PAINOPISTE JA MASSAKESKIPISTE Kappaleen painopiste on piste, jonka kautta kappaleeseen kohdistuvan painovoiman vaikutussuora aina kulkee, olipa kappale missä asennossa tahansa. Jos ajatellaan kappaleen koko massa sijoitetuksi painopisteeseen, pysyy kappaleen painovoima samana ja kappaleen potentiaalienergia säilyy. Massakeskipiste on kappaleen massan keskimääräinen paikka. Homogeenisessa gravitaatiokentässä kappaleen painopiste on samassa kohdassa kuin kappaleen massakeskipiste. Painopistettä sanotaan usein massakeskipisteeksi. Kappaleen painopiste on painon ajateltu vaikutuspiste. Painopisteestä tuettu kappale pysyy tasapainossa missä asennossa tahansa. Painopisteen paikan laskeminen Jos kappale voidaan jakaa osiin, joiden painopisteet tunnetaan, kappaleen painopiste voidaan määrittää laskemalla. 0 Tarkastellaan koordinaatistossa kolmesta osasta muodostuvaa kappaletta. Osien massat ovat m1, m2 ja m3 sekä kokonaismassa m. Osien painopisteiden koordinaatit ovat (x1, y1), (x2, y2) ja (x3, y3) sekä kappaleen painopisteen koordinaatit (x0, y0). Kappale on tasapainossa, jos sen painopisteeseen kohdistetaan ylöspäin kappaleen painon suuruinen voima. Tällöin voiman momenttien summa origon suhteen on nolla.
Ratkaistaan painopisteen x-koordinaatti: : mg Vastaavasti saadaan painopisteen y-koordinaatti: 0 : mg Yleistäen voidaan todeta, että monista osista muodostuneen systeemin painopisteen koordinaatit ovat: (MAOL s. 126 (118) Homogeenisesta aineesta tehdyn kappaleen painopiste on symmetriapisteessä, jos kappaleella on sellainen. (Lehto-Luoma: Fysiikka 3, Tammi, 5-9. uud. painos, Helsinki, 2002, s. 167-173, Hatakka-Saari- et. al: Physica 5, s. 88-89).
Painopiste voi sijaita myös kappaleen ulkopuolella, esim. rengas. Kolmion painopiste on keskijanojen eli mediaanien leikkauspiste. Kolmion keskijana on jana, joka yhdistää kolmion kärjen vastaisen sivun keskipisteeseen. Kaikki kolme keskijanaa leikkaavat toisensa samassa pisteessä, joka jakaa jokaisen keskijanan suhteessa 1 : 2. (MAOL s. 25 (29). Painopiste voidaan määrittää 1) kokeellisesti ns. ripustusmenetelmällä 2) symmetriaan perustuen ja 3) laskemalla. Kun määritetään homogeenisen kappaleen painopistettä, osien massat voidaan korvata tilavuuksilla, sillä massat ja tilavuudet ovat suoraan verrannolliset; m = ρv. Jos kappale koostuu homogeenisista tasapaksuista levyistä, massat voidaan korvata pinta-aloilla, sillä massa ja pinta-ala ovat suoraan verrannollisia; m = ρv = ρah. Maan pinnan läheisyydessä olevien kappaleiden painopiste on niiden massakeskipisteessä. Tarkkaan ottaen kappaleen massakeskipiste ja painopiste ovat kuitenkin eri asioita. Jos kappale on niin suurikokoinen, että gravitaation aiheuttama kiihtyvyys poikkeaa kappaleen eri osissa, niin massakeskipiste poikkeaa painopisteestä. Esimerkiksi Kuun painopiste on Maan painovoimakentässä lähempänä Maata kuin sen massakeskipiste. Kappale kaatuu, kun painon vaikutussuora (painopisteestä lähtevä luotisuora) joutuu tukipinnan ulkopuolelle. Kappale on sitä vakaampi, mitä suurempi tukipinta sillä on ja mitä matalammalla sen painopiste on. Esim. nelijalkaisen tuolin tukipinta on suurempi kuin kolmijalkaisen tuolin. Vapaasti gravitaatiokentässä liikkuva, ilmaan heitetty kappale pyörii massakeskipisteensä ympäri.
Esine kaatuu, kun painon vaikutussuora joutuu tukipinnan ulkopuolelle TASAPAINOLAJIT: 1) Stabiili eli vakaa tasapaino - kappaleen potentiaalienergia on pienimmillään Ep, min A = ripustuspiste, P = painopiste A P 2) Labiili eli horjuva tasapaino P - kappaleen potentiaalienergia on suurimmillaan Ep, max A 3) Indifferentti eli epämääräinen tasapaino - kappaleen potentiaalienergia ei muutu Ep = vakio P A
Auton pyörät tasapainotetaan, jotta pyörä ei täristä ajon aikana. Tällöin tukipiste ja painopiste yhtyvät ja vallitsee indifferentti eli epämääräinen tasapainotila. Tehtävä 1. Miksi nuorallakävelijän ja pyöräilijän on edullista käyttää apunaan painavahkoa tankoa, jonka päät taipuvat alaspäin? (YO-S90-4a). Ratkaisu. Koska tangon päät taipuvat alaspäin, systeemin painopiste alenee. Tällöin painovoiman momentti tukipisteen suhteen pienenee. Tangon ansiosta nuorallakävelijän hitausmomentti J kasvaa, mikä pyörimisliikkeen peruslain M = Jα mukaan pienentää kulmakiihtyvyyttä α. Tehtävä 2. Määritä kuvassa olevan homogeenisen levyn massakeskipiste.
Tehtävä 2. RATKAISU. Levy on jaettu kahteen osaan, joiden massat ja (1,0; 3,0) massakeskipisteiden koordinaatit voidaan (4; 1,5) määrittää. Lopuksi lasketaan koko levyn massakeskipisteen paikka. Olkoon yhden ruudun (1,0 cm 2 ) massa mo. Osalevyjen massat ja massakeskipisteiden koordinaatit ovat: m1 = 12mo x1 = 1,0 cm y1 = 3,0 cm m2 = 12 mo x2 = 4,0 cm y2 = 1,5 cm Kokonaisen levyn massakeskipisteen koordinaatit ovat: 12 1,0 12 4,0 12 12 60 24 2,5 12 3,0 12 1,5 12 12 54 24 2,25 Vastaus: Levyn massakeskipisteen koordinaatit ovat x o = 2,5 cm ja y o = 2,3 cm. HUOM! Koordinaatiston voi valita toisinkin, mutta valinta kannattaa tehdä viisaasti. Kappaleen sijainnista koordinaatistossa riippuu tietenkin lopputulos. Massakeskipisteen koordinaatit voivat olla erilaisia riippuen siitä, miten kappale on sijoitettu koordinaatistoon. Symmetriaa kannattaa hyödyntää tehtävissä, mikäli se on vain mahdollista. ks. myös Hiukkasjoukon massakeskipiste: http://www.kotiposti.net/ajnieminen/mkp.pdf
Tehtävä 3. Homogeenisen (tasa-aineisen) tasapaksun levyn yläosasta on poistettu ympyränmuotoinen pala, jonka säde on 1,0 cm. Laske levyn massakeskipisteen paikka. Tehtävä 3. RATKAISU. Koordinaatisto voidaan valita monella eri tavalla, mutta lasketaan tehtävä niin, että kappale on sijoitettu koordinaatistoon kuvan osoittamalla tavalla. Merkitään yhden ruudun eli 1,0 cm 2 :n suuruisen alueen massaa m o :lla. Osakappaleiden massat ja massakeskipisteiden koordinaatit ovat: m1 = 28mo x1 = 2,0 cm y1 = 3,5 cm m2 = 9mo x2 = 5,5 cm y2 = 1,5 cm Poisleikatun ympyrälevyn massa ja massakeskipisteen koordinaatit ovat: m3 = π 1,0 2 mo x3 = 2,0 cm y3 = 5,0 cm Huom! Poisleikattu ympyrälevy otetaan laskuissa negatiivisena.
(2,0; 5,0) (2,0; 3,5) (5,5; 1,5) Jäljelle jääneen levyn massakeskipisteen koordinaatit ovat,,,,,,,,,, 2,93 2,83 Vastaus: Levyn massakeskipisteen koordinaatit ovat x o = 2,9 cm ja y o = 2,8 cm.
Tehtävä 4. Kuvassa on vesimolekyylin H 2 O rakenne. Laske vesimolekyylin massakeskipisteen paikka. (Lehto-Luoma: Fysiikka 3, Tammi, 5-9. uud. painos Helsinki, 2002, 2-44b, s. 173). Tehtävä 4. RATKAISU. Sijoitetaan koordinaatisto siten, että happiatomi sijaitsee origossa O (kuten kuvassa on tehty). Merkitään A = 10-10 m. y 75 o x
Tällöin atomien massat ja koordinaatit ovat: massa x/m y/m Happi 16,0 u 0 0 Vety1 1,01 u -0,958A cos75 o 0,958A sin75 o Vety2 1,01 u 0,958A 0 Massakeskipisteen paikan x-arvoksi saadaan (A = 10-10 m): = =,,,,,,,, 0,040 ja y-arvoksi = =,,,,,,, 0,052. Vastaus: Vesiatomin massakeskipiste on kohdassa (0,040 10-10 m; 0,052 10-10 m).