MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

Samankaltaiset tiedostot
MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

Luku 10. Bayesläiset estimaattorit Bayesläiset piste-estimaatit. Lasse Leskelä Aalto-yliopisto 18. lokakuuta 2017

Bayesläiset tilastolliset mallit

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

P(X = x T (X ) = t, θ) = p(x = x T (X ) = t) ei riipu tuntemattomasta θ:sta. Silloin uskottavuusfunktio faktorisoituu

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

Tilastollinen päättely, 10 op, 4 ov

2. Uskottavuus ja informaatio

MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

Luento 2. Yksiparametrisia malleja. Binomi-malli. Posteriorijakauman esittämisestä. Informatiivisista priorijakaumista. Konjugaattipriori.

MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

1. TODENNÄKÖISYYSJAKAUMIEN ESTIMOINTI

MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

Tilastollinen päättely II, kevät 2017 Harjoitus 2A

Maximum likelihood-estimointi Alkeet

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

1. TODENNÄKÖISYYSJAKAUMIEN ESTIMOINTI

MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

Ilkka Mellin Tilastolliset menetelmät Osa 2: Otokset, otosjakaumat ja estimointi Estimointi

Sovellettu todennäköisyyslaskenta B

11.1 Nollahypoteesi, vastahypoteesi ja poikkeavat havainnot

Gripenberg. MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Tentti ja välikoeuusinta

30A02000 Tilastotieteen perusteet

Bayesilainen päätöksenteko / Bayesian decision theory

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

l (φ; y) = l(θ(φ); y) Toinen derivaatta saadaan tulon derivaatan laskusäännöllä Uudelleenparametroidun mallin Fisherin informaatio on

Osa 2: Otokset, otosjakaumat ja estimointi

Estimointi. Vilkkumaa / Kuusinen 1

Johdatus tilastotieteeseen Estimointi. TKK (c) Ilkka Mellin (2005) 1

Sovellettu todennäköisyyslaskenta B

Tutkimustiedonhallinnan peruskurssi

TILASTOLLINEN OPPIMINEN

Estimointi. Estimointi. Estimointi: Mitä opimme? 2/4. Estimointi: Mitä opimme? 1/4. Estimointi: Mitä opimme? 3/4. Estimointi: Mitä opimme?

MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

Tilastollinen aineisto Luottamusväli

1. Tilastollinen malli??

tilastotieteen kertaus

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

T Luonnollisten kielten tilastollinen käsittely

MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

Tilastotieteen kertaus. Kuusinen/Heliövaara 1

Mat Sovellettu todennäköisyyslasku A

H0: otos peräisin normaalijakaumasta H0: otos peräisin tasajakaumasta

Aalto-yliopisto, Matematiikan ja systeemianalyysin laitos /Malmivuori MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi,

Bayes-mallinnus siltana teorian ja empiirisen evidenssin välillä

Käytetään satunnaismuuttujaa samoin kuin tilastotieteen puolella:

MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

11.1 Nollahypoteesi, vastahypoteesi ja p-arvo

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

Mallipohjainen klusterointi

4.1. Olkoon X mielivaltainen positiivinen satunnaismuuttuja, jonka odotusarvo on

T Luonnollisen kielen tilastollinen käsittely Vastaukset 3, ti , 8:30-10:00 Kollokaatiot, Versio 1.1

805306A Johdatus monimuuttujamenetelmiin, 5 op

Harjoitus 2: Matlab - Statistical Toolbox

MTTTP5, luento Otossuureita ja niiden jakaumia (jatkuu)

Matemaattinen tilastotiede. Erkki Liski Matematiikan, Tilastotieteen ja Filosofian Laitos Tampereen Yliopisto

,ܾ jaü on annettu niin voidaan hakea funktion

Tilastollinen päättömyys, kevät 2017 Harjoitus 6B

Poisson-prosessien ominaisuuksia ja esimerkkilaskuja

(b) Onko hyvä idea laske pinta-alan odotusarvo lähetmällä oletuksesta, että keppi katkeaa katkaisukohdan odotusarvon kohdalla?

Tilastollisia peruskäsitteitä ja Monte Carlo

Tämän luvun sisältö. Luku 5. Estimointiteorian perusteita. Perusjakaumat 1-ulotteisina (2) Perusjakaumat 1-ulotteisina

Kun datasta halutaan muodostaa malleja, ne ovat yleensä tilastollisia (esim. regressio, luokittelu, ryhmittely...) F(x 0 ) = P(x x 0 ) (1)

11. laskuharjoituskierros, vko 15, ratkaisut

Mikrobikriteereiden arviointi esimerkkinä kampylobakteeri

Tilastotieteen aihehakemisto

Todennäköisyyslaskenta IIa, syyslokakuu 2019 / Hytönen 2. laskuharjoitus, ratkaisuehdotukset

Luento KERTAUSTA Kaksiulotteinen jakauma Pisteparvi, Toyota Avensis -farmariautoja

Tilastollisen analyysin perusteet Luento 1: Lokaatio ja hajonta

Todennäköisyyden ominaisuuksia

JOHDATUS TEKOÄLYYN LUENTO 4.

Sovellettu todennäköisyyslaskenta B

MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 7: Pienimmän neliösumman menetelmä ja Newtonin menetelmä.

Satunnaismuuttujan odotusarvo ja laskusäännöt

Tässä luvussa mietimme, kuinka paljon aineistossa on tarpeellista tietoa Sivuamme kysymyksiä:

Johdatus todennäköisyyslaskentaan Kokonaistodennäköisyys ja Bayesin kaava. TKK (c) Ilkka Mellin (2005) 1

ORMS2020 Päätöksenteko epävarmuuden vallitessa Syksy Jatkossa ratkaisuehdotukset ovat tyypillisesti paljon lakonisempia.

Tilastotiede ottaa aivoon

MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

P (X B) = f X (x)dx. xf X (x)dx. g(x)f X (x)dx.

Sovellettu todennäköisyyslaskenta B

Teema 8: Parametrien estimointi ja luottamusvälit

3.7 Todennäköisyysjakaumia

Luottamusvälit. Normaalijakauma johnkin kohtaan

Lisää Diskreettejä jakaumia Lisää Jatkuvia jakaumia Normaalijakaumasta johdettuja jakaumia

Pelaisitko seuraavaa peliä?

Transkriptio:

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 4B Bayesläinen tilastollinen päättely Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy 2016, periodi I

Sisältö Tietämyksen kvantifiointi ja subjektiivinen todennäköisyys Tietämyksen päivittäminen Posterijakauman tulkinta: Piste-estimaatit

Esimerkki: Vaalikysely Yhdysvaltalaisilta äänioikeutetuilta kysyttiin Trumpin kannatusta (0 = ei, 1 = kyllä) ja saatiin tulokset x = (0, 0, 0, 0, 0, 0, 0, 0, 1, 0). Kannatusparametrin suurimman uskottavuuden estimaatti ˆp(x) = 10% poikkeaa vahvasti median vaaliennusteista. Tulee hankkia lisää dataa (entä jos ei saatavilla?) Tulee jättää otannan tulos huomiotta (ja uskoa sokeasti median vaaliennusteisiin?) Voidaanko yo. tulos sovittaa aiempaan tietämykseen Trumpin kannatuksesta? Tällöin pitää kvantifioida termi tietämys

Tietämyksen mallintaminen Yksilön (ihminen tai kone) tietämystä tuntemattoman parametrin arvosta mallinnetaan tulkitsemalla parametri satunnaismuuttujaksi Θ. P(a Θ b) = 95% tarkoittaa, että yksilö uskoo parametrin arvon sijaitsevan välillä [a, b] todennäköisyydellä 95%. Frekventistit rajoittuvat analysoimaan vain objektiivisia todennäköisyyksiä (toistettavissa olevat tilastokokeet) Protonin massa on välillä a ± 10 12 tn:llä 99.999999% Tupakointi lisää riskiä sairastua keuhkosyöpään Todennäköisyyden käyttäminen tietämyksen kvantifiointiin tekee todennäköisyydestä subjektiivisen käsitteen Huomenna sataa tn:llä 10% Aarnio tuomittiin rikoksesta todennäköisin syin Relativismi: Todennäköisyys on suhteellista Thomas Bayes 1701 1761

Sisältö Tietämyksen kvantifiointi ja subjektiivinen todennäköisyys Tietämyksen päivittäminen Posterijakauman tulkinta: Piste-estimaatit

Esimerkki: Tuntematon kolikko Laatikossa on kolme tasaista kolikkoa (kruunan tn θ = 0.5) sekä yksi lievästi vino (θ = 0.6) ja yksi vahvasti vino (θ = 0.9). Satunnaisesti valittua kolikkoa heitettäessä havaitaan klaava. Millä tn heitetty kolikko oli tasainen? Kolikon tyypin Θ jakauma ennen datan havaitsemista on Osituskaavasta θ 0.5 0.6 0.9 P(Θ = θ) 0.6 0.2 0.2 Bayesin kaavasta P( klaava ) = 0.6 0.5 + 0.2 0.4 + 0.2 0.1 = 0.4 P(Θ = 0.5 klaava ) = P(Θ = 0.5) P( klaava Θ = 0.5) P( klaava ) Kolikon tyypin jakauma datan havaitsemisen jälkeen = 0.6 0.5 0.4 = 0.75 θ 0.5 0.6 0.9 P(Θ = θ klaava ) 0.75 0.20 0.05

Tietämyksen päivityskaava: Diskreetti malli Tietämys Θ:n arvosta ennen datan x 1 havaitsemista: Priorijakauma p 0 (θ) = P(Θ = θ) Tietämys Θ:n arvosta datan x 1 havaitsemisen jälkeen: Posteriorijakauma p 1 (θ x 1 ) = P(Θ = θ X 1 = x 1 ). Datalähteen stokastinen malli: Uskottavuusfunktio f 1 (x 1 θ) = P(X 1 = x 1 Θ = θ) Fakta Posteriorijakauma p 1 (θ x 1 ) saadaan priorijakaumasta p 0 (θ) painottamalla ja normittamalla sitä uskottavuudella f 1 (x 1 θ): p 1 (θ x 1 ) = p 0 (θ) f 1 (x 1 θ) θ p 0(θ ) f 1 (x 1 θ ).

Tietämyksen päivityskaava: Todistus Osituskaavasta P(X 1 = x 1 ) = θ P(Θ = θ ) P(X 1 = x 1 Θ = θ ) = θ p 0 (θ ) f 1 (x 1 θ), joten Bayesin kaavasta p 1 (θ x 1 ) = P(Θ = θ X 1 = x 1 ) = P(Θ = θ) P(X 1 = x 1 Θ = θ) P(X 1 = x 1 ) = p 0(θ)f 1 (x 1 θ) P(X 1 = x 1 ) p 0 (θ)f 1 (x 1 θ) = θ p 0(θ ) f 1 (x 1 θ).

Esimerkki: Tuntematon kolikko Tuntematon parametri: Heitetyn kolikon tyyppi Θ Priorijakauma p 0 (θ) = P(Θ = θ) Data x 1 = 0 (havaittiin klaava) Uskottavuus f (x 1 θ) = P(X 1 = x 1 Θ = θ) θ Priori p 0 (θ) Uskottavuus f (0 θ) Normittamaton posteriori Posteriori p 1 (θ 0) 0.5 0.6 0.5 0.30 0.75 0.6 0.2 0.4 0.08 0.20 0.9 0.2 0.1 0.02 0.05

Esimerkki: Tuntematon kolikko Kolikon tyypin priorijakauma: θ 0.5 0.6 0.9 p 0 (θ) 0.6 0.2 0.2 Uskottavuusfunktio datapisteelle x 1 = 0 (klaava): θ 0.5 0.6 0.9 f (0 θ) 0.5 0.4 0.1 Kolikon tyypin posteriorijakauma: θ 0.5 0.6 0.9 p 1 (θ 0) 0.75 0.20 0.05

Kolikon tyypin priori- ja posteriorijakaumat p 0 (θ) p 1 (θ 0) p 1 (θ 1)

Tuntematon kolikko: Monta havaintoa Laatikossa on kolme tasaista kolikkoa (kruunan tn θ = 0.5) sekä yksi lievästi vino (θ = 0.6) ja yksi vahvasti vino (θ = 0.9). Satunnaisesti valittua kolikkoa heitettäessä havaitaan 2 klaavaa. Millä tn heitetty kolikko oli tasainen? Uskottavuusfunktio datajoukolle (x 1, x 2 ) = (0, 0), θ 0.5 0.6 0.9 f (0, 0 θ) 0.25 0.16 0.01 θ Priori p 0 (θ) Uskottavuus f (0, 0 θ) Normittamaton posteriori Posteriori p 1 (θ 0, 0) 0.5 0.6 0.25 0.150 0.815 0.6 0.2 0.16 0.032 0.174 0.9 0.2 0.01 0.002 0.001

Kolikon tyypin priori- ja posteriorijakauma p 0 (θ) p 1 (θ 0) p 1 (θ 00) p 1 (θ 00000) Sadan klaavan havaitsemisen jälkeen posteriorijakauman massa keskittyy tähtitieteellisen pientä poikkeamaa vaille arvoon 0.5. Tämä tuntuu paradoksaaliselta, sillä tn saada 100 klaavaa peräkkäin tasaisella kolikolla on 2 100. Paradoksi selittyy priorin valinnalla: Ylläoleva priori p 0 (θ) kuvastaa absoluuttista 100% varmuutta siitä, että kolikko ei puolla klaavan suuntaan: P(Θ < 0.5) = 0.

Tietämyksen 2-vaiheinen päivityskaava Tietämys Θ:n arvosta ennen datan havaitsemista: Priorijakauma p 0 (θ) = P(Θ = θ) Tietämys Θ:n arvosta datan havaitsemisen jälkeen: Posteriorijakauma p 1 (θ x 1 ) = P(Θ = θ X 1 = x 1 ). Posteriorijakauma p 2 (θ x 1, x 2 ) = P(Θ = θ X 1 = x 1, X 2 = x 2 ). Datalähteen stokastinen malli: Uskottavuusfunktio f 1 (x 1 θ) = P(X 1 = x 1 Θ = θ) Uskottavuusfunktio f 2 (x 2 θ, x 1 ) = P(X 2 = x 2 Θ = θ, X 1 = x 1 ) Fakta Posteriorijakauma p 2 (θ x 2 ) saadaan posteriorijakaumasta p 1 (θ x 1 ) painottamalla ja normittamalla sitä uskottavuudella f 2 (x 2 θ, x 1 ): p 2 (θ x 1, x 2 ) = p 1 (θ x 1 ) f 2 (x 2 θ, x 1 ) θ p 1(θ x 1 ) f 2 (x 2 θ, x 1 ).

Tietämyksen 2-vaiheinen päivityskaava: Todistus Kun D 1 = {X 1 = x 1 } ja D 2 = {X 2 = x 2 }, saadaan tulokaavasta P(Θ = θ, D 1, D 2 ) = P(D 1 ) P(Θ = θ D 1 ) P(D 2 Θ = θ, D 1 ) osituskaavasta (ehdoton) = P(D 1 ) p 1 (θ x 1 ) f 2 (x 2 θ, x 1 ), P(D 1, D 2 ) = θ P(Θ = θ, D 1, D 2 ) = θ P(D 1 ) p 1 (θ x 1 ) f 2 (x 2 θ, x 1 ), ja nämä yhdistämällä p 2 (θ x 1, x 2 ) = P(Θ = θ, X 1 = x 1, X 2 = x 2 ) P(X 1 = x 1, X 2 = x 2 ) P(D 1 ) p 1 (θ x 1 ) f 2 (x 2 θ, x 1 ) = θ P(D 1) p 1 (θ x 1 ) f 2 (x 2 θ, x 1 ) p 1 (θ x 1 ) f 2 (x 2 θ, x 1 ) = θ p 1(θ x 1 ) f 2 (x 2 θ, x 1 ).

Tietämyksen päivitys: Yhteenveto Priorijakauma p 0 (θ) mallintaa yksilön tietämystä tuntemattoman parametrin arvosta Θ Uskottavuusfunktio f (x θ) vastaa datalähteen stokastista mallia Posteriorijakauma mallintaa yksilön tietämystä, johon yhdistetty priorijakauma sekä havaittu data Posteriorijakauma p 1 (θ x) lasketaan priorijakaumasta ja havaitusta datasta x painottamalla prioritodennäköisyyksiä uskottavuusfunktion arvoilla ja sen jälkeen normittamalla Yksilön tietämyksen mallintamista subjektiivisilla todennäköisyyksillä kutsutaan bayesläiseksi lähestymistavaksi

Sisältö Tietämyksen kvantifiointi ja subjektiivinen todennäköisyys Tietämyksen päivittäminen Posterijakauman tulkinta: Piste-estimaatit

Posteriorijakauman estimaatit Miten päätellään tuntemattoman parametrin θ estimaatti posteriorijakaumasta p 1 (θ x)? Suurimman posterioritodennäköisyyden estimaatti: ˆθ(x) = arg max p 1 (θ x) θ Posteriorijakauman odotusarvo: ˆθ(x) = θ θp 1 (θ x) Raportoidaan koko posteriorijakauma

Esimerkki: Tasajakauman ylärajan estimointi Tuntemattoman välin {1, 2,..., θ} tasajakaumaa noudattavasta datalähteestä on havaittu x 1 = 21, x 2 = 7 ja x 3 = 22. Mikä on paras arvaus (estimaatti) tuntemattoman parametrin θ arvolle? Datalähteen uskottavuusfunktio: f (x i θ) = { 1 θ, 1 x i θ, 0, muuten { 1 θ 3, 1 x 1, x 2, x 3 θ, f (x 1, x 2, x 3 θ) = 0, muuten SU-estimaatti (viime luento): ˆθ(x) = max(x 1, x 2, x 3 ) = 22. Entä jos meillä on ennakkoon muodostettu näkemys, että tuntemattoman parametrin arvo on todennäköisesti lähellä arvoa 30?

Tasajakauman ylärajan estimointi: bayesläinen estimointi Tuntemattoman välin {1, 2,..., θ} tasajakaumaa noudattavasta datalähteestä on havaittu x 1 = 21, x 2 = 7 ja x 3 = 22. Ennakkotietämys: Parametri on todennäköisesti lähellä arvoa 30. Tulkitaan tuntematon parametri satunnaismuuttujana Θ, jonka odotusarvo on 30? Miten valitaan Θ:n priorijakauma? Valitaan yksikertaisin diskreetti jakauma, jonka odotusarvo on 30 ja jolla on positiivinen tn saada mikä tahansa pos. kokonaisluku. Poisson-jakauma parametrina λ = 30: p 0 (θ) = e λ λθ, θ = 0, 1, 2,... θ! Uskottavuusfunktio { 1 θ 3, 1 x 1, x 2, x 3 θ, f (x 1, x 2, x 3 θ) = 0, muuten

Tasajakauman ylärajan estimointi: bayesläinen estimointi Havaittu data: x = (21, 7, 22) Priori p 0 (θ) = e 30 30θ, θ = 0, 1, 2,... θ! Uskottavuus f (x θ) = { 1 θ, 3 θ 22, 0, muuten Posteriori lasketaan päivityskaavasta p 1 (θ x) = p 0 (θ)f (x θ) θ p 0(θ )f (x θ ) = {c 1 30 30θ 1 e θ! θ, 3 θ 22, 0, muuten, missä normitusvakio c = θ p 0(θ )f (x θ ) ei riipu θ:sta. Suurimman posterioritodennäköisyyden estimaatti on ˆθ, joka maksimoi funktion θ 30θ 1 θ! θ joukossa θ 22. 3 Maksimin voi etsiä kokeilemalla tai piirtämällä ko. funktio.

Tasajakauman yläraja: Priori ja posteriori Data: x = (21, 7, 22) Priori: Poisson-jakauma odotusarvona λ = 30 Priori p 0 (θ) Posteriori p 1 (θ x) 0.00 0.02 0.04 0.06 0.08 0.00 0.02 0.04 0.06 0.08 0 10 20 30 40 50 0 10 20 30 40 50 Suurimman posterioritodennäköisyyden estimaatti: ˆθ(x) = 26

Seuraavalla kerralla puhutaan jatkuvien jakaumien bayesläisestä päättelystä...