökset............................. 8 Viitteet.................................... 9 Liitteet.................................... 11 Kuvat 1.1 Pieni potenssilain mukainen verkko (mikroskooppinen skaala)... 2 1.2 Suurempi potenssilain mukainen verkko (makroskooppinen skaala) 3
1 Johdanto 1 1 Johdanto Yhteiskunta- ja taloustieteellinen mallinnus on kasvanut nopeasti viimeisen vuosikymmenen aikana ennen kaikkea laskentatehon lisääntymisen myötä. Puhtaan matemaattisten mallien ja varta vasten yhteiskunta- ja taloustieteitä varten kehitettyjen mallien ohella on nousua viime vuosina tehnyt fysikaalisten mallien soveltaminen näille aloille. Tässä tutkielmassa selvitän mahdollisuuksia kuvata uuden puolueen alkuaikojen kannatuskehitystä fysiikan menetelmin. Fysiikan tilastollisiin menetelmiin ja simulaatioihin nojaavat haarat ovat statistinen ja laskennallinen fysiikka. Ensiksi mainitussa keskeisessä asemassa ovat ns. hilamallit (Sethna, 2006, 163). Hilamalleissa joukkoon olioita liitetään dynamiikka siten, että ne vuorovaikuttavat naapureidensa kanssa; esimerkiksi kolmiulotteisessa kuutiohilassa vuorovaikutus kohdistuu niihin kuutioihin, joilla on yhteinen tahko tarkasteltavan kuution kanssa. Viime aikoina joitakin hilamalleja, kuten Isingin ja Pottsin malleja, on alettu soveltamaan myös erilaisiin verkkoihin; fysiikan kannalta mielenkiintoisia ovat täysin kytketyt verkot, kun taas sosioekonomisen tutkimuksen kannalta tärkeimpiä ovat verkot, joiden solmujen asteet (ihmisten kontaktien määrät) ovat jakautuneet potenssilain mukaisesti eli asteen N yleisyys populaatiossa (N-kontaktisten osuus populaatiosta) on kääntäen verrannollinen asteen N johonkin potenssiin. Eräs potenssilain toteuttava jakauma on paretojakauma. Tässä tutkielmassa tarkastellaan paretojakautuneisiin verkkoihin sovellettua Pottsin mallia erityisesti uuden puolueen kasvumahdollisuuksien näkökulmasta. Järjestelmän tasapaino uuden puolueen lisäämisen jälkeen on myös tutkimuksen kohteena. Tutkimuksessa havaittiin uuden puolueen kannatuksen tasapainotilan riippuvan varsin suuresti ulkoiseen kenttään rinnastetusta kerroinparametrista. Tämä parametri yhdistää ulkoiset vaikutteet, kuten suhdannevaihtelut, medianäkyvyyden ja kansainväliset suhteet. 1.1 Huomautus Englannin kielessä yhteiskunta- ja taloustieteisiin sovelletulle fysiikalle on termit 'sociophysics' ja 'econophysics', mutta kumpikaan näistä ei ole laajalti käytetty, eivätkä niiden suomenkieliset vastineet 'sosiofysiikka' ja 'ekonofysiikka' ole myöskään vakiintuneet. Tästä syystä tämä tutkielma, joka on lähinnä sosiofysiikkaa, on asetettu matemaattisen mallinnuksen alalle.
1 Johdanto 2 Fig. 1.1: Pieni potenssilain mukainen verkko (mikroskooppinen skaala)
1 Johdanto 3 Fig. 1.2: Suurempi potenssilain mukainen verkko (makroskooppinen skaala)
2 Historiaa 4 2 Historiaa Statistisessa fysiikassa ferromagnetismin mallintamisen de facto -standardi on Isingin malli, joka on nimetty mallin yksiulotteisessa tapauksessa väitöskirjassaan 1924 ratkaisseen Ernst Isingin mukaan (Dorogovtsev, 2010, 99). Isingin malli on tutkituin statistisen fysiikan malli ja samalla yksinkertaisin mahdollinen malli, jossa vierekkäisten olioiden välillä on aito vuorovaikutus(kemppainen, 2011, 24). Isingin mallia on tutkittu fysiikassa paitsi yksi-, kaksi- ja kolmiulotteisissa tapauksissa, myös mm. täysin kytketyillä verkoilla (Dorogovtsev, 2010, 99). Viime aikoina Isingin mallia on alettu tutkia myös potenssilain toteuttavilla verkoilla esimerkiksi termodynaamisen rajan näkökulmasta (Dommers et al., 2010). Isingin mallin käyttöä mielipiteiden leviämisen mallintamisessa on pohdittu (Dommers, 2010), ja myös tutkittu esimerkiksi senaattorien lahjonnan tapauksessa (Liu et al., 2010). Jo 1971 myöhempi nobelisti Thomas Schelling ehdotti nykyisin hänen mukaansa nimettyä mallia sosiaalisen segregaation mallintamiseen; tämä malli voidaan toteuttaa käyttäen pohjana Isingin mallia (Naldi et al., 2010, 205). 3 Teoriaa 3.1 Isingin ja Pottsin mallit Isingin mallissa on jokin määrä magneettisuutta kuvaavia olioita, spinejä jotka voivat saada arvokseen 1 (Dorogovtsev, 2010, 99). Systeemiä kuvaa Hamiltonin funktio H, jonka arvo riippuu vierekkäisten spinien saman- tai erisuuntaisuuksista; spinit vuorovaikuttavat keskenään, minkä lisäksi niihin kohdistuu mahdollisesti ulkoinen suuntaava kenttä: H = P i;j J ij s i s j H P i s i, missä J on funktio, joka saa arvon 1, kun i ja j ovat samansuuntaiset ja arvon 0, kun ne ovat erisuuntaiset, H on ulkoisen kentän voimakkuus ja s on spinin arvo Dorogovtsev (2010, 99). Vuorovaikutus tapahtuu yhteyksiä pitkin; yhteyksiä voivat olla esimerkiksi rinnakkaisuus N-ulotteisessa hilassa tai särmärelaatio verkossa. Isingin mallin aikakehitystä voidaan simuloida erilaisin Monte Carlo -tyyppisin eli satunnaisuuteen perustuvin algoritmein, joista nopeimpia ovat klusterialgoritmit. Pottsin malli on Isingin mallin yleistys useammalle kuin kahdelle tilalle (Binder ja Landau, 2000, 109).
4 Toteutus 5 3.2 Universaaliusperiaate Dynaamisissa järjestelmissä makroskooppinen rakenne toteuttaa usein universaaliutena tunnetun periaatteen (Tao, 2011). Yksi universaaliuden ilmenemistavoista on itsejärjestäytynyt kriittisyys (SOC), jota karakterisoivat potenssilain mukaiset todennäköisyydet ja ilmiön ilmeneminen kaikissa kokoluokissa tiettyyn rajaan saakka (Wikipedia-yhteisö, 2011). Esimerkiksi Facebook-kontaktien määrän on todettu olevan potenssijakautunutta (Brue et al., 2009). Tarkemmin erilaisten sosiaalisten verkostojen SOC-ominaisuudesta kirjoittaa (Albert ja Barabasi, 1999). Tässä tutkielmassa ihmisten ystäväpiirien kokoja pidetään itsejärjestäytyneesti kriittisinä. Ystäväpiirien koon ylärajana pidetään noin 150 ihmistä, minkä pohjana ovat antropologi Robin Dunbarin tutkimukset (Dunbar, 1998). 4 Toteutus 4.1 Tutkimuskysymys Tutkimuksessa sovelletaan Pottsin mallia verkkoihin, joiden asteet ovat paretojakautuneita ja toteuttavat näin ollen potenssilain. Pottsin mallin tiloja ovat puolueet, spinejä ihmiset ja verkko kuvaa pientä yhteisöä, esim. kaupunginosaa. Tutkimuskysymyksenä on, miten järjestelmä (puoluekenttä) käyttäytyy kun siihen lisätään uusi tila (puolue) johon kohdistuu ulkoisen kenttä. Ulkoista kenttää vastaavat yhdessä ulkoiset tekijät kuten suhdannevaihtelut, medianäkyvyys ja kansainväliset suhteet. Puolueiden välisiä relaatioita kuvaa etäisyys polittisessa kompassissa (Liite A), joka on konstruoitu Helsingin Sanomien vaalikonedatasta (Mäkinen, 2011). 4.2 Algoritmit Ohjelmoin Pottsin mallia simuloivan ohjelman C++-kielellä käyttäen GSL- (GNUprojekti, 2011) ja Boost-kirjastoja (Dawes et al., 2011). Potenssilain mukaisesti järjestäytyneiden verkkojen luomiseen käytin Power-Law Out-Degree -algoritmia (PLOD), jonka toiminnasta kerrotaan lähteessä (Palmer ja Stean, 2000, 435-436) ja Pottsin mallille klusterityyppistä Swendsen-Wang-algoritmia (SW) (Binder ja Landau, 2000, 135), joka muistuttaa suuresti yleisemmin käytettyä, mutta sellaisenaan vain Isingin mallille toimivaa Woln algoritmia (Krauth, 2006, 257). Verkkojen piirtämiseen käytin R-kieltä ja siihen saatavia extremevalues- (van der Loo,
4 Toteutus 6 2010), graph- (Falcon et al., 2011) ja Rgraphviz-kirjastoja (Hansen et al., 2011). 4.3 SW-algoritmi Swendsen-Wang-algoritmi on esimerkki klusterialgoritmista. Klusterialgoritmit pyrkivät mahdollisimman nopeasti tasapainotilaa kohti reitistä välittämättä. SWalgoritmi valitsee satunnaisesti spinejä (henkilöitä) ja rakentaa heidän ympärilleen klustereita (piirejä) siten, että todennäköisyys tulla lisätyksi piiriin on samansuuntaiselle spinille (samalle puoluekannalle) 1 e, missä on lämpötilan (ei suoraa sosiaalista vastinetta) Boltzmannin vakiolla jaettu käänteisluku, ja muuten 0. Kun klusteri on rakennettu, rakennetaan uusi klusteri niin, että iteraation lopuksi jokainen kuuluu tasan yhteen klusteriin. Tämän jälkeen jokaiselle klusterille arvotaan erikseen uusi puoluekanta käyttäen annettua todennäköisyysjakaumaa, minkä jälkeen vuorossa on seuraava iteraatio. 4.4 Parametrit Populaation kooksi kiinnitettiin 1050 ihmistä, jolla ajojen kestot pysyivät kohtuullisina. PLOD-algoritmin generoimien yhteyksien (särmien) määräksi valittiin 6300, paretojakauman parametreista oli 1 ja x m oli 3. Näille valinnoille perusteena olivat Dunbarin tutkimukset, joissa hän ehdotti merkityksellisten ihmissuhteiden ylärajan lisäksi myös muita rajoja, kuten lähin piiri 5 ihmistä, läheinen piiri 12 ja säännölliset kontaktit 35 (Dunbar, 1998). 150 ihmisen ylärajaa ajatellen paretojakauman pitkän hännän kompensoi PLOD-algoritmiin asetettu raja, käytännössä ihmisten ystävien määrä vaihteli simulaatioissa alarajaksi asetetusta kolmesta 87 ihmiseen. Pottsin mallin betaparametriksi eli lämpötilan Boltzmannin vakiolla jaetuksi käänteisluvuksi valittiin 0; 1. Tämän taustalla oli ajatus siitä, että klusteriin liitettävän henkilön pitäisi harvoin olla klusterin alkuhenkilön tuttavapiirin ulkopuolella. Valitsemalla tämä todennäköisyys yhdeksi prosentiksi saadaan yhtälö 1 e 2 = 0; 01 mistä ehdolla 0 ratkaistuna = log(0; 9) = 0; 105361::: 4.5 Konjektuuri Puolueen vaihtamisen todennäköisyyden arvioimiseksi päätettiin parametriksi ottaa puolueiden välinen etäisyys ns. poliittisessa kompassissa. Vertailukohdan saamiseksi otettiin lähtökohdaksi Suomen nykyisten eduskuntapuolueiden mallinnus.
5 Tulokset 7 Poliittisen kompassin sijaintien määrittämiseen käytettiin Helsingin Sanomien vaalikonedataa (Mäkinen, 2011) siten, että uuden puolueen asemaan laitettiin Perussuomalaiset. Todennäköisyyksien riippuvuus etäisyydestä konjekturoitiin eksponentiaaliseksi: p / e d, missä on tuntematon parametri ja d on etäisyys väliltä [0; 1]. Parametriksi valittiin koeajojen perusteella 32 sillä tasapainotilan läheisyydessä puolueuskollisuuden pitäisi olla samaa luokkaa kuin Taloustutkimuksen kyselytutkimuksessa (Rahkonen, 2011) valitulla aikaskaalalla, jossa yksi iteraatio vastaa yhtä viikkoa (ja näin ollen 200 iteraatiota noin yhtä vaalikautta). 4.6 Simulaatiot Ajoin kaksi 1000 iteraation ajoa lähtien tilasta, jossa oli seitsemän puoluetta siten, että kunkin kannatus oli 1. Tämän jälkeen otin näiden ajojen viimeiset iteraatiot 7 uusiksi alkutiloiksi ja lisäsin uuden puolueen. Kustakin uudesta alkutilasta tein kymmenen 200 iteraation mittausta kahdella muuttujalla. Ensimmäinen muuttuja sai arvot: Uudella puolueella ei aluksi kannattajia Uudella puolueella aluksi yksi suuri yhtenäinen kannattajablokki (rakennettu henkilön, jolla on eniten ystäviä, ystäväpiiristä mukaanlukien henkilö itse) Toinen muuttuja, joka vastaa ulkoista kenttää, toteutettiin muuttamalla etäisyysfunktiota d(lähtöpuolue, muuttopuolue). Funktiota kerrottiin luvuilla 1; 0,9375; 0.875; 0,75 ja 0,5, silloin kun muuttopuolue oli lisätty uusi puolue (mutta ei, kun se oli lähtöpuolue). Tämä symmetriarikko johti mielenkiintoisiin tuloksiin, joista seuraavaksi. 5 Tulokset Tehdyt 20 mittausta eivät riitä tilastollisesti päteviin yleistyksiin. Havaittiin kuitenkin seuraavaa: Ilman ulkoista kenttää uuden puolueen kannatus vakiintui molemmilla alustuksilla noin 8-10 prosenttiin, mikäli puolue sai alkublokin. Kun puolue ei saanut alkublokkia, kannatus jatkoi kasvuaan läpi 200 iteraation saavuttamatta rajojaan, pysyen kuitenkin selvästi alle 10 prosentissa. Jo heikko ulkoinen kenttä (etäisyyden kerroin 0,9375) aiheutti alkublokilla 2-3 prosenttiyksikköä korkeamman tasapainokannatuksen. Voimakkaammilla ulkoisil-
6 Johtopäätökset 8 la kentillä kannatus jatkoi pysähtymättä kasvuaan tutkitun jakson molemmilla alustuksilla ja alkublokin olemassaolosta riippumatta. Voimakkaimmalla kentällä (etäisyyden kerroin 0,5) uuden puolueen kannatus kasvoi 50 prosenttiin ja yli. Raakadatasta laskettuja tunnuslukuja on liitteessä B. 6 Johtopäätökset Pottsin malli vaikuttaisi soveltuvan perustelluin parametrein puoluekentän muutosten kuvaamiseen. Ulkoisen kentän vaikutus mallin käyttäytymiseen on huomattava, joten mikäli tulevaisuudessa ulkoinen kenttä saadaan kytkettyä empiirisesti havaittuihin muuttujiin, avaa se runsaasti mahdollisuuksia poliittiseen analyysiin. Tällöin voisi tutkia esimerkiksi rajaa, jossa useiden (>3) puolueiden järjestelmä romahtaa diktatuuriseen yksipuoluejärjestelmään. Mielenkiintoinen jatkotutkimuksen kohde voisi myöskin olla puolueiden järjestäytyminen ilman ulkoista kenttää mielivaltaisilla puolueiden määrillä ja siirtymätodennäköisyyksillä.
6 Johtopäätökset 9 Viitteet Albert, Reka ja Barabasi, Albert-Laszlo, 1999, Emergence of Scaling in Random Networks, Science, osa 15. lokakuuta 1999, 509512, arxiv:cond-mat/9910332v1 [cond-mat.dis-nn], saatavilla: http://arxiv.org/abs/cond-mat/9910332v1 Binder, Kurt ja Landau, David P., 2000, A Guide to Monte Carlo Simulations in Statistical Physics, Cambridge University Press, Cambridge Brue, Bryce, Puttaswamy, Krishna P. N., Sala, Alessandra, Wilson, Christo ja Zhao, Ben Y., 2009, User Interactions in Social Networks and their Implications, ACM EuroSys 2009, saatavilla: http://www.cs.ucsb.edu/ alessandra/papers/interaction-eurosys09.pdf Dawes, Beman, Klarer, Robert et al., 2011, Boost C++ Libraries, http://www.boost.org Dommers, Sander, 2010, Ising models on power-law random graphs, seminaariesitys (YEP VII 2010), saatavilla: http://www.win.tue.nl/ sdommers/les/dommersyepvii.pdf Dommers, Sander, Giardinà, Cristian ja van der Hofstad, Remco, 2010, Ising models on power-law random graphs, arxiv:1005.4556v2 [math.pr], saatavilla: http://arxiv.org/abs/1005.4556 Dorogovtsev, Sergey N., 2010, Lectures on Complex Networks, Oxford Master Series in Statistical, Computational, and Theoretical Physics, osa 20, Oxford University Press, Oxford Dunbar, Robin I. M., 1998, The Social Brain Hypothesis, Evolutionary Anthropology, osa 5/1998, 178190, saatavilla: http://archives.evergreen.edu/webpages/curricular/2006-2007/languageofpolitics/les/languageofpolitics/evol_anthrop_6.pdf Falcon, Seth et al., 2011, graph (Bioconductor), http://www.bioconductor.org/packages/2.9/bioc/html/graph.html GNU-projekti, 2011, GNU Scientic Library, http://www.gnu.org/software/gsl/ Hansen, Kasper et al., 2011, Rgraphviz (Bioconductor), http://www.bioconductor.org/packages/release/bioc/html/rgraphviz.html
6 Johtopäätökset 10 Kemppainen, Antti, 2011, Konformi-invarianssia tilastollisessa fysiikassa, Arkhimedes, osa 1/2011, 1630 Krauth, Werner, 2006, Statistical Mechanics: Algorithms and Computations, Oxford Master Series in Statistical, Computational, and Theoretical Physics, osa 13, Oxford University Press, Oxford Liu, Shihuan, Shakkottai, Srinivas ja Ying, Lei, 2010, Inuence Maximixation in Social Networks: An Ising-model-based Approach, Allerton Conference 2010, saatavilla: http://www.ece.tamu.edu/ sshakkot/index_les/isingallerton.pdf ja inl.ece.iastate.edu/publications/liuyinsha_10.pdf Mäkinen, Esa, 2011, Avodataa: Valittujen kansanedustajien arvomaailma, saatavilla: http://blogit.hs./hsnext/avodataa-valittujen-kansanedustajienarvomaailma (luettu 27.11.2011) Naldi, Giovanni, Pareschi, Lorenzo ja Toscani, Giuseppe (toim.), 2010, Mathematical Modeling of Collective Behavior in Socio-Economic and Life Sciences, Modeling and Simulation in Science, Engineering and Technology, Birkhäuser, Boston Palmer, C. R. ja Stean, J. G., 2000, Generating network topologies that obey power laws, Global Telecommunication Conference, 2000. GLOBECOM '00., IEEE, New York City, 434438, saatavilla: http://www.cs.cmu.edu/ stean/items/globecom.ps Rahkonen, Juho, 2011, Perussuomalaisten ruumiinavaus, Yhteiskuntapolitiikka, osa 76, 4/2011, 425435, saatavilla: www.stakes./yp/2011/4/rahkonen.pdf Sethna, James P., 2006, Statistical Mechanics: Entropy, Order Parameters, and Complexity, Oxford Master Series in Statistical, Computational, and Theoretical Physics, osa 14, Oxford University Press, Oxford Tao, Terence, 2011, Universality, luento (Trinity Mathematical Society), saatavilla: terrytao.les.wordpress.com/2011/01/universality.pdf van der Loo, Mark P. J., 2010, extremevalues, http://cran.rproject.org/web/packages/extremevalues, http://www.markvanderloo.eu Wikipedia-yhteisö, 2011, Universality (dynamical systems), http://en.wikipedia.org/wiki/universality_(dynamical_systems) (luettu 27.11.2011)
Liitteet Liite A Vihr Vas Sdp Rkp Kok Kesk Kd Ps Vihr 0,000 0,254 0,309 0,267 0,409 0,425 0,366 0,570 Vas 0,254 0,000 0,164 0,435 0,533 0,504 0,368 0,538 Sdp 0,309 0,164 0,000 0,376 0,432 0,382 0,227 0,377 Rkp 0,267 0,435 0,376 0,000 0,151 0,200 0,251 0,418 Kok 0,409 0,533 0,432 0,151 0,000 0,090 0,233 0,329 Kesk 0,425 0,504 0,382 0,200 0,090 0,000 0,163 0,240 Kd 0,366 0,368 0,227 0,251 0,233 0,163 0,000 0,204 Ps 0,570 0,538 0,377 0,418 0,329 0,240 0,204 0,000 Liite B Alustus Blokki d-% Min Min(iter-#) Max Max(iter-#) A Q 1 ei 100 1 1-3 58 192 34,72 38,71 17,12 2 ei 100 1 1-3 50 197-200 30,35 33,40 13,96 1 ei 93,75 1 1 76 198-200 44,64 49,54 21,50 2 ei 93,75 1 1 73 197-200 45,36 49,59 20,05 1 ei 87,5 1 1 107 197-198 64,58 71,25 30,11 2 ei 87,5 1 1 100 198-199 61,38 67,55 28,21 1 ei 75 1 1 186 197, 200 117,71 128,73 52,12 2 ei 75 2 1 191 200 119,69 130,68 52,45 1 ei 50 9 1 533 200 367,56 390,26 131,17 2 ei 50 12 1 515 200 364,43 385,70 126,32 1 on (88) 100 88 1-6 103 103-106, 124-128 97,27 97,36 4,09 2 on (74) 100 73 1-2, 5-11, 33 95 197-200 84,66 84,98 7,35 1 on (88) 93,75 88 1 134 182, 184-185, 188-189, 194, 200 114,78 115,55 13,36 2 on (74) 93,75 73 1 115 181-182 97,06 97,99 13,47 1 on (88) 87,5 88 1 148 198-200 124,01 125,18 17,08 2 on (74) 87,5 73 1 143 197 115,75 117,73 21,50 1 on (88) 75 88 1 245 198 182,65 188,09 44,94 2 on (74) 75 73 1 227 198-200 167,10 172,91 44,45 1 on (88) 50 97 1 579 200 430,39 447,27 121,75 2 on (74) 50 89 1 557 200 414,38 431,30 119,63 Alustus: käytetyn alkutilan tunnus Blokki: alkublokin olemassaolo ja mahdollisen alkublokin koko d-%: etäisyysfunktion kerroin Min: pienin havaittu kannattajien määrä Min(iter-#): iteraatio(t), jo(i)lla pienin kannattajien määrä havaittiin
6 Johtopäätökset 12 Max: suurin havaittu kannattajien määrä Max(iter-#): iteraatio(t), jo(i)lla suurin kannattajien määrä havaittiin A: (aritmeettinen) keskiarvo, A = P n k=1 x k n Q: kvadraattinen keskiarvo eli Root Mean Square (RMS), Q = RMS = : keskihajonta, = r Pn k=1 (x k A)2 n r Pn k=1 x2 k Huom! Koska algoritmi pyrkii ainoastaan mahdollisimman nopeasti tasapainotilan läheisyyteen, eikä välitä välissä tapahtuvista muutoksista, olennaisimmat tunnusluvut ovat keskihajonta ja keskiarvot suhteessa maksimiin, sillä ne kertovat parhaiten siitä, kuinka lähellä tasapainotilaa ajon lopussa ollaan. n