Informaation leviäminen väkijoukossa matemaattinen mallinnus
|
|
- Mauno Elstelä
- 8 vuotta sitten
- Katselukertoja:
Transkriptio
1 Informaation leviäminen väkijoukossa matemaattinen mallinnus Tony Nysten Ohjaaja: DI Simo Heliövaara Valvoja: Prof. Harri Ehtamo
2 Väkijoukon toiminta evakuointitilanteessa Uhkaavan tilanteen huomanneen ihmisen käyttäytyminen on helppo huomata Tieto leviää väkijoukossa ihmiseltä toiselle Tätä voi mallintaa stokastisella simulointimallilla Voidaan hyödyntää tilojen suunnittelemisessa evakuoinnin kannalta turvallisiksi Voi myös mallintaa vaikkapa juorun leviämistä torilla
3 Malli siirtymistodennäköisyys, p agenttien välinen etäisyys, d
4 Malli
5 Malli
6 Malli Tiedonsiirtymistodennäköisyys aika-askeleen ja etäisyyden funktiona
7 Malli Nyt todennäköisyys, että henkilö k ylipäätään saa joltakin tiedon voidaan laskea kertomalla: sisältää ne henkilöt j joilla tieto on
8 Algoritmi 1. k = 0 2. aseta k = k+1 if I(k) = 1 goto 2 else laske 3. Generoi satunnaisluku R väliltä [0,1] 4. if R < aseta I(k)=1 else aseta I(k)=0 5. goto 2
9 Toteutus Implementoitiin malli MATLABilla Tutkitaan tiedon leviämisnopeutta Aika-askeleen vaikutus leviämiseen? Parametrien vaikutus leviämiseen? Alkuastelman, ihmistiheyden ja huoneen geometrian vaikutus leviämiseen?
10 Tiedon leviämisnopeus
11
12 Tiedon leviämisnopeus Rajattomassa huoneessa tieto leviäisi neliöllisesti informaation saaneiden agenttien lukumäärä mittaus 2. asteen regressio aika [s]
13 Aika-askeleen vaikutus Valitun diskretoimisvälin ei pitäisi vaikuttaa tiedon leviämisnopeuteen Ei siis väliä päivitetäänkö tilanne esim. sekunnin vai viiden sekunnin välein Liian suurilla aikaaskeleilla leviäminen kuitenkin hidastuu osuus agenteista, joille tieto on 20 s jälkeen siirtynyt käytetyn aika askeleen t pituus
14 Aika-askeleen vaikutus Algoritmi laskee jokaisessa iteraatiossaan todennäköisyyden jolla kukin agentti saa tiedon, ja arpoo tämän perusteella keille tieto leviää. Jokainen agentti, jolle tieto on levinnyt, kasvattaa todennäköisyyttä, että muut agentit saavat tiedon. Jos siis aika-askel on liian suuri, leviää tieto yhdessä askeleessa vain niille, joille se alkuasetelmassa olevilta agenteilta leviäisi.
15 Parametrien vaikutus osuus agenteista, joille tieto on 10 s jã lkeen siirtynyt osuus agenteista, joille tieto on 10 s jã lkeen siirtynyt parametrin d 0 arvo parametrin p 0 arvo osuus agenteista, joille tieto on 10 s jã lkeen siirtynyt parametrin t arvo 0
16 Alkuasetelman vaikutus Jos tieto on alussa hajallaan, lähtee se nopeammin leviämään Etäisyys muihin agentteihin lyhyempi osuus agenteista, joille tieto on siirtynyt agentit yhdessä kulmassa agentit keskellä agentit kulmissa aika t [s]
17 Populaation tiheyden vaikutus Tiheässä populaatiossa tieto leviää nopeimmin Enemmän agentteja joille tieto voi levitä Myös leviää osuus agenteista, joille tieto on siirtynyt m 2 /hlö 10 m 2 /hlö 20 m 2 /hlö 30 m 2 /hlö aika t [s]
18 Huoneen geometrian vaikutus Geometria vaikuttaa agenttien väliseen etäisyyteen eli myös leviämisen nopeuteen osuus agenteista, joille tieto on siirtynyt m x 256 m 32 m x 128 m 64 m x 64 m aika t [s]
19 Yhteenveto
20 Pääasiallinen tietolähde Heliövaara, S. Computational Models for Human Behavior in Fire Evacuations. Diplomityö,, Systeemianalyysin laboratorio, Espoo, 2007.
21 Alkuperäinen aikataulu Kesä 2009: Mallin implementointi MATLABiin : Aihe-esittely seminaarissa Syksy 2009: Kandidaatin työn kirjoittaminen Joulukuun (?) seminaari: Valmiin työn esittely
22 Toteutunut aikataulu Kesä 2009: Mallin implementointi MATLABiin : Aihe-esittely seminaarissa Syksy 2009: Kandidaatin työn kirjoittaminen Kevät 2010: Kandidaatin työn kirjoittaminen Syksy 2010: Kandidaatin työn kirjoittaminen : Valmiin työn esittely
Implementation of Selected Metaheuristics to the Travelling Salesman Problem (valmiin työn esittely)
Implementation of Selected Metaheuristics to the Travelling Salesman Problem (valmiin työn esittely) Jari Hast xx.12.2013 Ohjaaja: Harri Ehtamo Valvoja: Hari Ehtamo Työn saa tallentaa ja julkistaa Aalto-yliopiston
Trimmitysongelman LP-relaksaation ratkaiseminen sarakkeita generoivalla algoritmilla ja brute-force-menetelmällä
Trimmitysongelman LP-relaksaation ratkaiseminen sarakkeita generoivalla algoritmilla ja brute-force-menetelmällä Vesa Husgafvel 19.11.2012 Ohjaaja: DI Mirko Ruokokoski Valvoja: Prof. Harri Ehtamo Työn
Algoritmit 2. Luento 13 Ti Timo Männikkö
Algoritmit 2 Luento 13 Ti 30.4.2019 Timo Männikkö Luento 13 Simuloitu jäähdytys Merkkijonon sovitus Horspoolin algoritmi Ositus ja rekursio Rekursion toteutus Algoritmit 2 Kevät 2019 Luento 13 Ti 30.4.2019
Joonas Haapala Ohjaaja: DI Heikki Puustinen Valvoja: Prof. Kai Virtanen
Hävittäjälentokoneen reitin suunnittelussa käytettävän dynaamisen ja monitavoitteisen verkko-optimointitehtävän ratkaiseminen A*-algoritmilla (valmiin työn esittely) Joonas Haapala 8.6.2015 Ohjaaja: DI
Monte Carlo -menetelmä optioiden hinnoittelussa (valmiin työn esittely)
Monte Carlo -menetelmä optioiden hinnoittelussa (valmiin työn esittely) 17.09.2015 Ohjaaja: TkT Eeva Vilkkumaa Valvoja: Prof. Harri Ehtamo Työn saa tallentaa ja julkistaa Aalto-yliopiston avoimilla verkkosivuilla.
MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi
MS-A050 Todennäköisyyslaskennan ja tilastotieteen peruskurssi B Satunnaismuuttujat ja todennäköisyysjakaumat Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto
Algoritmit 1. Demot Timo Männikkö
Algoritmit 1 Demot 1 31.1.-1.2.2018 Timo Männikkö Tehtävä 1 (a) Algoritmi, joka tutkii onko kokonaisluku tasan jaollinen jollain toisella kokonaisluvulla siten, että ei käytetä lainkaan jakolaskuja Jaettava
MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi
MS-A050 Todennäköisyyslaskennan ja tilastotieteen peruskurssi B Satunnaismuuttujat ja todennäköisyysjakaumat Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto
Skedulerisimulaattorin implementointi fysiikkatöille ja sen matemaattinen validointi
Skedulerisimulaattorin implementointi fysiikkatöille ja sen matemaattinen validointi 24.01.2011 Ohjaaja: Tapio Niemi Valvoja: Harri Ehtamo Tausta ja työn tavoite Työ tehtiin Helsinki Institute of Physics:ille,
Tuotantoprosessin optimaalinen aikataulutus (valmiin työn esittely)
Tuotantoprosessin optimaalinen aikataulutus (valmiin työn esittely) Joona Kaivosoja 01.12.2014 Ohjaaja: DI Ville Mäkelä Valvoja: Prof. Ahti Salo Työn saa tallentaa ja julkistaa Aalto-yliopiston avoimilla
Lentotiedustelutietoon perustuva tykistön tulenkäytön optimointi (valmiin työn esittely)
Lentotiedustelutietoon perustuva tykistön tulenkäytön optimointi (valmiin työn esittely) Tuukka Stewen 1.9.2017 Ohjaaja: DI Juho Roponen Valvoja: prof. Ahti Salo Työn saa tallentaa ja julkistaa Aalto-yliopiston
Positiivisen psykologian vuorovaikutusmalli
Positiivisen psykologian vuorovaikutusmalli (Valmiin työn esittely) 9.5.2011 Ohjaaja ja valvoja: Raimo P. Hämäläinen Sisältö Positiivinen psykologia Vuorovaikutusmalli positiivisuuden leviämisestä ryhmissä
Algoritmit 2. Luento 12 Ke Timo Männikkö
Algoritmit 2 Luento 12 Ke 26.4.2017 Timo Männikkö Luento 12 Rajoitehaku Kauppamatkustajan ongelma Lyhin virittävä puu Paikallinen etsintä Vaihtoalgoritmit Geneettiset algoritmit Simuloitu jäähdytys Algoritmit
Simulation and modeling for quality and reliability (valmiin työn esittely) Aleksi Seppänen
Simulation and modeling for quality and reliability (valmiin työn esittely) Aleksi Seppänen 16.06.2014 Ohjaaja: Urho Honkanen Valvoja: Prof. Harri Ehtamo Työn saa tallentaa ja julkistaa Aalto-yliopiston
A ja B pelaavat sarjan pelejä. Sarjan voittaja on se, joka ensin voittaa n peliä.
Esimerkki otteluvoiton todennäköisyys A ja B pelaavat sarjan pelejä. Sarjan voittaja on se, joka ensin voittaa n peliä. Yksittäisessä pelissä A voittaa todennäköisyydellä p ja B todennäköisyydellä q =
Algoritmit 2. Luento 12 To Timo Männikkö
Algoritmit 2 Luento 12 To 3.5.2018 Timo Männikkö Luento 12 Geneettiset algoritmit Simuloitu jäähdytys Merkkijonon sovitus Horspoolin algoritmi Algoritmit 2 Kevät 2018 Luento 12 To 3.5.2018 2/35 Algoritmien
Minimilatenssiongelman ratkaisualgoritmeja (valmiin työn esittely)
Minimilatenssiongelman ratkaisualgoritmeja (valmiin työn esittely) Antti Salmela 03.03.2014 Ohjaaja: Harri Ehtamo Valvoja: Harri Ehtamo Työn saa tallentaa ja julkistaa Aalto-yliopiston avoimilla verkkosivuilla.
Vesivoimaketjun optimointi mehiläisalgoritmilla (Valmiin työn esittely)
Vesivoimaketjun optimointi mehiläisalgoritmilla (Valmiin työn esittely) Sakke Rantala 2.12.2013 Ohjaaja: DI Hannu Korva Valvoja: Professori Harri Ehtamo Työn saa tallentaa ja julkistaa Aalto-yliopiston
Optimaaliset riskinalentamisportfoliot vikapuuanalyysissä (valmiin työn esittely)
Optimaaliset riskinalentamisportfoliot vikapuuanalyysissä (valmiin työn esittely) Markus Losoi 30.9.2013 Ohjaaja: DI Antti Toppila Valvoja: prof. Ahti Salo Työn saa tallentaa ja julkistaa Aalto-yliopiston
POISTUMISSIMULOINNIT PALOTILANTEISSA
POISTUMISSIMULOINNIT PALOTILANTEISSA Simo Heliövaara & Harri Ehtamo Systeemianalyysin laboratorio, Teknillinen korkeakoulu PL 1100, 02015 TKK Timo Korhonen & Simo Hostikka VTT PL 1000, 02044 VTT Tiivistelmä
Satunnaislukujen generointi
Satunnaislukujen generointi Hannu Toivonen, Marko Salmenkivi, Inkeri Verkamo Tutkimustiedonhallinnan peruskurssi Satunnaislukujen generointi 1/27 Kevät 2003 Lähteet Knuth, D., The Art of Computer Programming,
Algoritmit 1. Luento 10 Ke Timo Männikkö
Algoritmit 1 Luento 10 Ke 14.2.2018 Timo Männikkö Luento 10 Algoritminen ongelmanratkaisu Suunnittelumenetelmät Raaka voima Järjestäminen eli lajittelu Kuplalajittelu Lisäyslajittelu Valintalajittelu Permutaatiot
ABHELSINKI UNIVERSITY OF TECHNOLOGY
Satunnaismuuttujat ja todennäköisyysjakaumat Mitä tänään? Jos satunnaisilmiötä halutaan mallintaa matemaattisesti, on ilmiön tulosvaihtoehdot kuvattava numeerisessa muodossa. Tämä tapahtuu liittämällä
Ohjelmassa on käytettävä funktiota laskeparkkimaksu laskemaan kunkin asiakkaan maksu. Funktio floor pyöristää luvun lähimmäksi kokonaisluvuksi.
Tehtävä 24. Kallioparkki veloittaa 2 euroa kolmelta ensimmäiseltä pysäköintitunnilta. Yli kolmen tunnin pysäköinnistä veloitetaan lisäksi 0.5 euroa jokaiselta yli menevältä tunnilta. Kuitenkin maksimiveloitus
Konsensusongelma hajautetuissa järjestelmissä. Niko Välimäki Hajautetut algoritmit -seminaari
Konsensusongelma hajautetuissa järjestelmissä Niko Välimäki 30.11.2007 Hajautetut algoritmit -seminaari Konsensusongelma Päätöksen muodostaminen hajautetussa järjestelmässä Prosessien välinen viestintä
Cubature Integration Methods in Non-Linear Kalman Filtering and Smoothing (valmiin työn esittely)
Cubature Integration Methods in Non-Linear Kalman Filtering and Smoothing (valmiin työn esittely) Ohjaaja: Valvoja: TkT Simo Särkkä Prof. Harri Ehtamo 13.9.2010 Aalto-yliopiston teknillinen korkeakoulu
LASKENNALLISEN TIETEEN OHJELMATYÖ: Diffuusion Monte Carlo -simulointi yksiulotteisessa systeemissä
LASKENNALLISEN TIETEEN OHJELMATYÖ: Diffuusion Monte Carlo -simulointi yksiulotteisessa systeemissä. Diffuusio yksiulotteisessa epäjärjestäytyneessä hilassa E J ii, J ii, + 0 E b, i E i i i i+ x Kuva.:
Vangin dilemma häiriöisessä ympäristössä Markov-prosessina (valmiin työn esittely) Lasse Lindqvist
Vangin dilemma häiriöisessä ympäristössä Markov-prosessina (valmiin työn esittely) Lasse Lindqvist 21.01.2013 Ohjaaja: Kimmo Berg Valvoja: Harri Ehtamo Työn saa tallentaa ja julkistaa Aalto-yliopiston
Search space traversal using metaheuristics
Search space traversal using metaheuristics Mika Juuti 11.06.2012 Ohjaaja: Ville Mattila Valvoja: Harri Ehtamo Työn saa tallentaa ja julkistaa Aalto-yliopiston avoimilla verkkosivuilla. Muilta osin kaikki
TEEMU ROOS (KALVOT MUOKATTU PATRIK HOYERIN LUENTOMATERIAALISTA)
JOHDATUS TEKOÄLYYN TEEMU ROOS (KALVOT MUOKATTU PATRIK HOYERIN LUENTOMATERIAALISTA) KONEOPPIMISEN LAJIT OHJATTU OPPIMINEN: - ESIMERKIT OVAT PAREJA (X, Y), TAVOITTEENA ON OPPIA ENNUSTAMAAN Y ANNETTUNA X.
Mat Sovellettu todennäköisyyslasku A
TKK / Systeemianalyysin laboratorio Nordlund Mat-.090 Sovellettu todennäköisyyslasku A Harjoitus 7 (vko 44/003) (Aihe: odotusarvon ja varianssin ominaisuuksia, satunnaismuuttujien lineaarikombinaatioita,
TEKNILLINEN KORKEAKOULU Systeemianalyysin laboratorio. Kimmo Berg. Mat Optimointioppi. 9. harjoitus - ratkaisut
TEKNILLINEN KORKEAKOULU Systeemianalyysin laboratorio Mat-2.139 Optimointioppi Kimmo Berg 9. harjoitus - ratkaisut 1. a) Viivahakutehtävä pisteessä x suuntaan d on missä min f(x + λd), λ f(x + λd) = (x
MIKROAALTOUUNI VAASAN YLIOPISTO TEKNILLINEN TIEDEKUNTA SÄHKÖTEKNIIKKA. Tuomas Karri i78953 Jussi Luopajärvi i80712 Juhani Tammi o83312
VAASAN YLIOPISTO TEKNILLINEN TIEDEKUNTA SÄHKÖTEKNIIKKA Tuomas Karri i78953 Jussi Luopajärvi i80712 Juhani Tammi o83312 SATE.2010 Dynaaminen kenttäteoria MIKROAALTOUUNI Sivumäärä: 12 Jätetty tarkastettavaksi:
Seurantalaskimen simulointi- ja suorituskykymallien vertailu (valmiin työn esittely) Joona Karjalainen
Seurantalaskimen simulointi- ja suorituskykymallien vertailu (valmiin työn esittely) Joona Karjalainen 08.09.2014 Ohjaaja: DI Mikko Harju Valvoja: Prof. Kai Virtanen Työn saa tallentaa ja julkistaa Aalto-yliopiston
Peliteorian soveltaminen hajautettujen järjestelmien protokollasuunnittelussa (valmiin työn esittely)
Peliteorian soveltaminen hajautettujen järjestelmien protokollasuunnittelussa (valmiin työn esittely) Riku Hyytiäinen 23.02.2015 Ohjaaja: Harri Ehtamo Valvoja: Harri Ehtamo Työn saa tallentaa ja julkistaa
Algoritmit 1. Demot Timo Männikkö
Algoritmit 1 Demot 1 25.-26.1.2017 Timo Männikkö Tehtävä 1 (a) Algoritmi, joka laskee kahden kokonaisluvun välisen jakojäännöksen käyttämättä lainkaan jakolaskuja Jaettava m, jakaja n Vähennetään luku
Kirjallisuuskatsaus sisäpistemenetelmiin ja niiden soveltamiseen eri optimointiluokille (valmiin työn esittely)
Kirjallisuuskatsaus sisäpistemenetelmiin ja niiden soveltamiseen eri optimointiluokille (valmiin työn esittely) Ilari Vähä-Pietilä 28.04.2014 Ohjaaja: TkT Kimmo Berg Valvoja: Prof. Harri Ehtamo Työn saa
Trichoderma reesein geenisäätelyverkoston ennustaminen Oskari Vinko
Trichoderma reesein geenisäätelyverkoston ennustaminen Oskari Vinko 04.11.2013 Ohjaaja: Merja Oja Valvoja: Harri Ehtamo Työn saa tallentaa ja julkistaa Aalto-yliopiston avoimilla verkkosivuilla. Muilta
5.6.3 Matematiikan lyhyt oppimäärä
5.6.3 Matematiikan lyhyt oppimäärä Matematiikan lyhyen oppimäärän opetuksen tehtävänä on tarjota valmiuksia hankkia, käsitellä ja ymmärtää matemaattista tietoa ja käyttää matematiikkaa elämän eri tilanteissa
Algoritmit 1. Luento 10 Ke 11.2.2015. Timo Männikkö
Algoritmit 1 Luento 10 Ke 11.2.2015 Timo Männikkö Luento 10 Algoritminen ongelman ratkaisu Suunnittelumenetelmät Raaka voima Järjestäminen eli lajittelu Kuplalajittelu Väliinsijoituslajittelu Valintalajittelu
Probabilistiset mallit (osa 2) Matemaattisen mallinnuksen kurssi Kevät 2002, luento 10, osa 2 Jorma Merikoski Tampereen yliopisto
Probabilistiset mallit (osa 2) Matemaattisen mallinnuksen kurssi Kevät 2002, luento 10, osa 2 Jorma Merikoski Tampereen yliopisto Esimerkki Tarkastelemme ilmiötä I, joka on a) tiettyyn kauppaan tulee asiakkaita
Tulevaisuuden teräsrakenteet ja vaativa valmistus. 3D-skannaus ja käänteinen suunnittelu
Tulevaisuuden teräsrakenteet ja vaativa valmistus Hämeenlinnassa 24. - 25.1.2018 3D-skannaus ja käänteinen suunnittelu Timo Kärppä, HAMK Ohutlevykeskus 2018 2 SISÄLTÖ 1. Digitaalisuus mahdollistaa monia
Gaussiset prosessit derivaattahavainnoilla regressio-ongelmassa (valmiin työn esittely)
Gaussiset prosessit derivaattahavainnoilla regressio-ongelmassa (valmiin työn esittely) Ohjaaja: TkT Aki Vehtari Valvoja: Prof. Harri Ehtamo Kandidaattiseminaari 21 1.11.21 Esityksen rakenne Tausta Derivaattahavaintojen
Lääkintähelikopterikaluston mallintaminen
Mat-2.4177 Operaatiotutkimuksen projektityöseminaari Lääkintähelikopterikaluston mallintaminen Väliraportti 19.3.2010 Pohjalainen Tapio (projektipäällikkö) (29157N) Kuikka Ilmari (58634A) Tyrväinen Tero
7.4 Sormenjälkitekniikka
7.4 Sormenjälkitekniikka Tarkastellaan ensimmäisenä esimerkkinä pitkien merkkijonojen vertailua. Ongelma: Ajatellaan, että kaksi n-bittistä (n 1) tiedostoa x ja y sijaitsee eri tietokoneilla. Halutaan
Epälineaarinen hinnoittelu: Diskreetin ja jatkuvan mallin vertailu
Epälineaarinen hinnoittelu: Diskreetin ja jatkuvan mallin vertailu 11.4.2011 Ohjaaja: TkT Kimmo Berg Valvoja: Prof. Harri Ehtamo Esityksen sisältö: Hinnoittelumallien esittely Menetelmät Esimerkkitehtävän
Sukelluskeräily, Pelihahmon liikuttaminen. Tee uusi hahmo: Pelihahmo. Nimeä se. Testaa ikuisesti -silmukassa peräkkäisinä testeinä (jos) onko jokin
Versio 1.0 1 Sukelluskeräily Tässä pelissä keräilet erilaisia aarteita ja väistelet vihollista. Tämän lisäksi pelaajan pitää käydä välillä pinnalla hengittelemässä. Peliin lisätään myös häiriötekijäksi
Yhtälöryhmä matriisimuodossa. MS-A0007 Matriisilaskenta. Tarkastellaan esimerkkinä lineaarista yhtälöparia. 2x1 x 2 = 1 x 1 + x 2 = 5.
2. MS-A000 Matriisilaskenta 2. Nuutti Hyvönen, c Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2..205 Tarkastellaan esimerkkinä lineaarista yhtälöparia { 2x x 2 = x x 2 =
Epidemian leviämisen mallintaminen agenttipohjaisen mallin avulla. Karel Kaurila & Timo Toukkari
Epidemian leviämisen mallintaminen agenttipohjaisen mallin avulla Karel Kaurila & Timo Toukkari Valkeakosken Tietotien lukio 20.11.2009 1 Tiivistelmä Epidemiat ovat viime vuosina olleet ajankohtaisia.
Johdatus tekoälyn taustalla olevaan matematiikkaan
Johdatus tekoälyn taustalla olevaan matematiikkaan Informaatioteknologian tiedekunta Jyväskylän yliopisto 3. luento 17.11.2017 Neuroverkon opettaminen (ohjattu oppiminen) Neuroverkkoa opetetaan syöte-tavoite-pareilla
Harjoitus 2: Matlab - Statistical Toolbox
Harjoitus 2: Matlab - Statistical Toolbox Mat-2.2107 Sovelletun matematiikan tietokonetyöt Syksy 2006 Mat-2.2107 Sovelletun matematiikan tietokonetyöt 1 Harjoituksen tavoitteet Satunnaismuuttujat ja todennäköisyysjakaumat
Lisäinformaation arvo monikriteerisessä projektiportfoliovalinnassa (valmiin työn esittely)
Lisäinformaation arvo monikriteerisessä projektiportfoliovalinnassa (valmiin työn esittely) Jussi Hirvonen 23.03.2015 Ohjaaja: Eeva Vilkkumaa Valvoja: Ahti Salo Työn saa tallentaa ja julkistaa Aalto-yliopiston
f(n) = Ω(g(n)) jos ja vain jos g(n) = O(f(n))
Määritelmä: on O(g(n)), jos on olemassa vakioarvot n 0 > 0 ja c > 0 siten, että c g(n) kun n > n 0 O eli iso-o tai ordo ilmaisee asymptoottisen ylärajan resurssivaatimusten kasvun suuruusluokalle Samankaltaisia
jens 1 matti Etäisyydet 1: 1.1 2: 1.4 3: 1.8 4: 2.0 5: 3.0 6: 3.6 7: 4.0 zetor
T-1.81 Luonnollisten kielten tilastollinen käsittely Vastaukset 11, ti 8.4., 1:1-18: Klusterointi, Konekääntäminen. Versio 1. 1. Kuvaan 1 on piirretty klusteroinnit käyttäen annettuja algoritmeja. Sanojen
JOITAKIN KOMMENTTEJA JA LISÄEHDOTUKSIA TIETEEN METODIIKKA MODUULIN YHTEISEEN KURSSILISTAAN Esitys 25.4.2007 KK
JOITAKIN KOMMENTTEJA JA LISÄEHDOTUKSIA TIETEEN METODIIKKA MODUULIN YHTEISEEN KURSSILISTAAN Esitys 25.4.2007 KK 1 Osastojen kommentteja (1. ja 2.) ja tarkennus (3.) : 1. Tu-osasto (suunn. Tarja Timonen,
Luodin massajakauman optimointi
Luodin massajakauman optimointi Janne Lahti 01.09.2017 Ohjaaja: DI Mikko Harju Valvoja: Prof. Kai Virtanen Työn saa tallentaa ja julkistaa Aalto-yliopiston avoimilla verkkosivuilla. Muilta osin kaikki
11. Dimensioanalyysi. KJR-C2003 Virtausmekaniikan perusteet
11. Dimensioanalyysi KJR-C2003 Virtausmekaniikan perusteet Päivän anti Miten yksittäisen virtaustapauksen tuloksia voidaan yleistää tarkastelemalla ilmiöön liittyvien suureiden yksiköitä? Motivointi: dimensioanalyysin
UUSI LIEKINLEVIÄMISEN TUTKIMUSLAITE
UUSI LIEKINLEVIÄMISEN TUTKIMUSLAITE Johan Mangs Palotutkimuksen päivät 2009 Espoo Hanasaaren kulttuurikeskus 25. 26.8.2009 Johdanto Liekin leviäminen jähmeän aineen pinnalla on keskeinen tutkimusaihe VTT:n
Logistinen regressio, separoivat hypertasot
Logistinen regressio, separoivat hypertasot Topi Sikanen Logistinen regressio Aineisto jakautunut K luokkaan K=2 tärkeä erikoistapaus Halutaan mallintaa luokkien vedonlyöntikertoimia (odds) havaintojen
Puhelintukiasema-antennin säteilykuvion mittaus multikopterilla (Valmiin työn esittely)
Puhelintukiasema-antennin säteilykuvion mittaus multikopterilla (Valmiin työn esittely) Nina Gunell 24.03.2016 Ohjaaja: Yliopistonlehtori Jari Holopainen Valvoja: Professori Harri Ehtamo Työn saa tallentaa
58131 Tietorakenteet ja algoritmit (kevät 2014) Uusinta- ja erilliskoe, , vastauksia
58131 Tietorakenteet ja algoritmit (kevät 2014) Uusinta- ja erilliskoe, 10..2014, vastauksia 1. [9 pistettä] (a) Todistetaan 2n 2 + n + 5 = O(n 2 ): Kun n 1 on 2n 2 + n + 5 2n 2 + n 2 +5n 2 = 8n 2. Eli
Stokastinen optimointi taktisessa toimitusketjujen riskienhallinnassa (valmiin työn esittely)
Stokastinen optimointi taktisessa toimitusketjujen riskienhallinnassa (valmiin työn esittely) Esitelmöijä Olli Rentola päivämäärä 21.1.2013 Ohjaaja: TkL Anssi Käki Valvoja: Prof. Ahti Salo Työn saa tallentaa
Ohjelmoinnin perusteet Y Python
Ohjelmoinnin perusteet Y Python T-106.1208 3.2.2010 T-106.1208 Ohjelmoinnin perusteet Y 3.2.2010 1 / 36 Esimerkki: asunnon välityspalkkio Kirjoitetaan ohjelma, joka laskee kiinteistönvälittäjän asunnon
MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi
MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 5B Frekventistiset vs. bayeslaiset menetelmät Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto
MATEMATIIKKA MATEMATIIKAN PITKÄ OPPIMÄÄRÄ. Oppimäärän vaihtaminen
MATEMATIIKKA Oppimäärän vaihtaminen Opiskelijan siirtyessä matematiikan pitkästä oppimäärästä lyhyempään hänen suorittamansa pitkän oppimäärän opinnot luetaan hyväksi lyhyemmässä oppimäärässä siinä määrin
Sustainable steel construction seminaari
Sustainable steel construction seminaari 18.1.2017 Geometrian mittaaminen ja 3D skannaus Timo Kärppä 2017 2 SISÄLTÖ 1. Digitaalisuus mahdollistaa monia asioita 2. Mitä on 3D? 3. 3D skannaus, eri menetelmiä,
Laskuharjoitus 9, tehtävä 6
Aalto-yliopiston perustieteiden korkeakoulu Jouni Pousi Systeemianalyysin laboratorio Mat-2.4129 Systeemien identifiointi Laskuharjoitus 9, tehtävä 6 Tämä ohje sisältää vaihtoehtoisen tavan laskuharjoituksen
Liite 1. Laajennettu Eukleideen algoritmi suoraviivainen tapa
Liite 1. Laajennettu Eukleideen algoritmi suoraviivainen tapa - johdanto - matemaattinen induktiotodistus - matriisien kertolaskun käyttömahdollisuus - käsinlaskuesimerkkejä - kaikki välivaiheet esittävä
Simulointimalli lentokoneiden käytettävyyden hallintaan. Ville Mattila Systeemianalyysin laboratorio Teknillinen korkeakoulu www.sal.tkk.
Simulointimalli lentokoneiden käytettävyyden hallintaan Ville Mattila Systeemianalyysin laboratorio Teknillinen korkeakoulu www.sal.tkk.fi Sisältö Johdanto Simulointimalli Suomen Ilmavoimien lentokoneiden
Muistutus aikatauluista
Muistutus aikatauluista (Nämä eivät välttämättä koske avoimen yo:n opiskelijoita Erkki Kailan rinnakkaisella kurssilla) Luento 1: kotitehtävät sulkeutuvat 20.9 12:00, ennen tutoriaalia Tutoriaali 1 sulkeutuu
Vanhoja koetehtäviä. Analyyttinen geometria 2016
Vanhoja koetehtäviä Analyyttinen geometria 016 1. Määritä luvun a arvo, kun piste (,3) on käyrällä a(3x + a) = (y - 1). Suora L kulkee pisteen (5,1) kautta ja on kohtisuorassa suoraa 6x + 7y - 19 = 0 vastaan.
Algoritmit 1. Luento 1 Ti Timo Männikkö
Algoritmit 1 Luento 1 Ti 10.1.2017 Timo Männikkö Luento 1 Algoritmi Algoritmin toteutus Ongelman ratkaiseminen Algoritmin tehokkuus Algoritmin suoritusaika Algoritmin analysointi Algoritmit 1 Kevät 2017
Algoritmit 2. Demot Timo Männikkö
Algoritmit 2 Demot 4 24.-25.4.2019 Timo Männikkö Tehtävä 1 (a) int laske(n) { if (n
Kaksintaistelun approksimatiivinen mallintaminen (valmiin työn esittely)
Kaksintaistelun approksimatiivinen mallintaminen (valmiin työn esittely) Juho Roponen 10.06.2013 Ohjaaja: Esa Lappi Valvoja: Ahti Salo Työn saa tallentaa ja julkistaa Aalto-yliopiston avoimilla verkkosivuilla.
Hierarkkinen ryvästäminen
Hierarkkinen ryvästäminen Juho Rousu Laskennallinen Data-Analyysi I, 20.2.2008 Ryvästyshierarkia & dendrogrammi Hierakkiset ryvästysmenetelmien tulos voidaan visualisoida nk. dendrogrammipuuna Puun lehtinä
Suomen rautatieverkoston robustisuus
Suomen rautatieverkoston robustisuus Samu Kilpinen 28.09.2016 Ohjaaja: Eeva Vilkkumaa Valvoja: Ahti Salo Rautatieverkosto Rautatie on erinomainen tapa kuljettaa suuria ihmis- ja hyödykemääriä Käyttöä etenkin
MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi
MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 5B Bayesläiset piste- ja väliestimaatit Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto
Ohjelmoinnin peruskurssi Y1
Ohjelmoinnin peruskurssi Y1 CSE-A1111 30.9.2015 CSE-A1111 Ohjelmoinnin peruskurssi Y1 30.9.2015 1 / 27 Mahdollisuus antaa luentopalautetta Goblinissa vasemmassa reunassa olevassa valikossa on valinta Luentopalaute.
Jaetun muistin muuntaminen viestin välitykseksi. 15. lokakuuta 2007
Jaetun muistin muuntaminen viestin välitykseksi Otto Räsänen 15. lokakuuta 2007 1 Motivaatio 2 Valtuuden välitys Peruskäsitteitä 3 Kolme algoritmia Valtuuden välitys käyttäen laskuria ilman ylärajaa Valtuuden
Funktion raja-arvo. lukumäärien tutkiminen. tutkiminen
Matematiikka algebra geometria Funktion raja-arvo analyysi tarve lukumäärien tutkiminen kuvioiden ja kappaleiden tutkiminen muutosten tutkiminen DERIVAATTA, MAA6 Yhtä vanhoja kuin ihmiskuntakin ~6 000
HOPS Henkilökohtainen opintosuunnitelma LuK -tutkintoon
JYVÄSKYLÄN YLIOPISTO Matematiikan ja tilastotieteen laitos Tilastotiede HOPS - Tilastotiede HOPS Henkilökohtainen opintosuunnitelma LuK -tutkintoon Nimi: Syntymäaika: Ammatti ja urasuunnitelmat: Muuta:
Sovellusohjelmointi Matlab-ympäristössä: Vertaisverkon koneiden klusterointi
Sovellusohjelmointi Matlab-ympäristössä: Vertaisverkon koneiden klusterointi 28.4.2013 Annemari Auvinen (annauvi@st.jyu.fi) Anu Niemi (anniemi@st.jyu.fi) 1 Sisällysluettelo 1 JOHDANTO... 2 2 KÄYTETYT MENETELMÄT...
. Kun p = 1, jono suppenee raja-arvoon 1. Jos p = 2, jono hajaantuu. Jono suppenee siis lineaarisesti. Vastaavasti jonolle r k+1 = r k, suhde on r k+1
TEKNILLINEN KORKEAKOULU Systeemianalyysin laboratorio Mat-.39 Optimointioppi Kimmo Berg 8. harjoitus - ratkaisut. a)huomataan ensinnäkin että kummankin jonon raja-arvo r on nolla. Oletetaan lisäksi että
GA & robot path planning. Janne Haapsaari AUTO Geneettiset algoritmit
GA & robot path planning Janne Haapsaari AUTO3070 - Geneettiset algoritmit GA robotiikassa Sovelluksia liikkeen optimoinnissa: * eri vapausasteisten robottien liikeratojen optimointi * autonomisten robottien
Johdantoa. Jokaisen matemaatikon olisi syytä osata edes alkeet jostakin perusohjelmistosta, Java MAPLE. Pascal MathCad
Johdantoa ALGORITMIT MATEMA- TIIKASSA, MAA Vanhan vitsin mukaan matemaatikko tietää, kuinka matemaattinen ongelma ratkaistaan, mutta ei osaa tehdä niin. Vitsi on ajalta, jolloin käytännön laskut eli ongelman
805306A Johdatus monimuuttujamenetelmiin, 5 op
monimuuttujamenetelmiin, 5 op syksy 2018 Matemaattisten tieteiden laitos Lineaarinen erotteluanalyysi (LDA, Linear discriminant analysis) Erotteluanalyysin avulla pyritään muodostamaan selittävistä muuttujista
Projekti A: iskunvaimennindynamometri
Projekti A: iskunvaimennindynamometri PROJEKTISUUNNITELMA Tekijät: Mälkönen Joonas Orhanen Samppa Pajula Matti Forsström Niko 83D 838C 8757V 8830U Nurminen Tuomas Päiväys: 5.3. Kon-6.08 Ajoneuvojen tuotekehitys
Stalatube Oy. P u t k i k a n n a k k e e n m a s s o j e n v e r t a i l u. Laskentaraportti
P u t k i k a n n a k k e e n m a s s o j e n v e r t a i l u Laskentaraportti 8.6.2017 2 (12) SISÄLLYSLUETTELO 1 EN 1.4404 putkikannakkeen kapasiteetti... 4 1.1 Geometria ja materiaalit... 4 1.2 Verkotus...
Harjoitustyö 3. Heiluri-vaunusysteemin parametrien estimointi
Aalto-yliopiston perustieteiden korkeakoulu Systeemianalyysin laboratorio Mat-2.4129 Systeemien identifiointi Harjoitustyö 3 Heiluri-vaunusysteemin parametrien estimointi Yleistä Systeemianalyysin laboratoriossa
Mallipohjainen klusterointi
Mallipohjainen klusterointi Marko Salmenkivi Johdatus koneoppimiseen, syksy 2008 Luentorunko perjantaille 5.12.2008 Johdattelua mallipohjaiseen klusterointiin, erityisesti gaussisiin sekoitemalleihin Uskottavuusfunktio
v 8 v 9 v 5 C v 3 v 4
Verkot Verkko on (äärellinen) matemaattinen malli, joka koostuu pisteistä ja pisteitä toisiinsa yhdistävistä viivoista. Jokainen viiva yhdistää kaksi pistettä, jotka ovat viivan päätepisteitä. Esimerkiksi
Malliratkaisut Demot
Malliratkaisut Demot 4 3.4.017 Tehtävä 1 Tarkastellaan harjoituksen 1 nopeimman reitin ongelmaa ja etsitään sille lyhin virittävä puu käyttämällä kahta eri algoritmia. a) (Primin algoritmi) Lähtemällä
Avainsanojen poimiminen Eeva Ahonen
Avainsanojen poimiminen 5.10.2004 Eeva Ahonen Sisältö Avainsanat Menetelmät C4.5 päätöspuut GenEx algoritmi Bayes malli Testit Tulokset Avainsanat Tiivistä tietoa dokumentin sisällöstä ihmislukijalle hakukoneelle
Ohjelmoinnin perusteet Y Python
Ohjelmoinnin perusteet Y Python T-106.1208 9.2.2009 T-106.1208 Ohjelmoinnin perusteet Y 9.2.2009 1 / 35 Listat Esimerkki: halutaan kirjoittaa ohjelma, joka lukee käyttäjältä 30 lämpötilaa. Kun lämpötilat
Ohjelmoinnin perusteet Y Python
Ohjelmoinnin perusteet Y Python T-106.1208 2.2.2011 T-106.1208 Ohjelmoinnin perusteet Y 2.2.2011 1 / 37 Kännykkäpalautetteen antajia kaivataan edelleen! Ilmoittaudu mukaan lähettämällä ilmainen tekstiviesti
Tietorakenteet ja algoritmit
Tietorakenteet ja algoritmit Rekursio Rekursion käyttötapauksia Rekursio määritelmissä Rekursio ongelmanratkaisussa ja ohjelmointitekniikkana Esimerkkejä taulukolla Esimerkkejä linkatulla listalla Hanoin
Menetelmä Markowitzin mallin parametrien estimointiin (valmiin työn esittely)
Menetelmä Markowitzin mallin parametrien estimointiin (valmiin työn esittely) Lauri Nyman 17.9.2015 Ohjaaja: Eeva Vilkkumaa Valvoja: Harri Ehtamo Työn saa tallentaa ja julkistaa Aalto-yliopiston avoimilla
T Luonnollisen kielen tilastollinen käsittely Vastaukset 8, ti , 8:30-10:00 Tilastolliset yhteydettömät kieliopit, Versio 1.
T-61.281 Luonnollisen kielen tilastollinen käsittely astaukset 8, ti 16.3.2004, 8:30-10:00 Tilastolliset yhteydettömät kielioit, ersio 1.0 1. Jäsennysuun todennäköisyys lasketaan aloittelemalla se säännöstön
Lineaaristen monitavoiteoptimointitehtävien ratkaiseminen Bensonin algoritmilla
Lineaaristen monitavoiteoptimointitehtävien ratkaiseminen Bensonin algoritmilla Juho Andelmin 21.01.2013 Ohjaaja: TkT Juuso Liesiö Valvoja: Prof. Raimo P. Hämäläinen Työn saa tallentaa ja julkistaa Aalto-yliopiston
2. Jatkoa HT 4.5:teen ja edelliseen tehtavään: Määrää X:n kertymäfunktio F (x) ja laske sen avulla todennäköisyydet
Tilastotieteen jatkokurssi Sosiaalitieteiden laitos Harjoitus 5 (viikko 9) Ratkaisuehdotuksia (Laura Tuohilampi). Jatkoa HT 4.5:teen. Määrää E(X) ja D (X). E(X) = 5X p i x i =0.8 0+0.39 +0.4 +0.4 3+0.04