Erityisiä mallinnustekniikoita
|
|
- Satu Saaristo
- 7 vuotta sitten
- Katselukertoja:
Transkriptio
1 Erityisiä mallinnustekniikoita Suppea katsaus Bond-graafeihin Lagrangen differentiaalis-algebrallisiin yhtälöihin (Lagrangian DAEs) Taustalla analyyttinen systeemidynamiikka: Paynter 1961: Analysis and Design of Engineering Systems Layton, 1998: Principles of Analytic System Dynamics Palmroth & Piché (TTKK) 20sim-ohjelmisto (university of Twente)
2 Bond-graafit Suunnattuja graafeja, jotka kuvaavat tehon ja informaation virtoja teho = informaatio = Intensiteettimuuttujan kerääntyminen (esim. kondensaattoriin kertyvä jännite) e(t)= 1/β f(τ)dτ (lineaarinen): e C : β f Virtamuuttujan kerääntyminen, f(t)=1/α e(τ)dτ e f I : α
3 Bond-graafit Resistiiviset elementit, e(t)=h(f(t)): Lähteet: S e e f Yhdistäminen: solmupisteet Sarjaankytkentä = s-solmu: virtaukset samoja, intensiteettien summa = 0 merkintänä myös 1 huom. merkkisopimukset Rinnankytkentä = p-solmu: intesiteetit samoja, virtausten summa =0 Merkintänä myös 0 S f e f e f R : e=h(f)
4 Bond-graafit: muuntajat ja gyraattorit Muuntaja huom. eri puolilla voi olla eri sovellusala e1 f1 TR r Gyraattori: laite jossa intensiteetit ja virrat riippuvat toisistaan ristikkäin: e2=rf1, f2=1/r e1 esim. sähkömoottori: sähköenergian muuttuminen pyörimisenergiaksi e2 f2 e1 f1 GY r e2 f2
5 Kausaliteetti Tarkastellaan kahta osasysteemiä: e A B f On päätettävä, kumpi muuttujista e ja f aiheuttaa toisen jos e on A:n ulostulo ja B:n sisäänmeno, aiheuttaa se f:n jos taas toisinpäin, f aiheuttaa e:n On päätettävä muuttujien kausaliteetti Merkintä: e aiheuttaa f:n (ja on B:n input) A => lähteiden kausaalisuus on selvä: S e e f e f B S f f aiheuttaa e:n (ja on B:n input) A e f e f B
6 ...Kausaalisuus Kerääntymisen kausaalisuus: intensiteettimuuttujan kerääntyessä sisäänmeno on intensiteettimuuttuja virtamuuttujan kerääntyessä päinvastoin Resistiivisille elementeille yhdentekevä Sarjakytkentäsolmu: n-1 intensiteettiä määrittelevät yhden intensiteetin n-1 kausaalisuusmerkkiä solmussa Rinnankytkentäsolmu: 1 virta määrittelee muut virrat 1 kausaalisuusmerkki solmussa Muuntajat ja gyraattorit: konsistentti valinta
7 Algoritmi kausaalisuuden määrittämiseen 1. Valitse jokin lähde ja merkitse sen kausaalisuus 2. Merkitse graafin 1-käsitteiset kausaalisuudet 3. Toista 1-2 kaikille lähteille 4. Valitse I- tai C-elementti ja merkitse sen kausaliteetti 5. Merkitse graafin 1-käsitteiset kausaalisuudet 6. Toista kaikille I- ja C-elementeille 7. Valitse R-elementti, jolla ei ole vielä kausaliteettia ja kiinnitä kausaliteetti sopivasti 8. Merkitse graafin 1-käsitteiset kausaalisuudet 9. Toista 7-8 kaikille R-elementeille
8 Miksi tämä kaikki? Keino varmistua mallin oikeellisuudesta Keino muodostaa tilayhtälöt automaattisesti mallintamisen automatisointi 1. Tilojen valinta: - intensiteettiä keräävissä elementeissä (C) virta x=f, dx/dt=e - virtaa keräävissä elementeissä (I) intensiteetti x=e, dx/dt=f 2. Tilayhtälöiden muodostaminen - ilmaistava C-elementtien virrat ja I-elementtien intensiteetit tilojen ja sisäänmenojen funktioina - Koska I-elementtien virrat ja C-elementtien intesiteetit tunnetaan, voidaan niitä pitää virta- ja intensiteettilähteinä! - kausaliteetit ilmaisevat mallin oikeellisuuden ja sen mitkä ovat lähteiden sisäänmenoja ja ulostuloja
9 Lisähuomioita Tässä esitetty teorian perusteet esim. vain suureiden kertymiset kytkeneet vain 2 muuttujaa kerrallaan Sähköisille ja mekaanisille systeemeille olemassa systemaattinen bond-graafimallinnustapa (app. 6.12) Graafien suureet voivat olla vektoriarvoisia Yksinkertaisia lämpöopillisia ongelmia voidaan käsitellä pitämällä muuttujina lämpövirtaa ja tilaa yleisesti virtausmuuttujana on pidettävä entropiamuutosta
10 Lagrangen DAEt Esimerkki: heiluri Liikeyhtälöt ilman lankaa: Rajoitus: x 2 +y 2 =l 2 => liikeyhtälöt x& = v y& = mv& mv& x y v x y = 0 = mg x& = y& = mv& mv& x 2 x y + v v x y + 2xλ = + 2yλ = y 2 = l 2 0 mg g y θ l m Differentiaalisalgebrallinen yhtälö (DAE) x
11 Mitä tapahtui? Newtonin mekaniikka: F=ma kaikille kappaleille luonnollisissa koordinaateissa => tilayhtälöt (ODE) tukivoimat eksplisiittisesti mukana Lagrangen mekaniikka: valitse (vapausasteiden määräämät) yleistetyt koordinaatit Kirjoita Lagrangen funktion Eulerin yhtälö, lisää virtuaalinen työ => tilayhtälöt (ODE) tukivoimat häviävät Modifioitu Lagrangen mekaniikka: F=ma kaikille kappaleille luonnollisissa koordinaateissa rajoitteet mukaan Lagrangen funktioon Lagrangen kertoimilla Eulerin yhtälö => tilayhtälöt (DAE) tukivoimat = Lagrangen kertoimet
12 ... Lagrangen mekaniikassa rajoitutaan implisiittisesti vapausasteiden määräämälle monistolle luonnolliset koodinaatit lasketaan takaperin Modifioidussa Lagrangen mekaniikassa monisto ja liike sillä ilmaistaan eksplisiittisesti rajoittein ASD: Yleistyy myös muuhun kuin mekaniikkaan myös virtausrajoituksiin tukivoiman tulkinta saatetaan menettää
13 LDAE Mallinnuskehikko DAE solution methods Lagrangian formalism System Dynamics (Domain unification) Analytical Dynamics (Classical results) ASD Modular modeling
14 ASD-muuttujat Effort e Flow f Displacement q Momentum p force F velocity v position x lin. momentun p torque τ ang.vel ω angle θ ang. momentum H voltage e current i charge q flux linkage λ pressure p volume rate Q volume V pressure momentum pp temperature T entropy rate ds/dt entropy S -
15 Muuttujaparit Tehomuuttujat: intensiteetti e, virta f, e x f = teho käsitelty Energiamuuttujat liikemäärä p, paikka q d/dt p = e Newton (dp/dt = F), Euler (dh/dt = τ) Faraday (dλ/dt = e) d/dt q = f virta on paikan aikaderivaatta
16 Energian muuntuminen lever Electromagnetic thermoelectric, losses Thermal Electrical transformer bimetallic, losses piezoelectric, magn.strictive motor, generator electrohydraulic, magn.hydraulic Translational hydr. cylinder rack -pinion cam -follower pump, turbine Rotational losses gear fluid boiler, losses Thermal fluid transformer
17 Rajoitteet paikkarajoitteet: φ(q,t)=0 esim. heiluri Virtarajoitteet Ψ(f,q,t)=0 (oletetaan lineaarisiksi f:n suhteen) esim. virtapiirien tai hydrauliikan kytkennät
18 Deskriptorimuoto Mf& + Φ T q ( q, t) κ γ = intensiteetit (input): ulkoiset voimat kitkavoimat yms. + Ψ T f ( q, Ψ( q& f, t) µ = = γ Φ( q, t) = f, q, t) = f, 0, 0, dim M = inertiainformaatio, nxn matriisi κ ja µ Lagrangen kerroinvektorit Φ q ja Ψ q rajoitteiden Jacobin matriisit (nxm 1,nxm 2 ) 2n+m 1 +m 2 tuntematonta kullakin t, 2n+m 1 +m 2 yhtälöä => ok Systemaattinen tapa tuottaa malli sovellusalasta riippumatta n m m 1 2 ; = n
19 Modulaarinen mallintaminen Deskriptorimuoto voidaan ilmaista muodossa M(q,f)=0 Systeemin sisäiset muuttujat kätketty Mallinnusidea: mallinnetaan komponentit erikseen: M i (q i,f i )=0 Kytketään komponentit malliksi rajoitteilla M 1 (q 1,f 1 )=0 Φ(q 1,q 2 )=0 Ψ(q 1,q 2,f 1,f 2 )=0 M 2 (q 2,f 2 )=0 M i (q i,f i )=0...
20 Differentiaalis-algebralliset yhtälöt Muotoa F(x,x,t)=0, df/dx singulaarinen semieksplisiittinen: x =f(x,t); g(x,t)=0 Hessenberg index-3: x =f(x,y,z,t);y =g(x,y,t);h(t,y)=0 Useita eroja dy:ihin verrattuna: vapausasteet: m yhtälöä, 0<=l<=m vapausastetta alkutilan konsistenssi: mielivaltainen alkutila ei toteuta DAEa (usein ei-triviaali ongelma) kätketyt rajoitteet: jos g(x(t))=0 kaikilla t, on oltava myös dg/dt=0, d 2 g/dt 2 =0,...
21 DAE:n indeksi Tärkeä käsite DAE:n ja ratkaisumenetelmien luokittelussa Useita yhtäpitäviä määritelmiä, yksinkertaisin: montako kertaa DAEa pitää derivoida, että kaikkien muuttujien aikaderivaatta saadaan laskettua Esim. mekaniikassa algebrallisia muuttujia ovat Lagrangen kertoimet: paikkarajoituksia on derivoitava 3 kertaa => index 3-DAE /DAE indeksiä 3 DY:t ovat indeksiä 0 (algebralliset yhtälöt indeksiä 1) Indeksi on indikaatio ratkaisemisen helppoudesta yli 3:n indeksi teennäinen indeksin pienentäminen, esim. Gear-Gupta-Leimkuhler
22 Ratkaisumenetelmistä Kaksi lähestymistapaa 1. eliminoidaan algebralliset muuttujat => DYS + invariantti 2. Ratkaistaan DAE sellaisenaan (suorat menetelmät) 1. Algebrallisten muuttujien eliminointi tarkastellaan Hessenberg index-2 DAEa derivoidaan rajoitteet ajan suhteen kunnes saadaan eliminoitua algebralliset yhtälöt => saadaan DYS + invariantti invariantti = alkup.rajoitus + sen aikaderivaatat jos alkutila on konsistentti, invariantti pysyy teoriassa vakiona Käytännössä ei toimi, numeeriseen virheen takia ajautuu ulos monistolta (nopeasti) Tarvitaan stabilointi
23 ODE:n stabilointi Baumgarten (1972) stabilointi: lisätään eliminoituun muotoon termit jotka tekevät niistä asymptoottisesti stabiilin periaatteessa toimiva, käytännössä jotenkuten Jälkistabilointi (post-stabilization, esim. Ascher & Petzold 1998): integroidaan eliminoitua muotoa ja projisoidaan ratkaisu invariantille
24 2. Suorat ratkaisumenetelmät Implisiittinen integrointi; implisiittinen Euler: F(y,y,t)=0 => Ratkaistaan y n yhtälöstä F(y n,(y n -y n-1 )/h,t n )=0 epälineaarinen yhtälöryhmä joka askelella Korkeamman kertaluvun Runge-Kutta- ja moniaskelmenetelmät eivät toimi kaikille ongelmille Lupaava lähestymistapa semi-implisiittiset Runge-Kutta - menetelmät: ratkaistaan linearisoitu yhtälöryhmä joka askelella
Matemaattisesta mallintamisesta
Matemaattisesta mallintamisesta (Fysikaalinen mallintaminen) 1. Matemaattisen mallin konstruointi dynaamiselle reaalimaailman järjestelmälle pääpaino fysikaalisella mallintamisella samat periaatteet pätevät
Dynaamisten systeemien teoriaa. Systeemianalyysilaboratorio II
Dynaamisten systeemien teoriaa Systeemianalyysilaboratorio II 15.11.2017 Vakiot, sisäänmenot, ulostulot ja häiriöt Mallin vakiot Systeemiparametrit annettuja vakioita, joita ei muuteta; esim. painovoiman
Numeeriset menetelmät
Numeeriset menetelmät Luento 12 To 13.10.2011 Timo Männikkö Numeeriset menetelmät Syksy 2011 Luento 12 To 13.10.2011 p. 1/38 p. 1/38 Tavalliset differentiaaliyhtälöt Yhtälöissä tuntematon funktio Tavalliset
Numeeriset menetelmät TIEA381. Luento 12. Kirsi Valjus. Jyväskylän yliopisto. Luento 12 () Numeeriset menetelmät / 33
Numeeriset menetelmät TIEA381 Luento 12 Kirsi Valjus Jyväskylän yliopisto Luento 12 () Numeeriset menetelmät 25.4.2013 1 / 33 Luennon 2 sisältö Tavallisten differentiaaliyhtälöiden numeriikasta Rungen
1 Peruskäsitteet. Dierentiaaliyhtälöt
Teknillinen korkeakoulu Matematiikka Dierentiaaliyhtälöt Alestalo Tässä monisteessa käydään läpi tavallisiin dierentiaaliyhtälöihin liittyviä peruskäsitteitä ja ratkaisuperiaatteita. Esimerkkejä luennoilla
Matemaattisesta mallintamisesta
Matemaattisesta mallintamisesta Mallintaminen vaatii mallinnustaitoa tietoa mallintamisesta tietoa sovellusalueesta tervettä järkeä Verta, hikeä, kyyneleitä, tiedettä, taidetta Tehtävä kirkkaana mielessä
3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä
1 3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä Lineaarinen m:n yhtälön yhtälöryhmä, jossa on n tuntematonta x 1,, x n on joukko yhtälöitä, jotka ovat muotoa a 11 x 1 + + a 1n x n = b 1 a
Yhtälöryhmä matriisimuodossa. MS-A0004/A0006 Matriisilaskenta. Tarkastellaan esimerkkinä lineaarista yhtälöparia. 2x1 x 2 = 1 x 1 + x 2 = 5.
2. MS-A4/A6 Matriisilaskenta 2. Nuutti Hyvönen, c Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 5.9.25 Tarkastellaan esimerkkinä lineaarista yhtälöparia { 2x x 2 = x + x 2
Yhtälöryhmä matriisimuodossa. MS-A0007 Matriisilaskenta. Tarkastellaan esimerkkinä lineaarista yhtälöparia. 2x1 x 2 = 1 x 1 + x 2 = 5.
2. MS-A000 Matriisilaskenta 2. Nuutti Hyvönen, c Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2..205 Tarkastellaan esimerkkinä lineaarista yhtälöparia { 2x x 2 = x x 2 =
MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt
MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Differentiaaliyhtälöt, osa 1 Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2015 1 / 20 R. Kangaslampi Matriisihajotelmista
v AB q(t) = q(t) v AB p(t) v B V B ṗ(t) = q(t) v AB Φ(t, τ) = e A(t τ). e A = I + A + A2 2! + A3 = exp(a D (t τ)) (I + A N (t τ)), A N = =
Mat-214 Dynaaminen optimointi Mitri Kitti Mallivastaukset kierros 1 1 a) Sekoitussäiliöön A virtaa puhdasta vettä virtauksella v A säiliöstä A säiliöön B täysin sekoittunutta liuosta virtauksella v AB
Epälineaaristen yhtälöiden ratkaisumenetelmät
Epälineaaristen yhtälöiden ratkaisumenetelmät Keijo Ruotsalainen Division of Mathematics Perusoletus Lause 3.1 Olkoon f : [a, b] R jatkuva funktio siten, että f(a)f(b) < 0. Tällöin funktiolla on ainakin
Mat Dynaaminen optimointi, mallivastaukset, kierros 1
Mat-214 Dynaaminen optimointi, mallivastaukset, kierros 1 1 a) Sekoitussäiliöön A virtaa puhdasta vettä virtauksella v A, säiliöstä A säiliöön B täysin sekoittunutta liuosta virtauksella v AB ja säiliöstä
1 Perusteita lineaarisista differentiaaliyhtälöistä
1 Perusteita lineaarisista differentiaaliyhtälöistä Johdetaan lineaarisen aikavariantin systeemin ẋ(t) = A(t)x(t) + B(t)u(t), x(t 0 ) = x 0 yleinen ratkaisu. Tarkastellaan ensin homogeenistä yhtälöä. Lause
3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä
3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä Lineaarinen m:n yhtälön yhtälöryhmä, jossa on n tuntematonta x 1,, x n on joukko yhtälöitä, jotka ovat muotoa a 11 x 1 + + a 1n x n = b 1 a 21
Luento 11: Rajoitusehdot. Ulkopistemenetelmät
Luento 11: Rajoitusehdot. Ulkopistemenetelmät ja sisäpistemenetelmät Lagrangen välttämättömien ehtojen ratkaiseminen Newtonin menetelmällä Jos tehtävässä on vain yhtälörajoituksia, voidaan minimipistekandidaatteja
4 Korkeamman kertaluvun differentiaaliyhtälöt
Differentiaaliyhtälöt c Pekka Alestalo 2015 Tässä monisteessa käydään läpi tavallisiin differentiaaliyhtälöihin liittyviä peruskäsitteitä ja ratkaisuperiaatteita. Luennolla lasketaan esimerkkitehtäviä
Numeeriset menetelmät
Numeeriset menetelmät Luento 5 Ti 20.9.2011 Timo Männikkö Numeeriset menetelmät Syksy 2011 Luento 5 Ti 20.9.2011 p. 1/40 p. 1/40 Choleskyn menetelmä Positiivisesti definiiteillä matriiseilla kolmiohajotelma
2.2 Gaussin eliminaatio. 2.2 Gaussin eliminaatio. 2.2 Gaussin eliminaatio. 2.2 Gaussin eliminaatio
x = x 2 = 5/2 x 3 = 2 eli Ratkaisu on siis x = (x x 2 x 3 ) = ( 5/2 2) (Tarkista sijoittamalla!) 5/2 2 Tämä piste on alkuperäisten tasojen ainoa leikkauspiste Se on myös piste/vektori jonka matriisi A
Johdatus diskreettiin matematiikkaan Harjoitus 5, Ratkaise rekursioyhtälö
Johdatus diskreettiin matematiikkaan Harjoitus 5, 14.10.2015 1. Ratkaise rekursioyhtälö x n+4 2x n+2 + x n 16( 1) n, n N, alkuarvoilla x 1 2, x 2 14, x 3 18 ja x 4 42. Ratkaisu. Vastaavan homogeenisen
Numeeriset menetelmät TIEA381. Luento 5. Kirsi Valjus. Jyväskylän yliopisto. Luento 5 () Numeeriset menetelmät / 28
Numeeriset menetelmät TIEA381 Luento 5 Kirsi Valjus Jyväskylän yliopisto Luento 5 () Numeeriset menetelmät 3.4.2013 1 / 28 Luennon 5 sisältö Luku 4: Ominaisarvotehtävistä Potenssiinkorotusmenetelmä QR-menetelmä
DEE Sähkötekniikan perusteet
DEE-11110 Sähkötekniikan perusteet Antti Stenvall Tasasähköpiirien systemaattinen ratkaisu: kerrostamismenetelmä, silmukkavirtamenetelmä, solmupistemenetelmä Luennon keskeinen termistö ja tavoitteet silmukkavirtamenetelmä
3.1 Lineaarikuvaukset. MS-A0004/A0006 Matriisilaskenta. 3.1 Lineaarikuvaukset. 3.1 Lineaarikuvaukset
31 MS-A0004/A0006 Matriisilaskenta 3 Nuutti Hyvönen, c Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2292015 Lineaariset yhtälöt ovat vektoreille luonnollisia yhtälöitä, joita
Matriisilaskenta Luento 16: Matriisin ominaisarvot ja ominaisvektorit
Matriisilaskenta Luento 16: Matriisin ominaisarvot ja ominaisvektorit Antti Rasila 2016 Ominaisarvot ja ominaisvektorit 1/5 Määritelmä Skalaari λ C on matriisin A C n n ominaisarvo ja vektori v C n sitä
6. Differentiaaliyhtälösysteemien laadullista teoriaa.
1 MAT-13450 LAAJA MATEMATIIKKA 5 Tampereen teknillinen yliopisto Risto Silvennoinen Kevät 2010 6. Differentiaaliyhtälösysteemien laadullista teoriaa. Olemme keskittyneet tässä kurssissa ensimmäisen kertaluvun
Normaaliryhmä. Toisen kertaluvun normaaliryhmä on yleistä muotoa
Normaaliryhmä Toisen kertaluvun normaaliryhmä on yleistä muotoa x = u(t,x,y), y t I, = v(t,x,y), Funktiot u = u(t,x,y), t I ja v = v(t,x,y), t I ovat tunnettuja Toisen kertaluvun normaaliryhmän ratkaisu
Tehtävä 4.7 Tarkastellaan hiukkasta, joka on pakotettu liikkumaan toruksen pinnalla.
Tehtävä.7 Tarkastellaan hiukkasta, joka on pakotettu liikkumaan toruksen pinnalla. x = (a + b cos(θ)) cos(ψ) y = (a + b cos(θ)) sin(ψ) = b sin(θ), a > b, θ π, ψ π Figure. Toruksen hajoituskuva Oletetaan,
MS-A0207 Differentiaali- ja integraalilaskenta 2 (Chem) Yhteenveto, osa I
MS-A0207 Differentiaali- ja integraalilaskenta 2 (Chem) Yhteenveto, osa I G. Gripenberg Aalto-yliopisto 21. tammikuuta 2016 G. Gripenberg (Aalto-yliopisto) MS-A0207 Differentiaali- ja integraalilaskenta
Hamiltonin formalismia
Perjantai 3.10.2014 1/20 Hamiltonin formalismia Olemme valmiit siirtymään seuraavalle tasolle klassisen mekaniikan formalismissa, jonka aloitti Hamilton n. 1830. Emme käytä tätä formalismia minkään vaikeamman
Varatun hiukkasen liike
Luku 15 Varatun hiukkasen liike SM-kentässä Tarkastellaan lopuksi varatun hiukkasen liikettä sähkömagneettisessa kentässä. Liikeyhtälö on tullut esiin useaan otteeseen kurssin aikana aiemminkin. Yleisesti
Kertausta: Vapausasteet
Maanantai 8.9.2014 1/19 Kertausta: Vapausasteet Liikkeen kuvailu: massapisteen koordinaatit (x, y, z) ja nopeudet (v x, v y, v z ). Vapaasti liikkuvalla massapisteellä on kolme vapausastetta. N:llä vapaasti
Mat Työ 1: Optimaalinen lento riippuliitimellä
Mat-2.132 Työ 1: Optimaalinen lento riippuliitimellä Miten ohjaan liidintä, jotta lentäisin mahdollisimman pitkälle?? 1 työssä Konstruoidaan riippuliitimen malli dynaamisen systeemin tilaesitys Simuloidaan
TEKNILLINEN KORKEAKOULU Systeemianalyysin laboratorio. Mat Systeemien Identifiointi. 4. harjoitus
TEKNILLINEN KORKEAKOULU Systeemianalyysin laboratorio Mat-2.4129 Systeemien Identifiointi 4. harjoitus 1. a) Laske valkoisen kohinan spektraalitiheys. b) Tarkastellaan ARMA-prosessia C(q 1 )y = D(q 1 )e,
Ei-inertiaaliset koordinaatistot
orstai 25.9.2014 1/17 Ei-inertiaaliset koordinaatistot Tarkastellaan seuraavaa koordinaatistomuunnosta: {x} = (x 1, x 2, x 3 ) {y} = (y 1, y 2, y 3 ) joille valitaan kantavektorit: {x} : (î, ĵ, ˆk) {y}
Määritelmä Olkoon T i L (V i, W i ), 1 i m. Yksikäsitteisen lineaarikuvauksen h L (V 1 V 2 V m, W 1 W 2 W m )
Määritelmä 519 Olkoon T i L V i, W i, 1 i m Yksikäsitteisen lineaarikuvauksen h L V 1 V 2 V m, W 1 W 2 W m h v 1 v 2 v m T 1 v 1 T 2 v 2 T m v m 514 sanotaan olevan kuvausten T 1,, T m indusoima ja sitä
17. Differentiaaliyhtälösysteemien laadullista teoriaa.
99 17. Differentiaaliyhtälösysteemien laadullista teoriaa. Differentiaaliyhtälön x'(t) = f(x(t),t), x(t) n määrittelemän systeemin sanotaan olevan autonominen, jos oikea puoli ei eksplisiittisesti riipu
FYSA2031 Potentiaalikuoppa
FYSA2031 Potentiaalikuoppa Työselostus Laura Laulumaa JYFL YK216 laura.e.laulumaa@student.jyu.fi 16.10-2.11. 2017 Ohjaus Työn ja ohjelman esittely ( 30 min) Harjoitellaan ohjelman käyttöä Harmoninen potentiaali
Mekaniikan jatkokurssi Fys102
Mekaniikan jatkokurssi Fys10 Kevät 010 Jukka Maalampi LUENTO 7 Harmonisen värähdysliikkeen energia Jousen potentiaalienergia on U k( x ) missä k on jousivakio ja Dx on poikkeama tasapainosta. Valitaan
5 Differentiaaliyhtälöryhmät
5 Differentiaaliyhtälöryhmät 5.1 Taustaa ja teoriaa Differentiaaliyhtälöryhmiä tarvitaan useissa sovelluksissa. Toinen motivaatio yhtälöryhmien käytölle: Korkeamman asteen differentiaaliyhtälöt y (n) =
Värähdysliikkeet. q + f (q, q, t) = 0. q + f (q, q) = F (t) missä nopeusriippuvuus kuvaa vaimenemista ja F (t) on ulkoinen pakkovoima.
Torstai 18.9.2014 1/17 Värähdysliikkeet Värähdysliikkeet ovat tyypillisiä fysiikassa: Häiriö oskillaatio Jaksollinen liike oskillaatio Yleisesti värähdysliikettä voidaan kuvata yhtälöllä q + f (q, q, t)
Differentiaaliyhtälöiden numeerinen ratkaiseminen
Differentiaaliyhtälöiden numeerinen ratkaiseminen Keijo Ruotsalainen Division of Mathematics Alkuarvotehtävä Tavallisen differentiaaliyhtälön alkuarvotehtävä: Määrää reaaliarvoinen funktio y C 1 (I) siten,
Numeeriset menetelmät TIEA381. Luento 13. Kirsi Valjus. Jyväskylän yliopisto. Luento 13 () Numeeriset menetelmät / 42
Numeeriset menetelmät TIEA381 Luento 13 Kirsi Valjus Jyväskylän yliopisto Luento 13 () Numeeriset menetelmät 8.5.2013 1 / 42 Luennon 13 sisältö Tavallisten differentiaaliyhtälöiden numeriikasta Moniaskelmenetelmien
KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme
KJR-C1001 Statiikka ja dynamiikka Luento 24.3.2016 Susanna Hurme Rotaatioliikkeen liike-energia, teho ja energiaperiaate (Kirjan luku 18) Osaamistavoitteet Ymmärtää, miten liike-energia määritetään kiinteän
2v 1 = v 2, 2v 1 + 3v 2 = 4v 2.. Vastaavasti ominaisarvoa λ 2 = 4 vastaavat ominaisvektorit toteuttavat. v 2 =
TKK, Matematiikan laitos Pikkarainen/Tikanmäki Mat-1.1320 Matematiikan peruskurssi K2 Harjoitus 12, A=alku-, L=loppuviikko, T= taulutehtävä, P= palautettava tehtävä, W= verkkotehtävä 21. 25.4.2008, viikko
1 Komparatiivinen statiikka ja implisiittifunktiolause
Taloustieteen matemaattiset menetelmät 27 materiaali 4 Komparatiivinen statiikka ja implisiittifunktiolause. Johdanto Jo opiskeltu antaa nyt valmiu tutkia taloudellisia malleja Kiinnostava malli voi olla
Numeeriset menetelmät TIEA381. Luento 8. Kirsi Valjus. Jyväskylän yliopisto. Luento 8 () Numeeriset menetelmät / 35
Numeeriset menetelmät TIEA381 Luento 8 Kirsi Valjus Jyväskylän yliopisto Luento 8 () Numeeriset menetelmät 11.4.2013 1 / 35 Luennon 8 sisältö Interpolointi ja approksimointi Funktion approksimointi Tasainen
Tfy Fysiikka IIB Mallivastaukset
Tfy-.14 Fysiikka B Mallivastaukset 14.5.8 Tehtävä 1 a) Lenin laki: Muuttuvassa magneettikentässä olevaan virtasilmukkaan inusoitunut sähkömotorinen voima on sellainen, että siihen liittyvän virran aiheuttama
Oletetaan ensin, että tangenttitaso on olemassa. Nyt pinnalla S on koordinaattiesitys ψ, jolle pätee että kaikilla x V U
HY / Matematiikan ja tilastotieteen laitos Vektorianalyysi II, syksy 018 Harjoitus 4 Ratkaisuehdotukset Tehtävä 1. Olkoon U R avoin joukko ja ϕ = (ϕ 1, ϕ, ϕ 3 ) : U R 3 kaksiulotteisen C 1 -alkeispinnan
Numeeriset menetelmät
Numeeriset menetelmät Luento 6 To 22.9.2011 Timo Männikkö Numeeriset menetelmät Syksy 2011 Luento 6 To 22.9.2011 p. 1/38 p. 1/38 Ominaisarvotehtävät Monet sovellukset johtavat ominaisarvotehtäviin Yksi
Numeeriset menetelmät TIEA381. Luento 6. Kirsi Valjus. Jyväskylän yliopisto. Luento 6 () Numeeriset menetelmät / 33
Numeeriset menetelmät TIEA381 Luento 6 Kirsi Valjus Jyväskylän yliopisto Luento 6 () Numeeriset menetelmät 4.4.2013 1 / 33 Luennon 6 sisältö Interpolointi ja approksimointi Polynomi-interpolaatio: Vandermonden
Kokonaislukuoptimointi
Kokonaislukuoptimointi Algebrallisen geometrian sovelluksia Sisältö Taustaa algebrallisesta geometriasta Gröbnerin kanta Buchbergerin algoritmi Kokonaislukuoptimointi Käypyysongelma Algoritmi ratkaisun
KKT: log p i v 1 + v 2 x i = 0, i = 1,...,n.
TEKNILLINEN KORKEAKOULU Systeemianalyysin laboratorio Mat-2.139 Optimointioppi Kimmo Berg 7. harjoitus - ratkaisut 1. Oletetaan aluksi, että epäyhtälöt eivät ole aktiivisia p i > 0. Tässä tapauksess KKTehdot
1 Kertaus. Lineaarinen optimointitehtävä on muotoa:
1 Kertaus Lineaarinen optimointitehtävä on muotoa: min c 1 x 1 + c 2 x 2 + + c n x n kun a 11 x 1 + a 12 x 2 + + a 1n x n b 1 a 21 x 1 + a 22 x 2 + + a 2n x n b 2 (11) a m1 x 1 + a m2 x 2 + + a mn x n
Luento 9: Yhtälörajoitukset optimoinnissa
Luento 9: Yhtälörajoitukset optimoinnissa Lagrangen kerroin Oletetaan aluksi, että f, g : R R. Merkitään (x 1, x ) := (x, y) ja johdetaan Lagrangen kerroin λ tehtävälle min f(x, y) s.t. g(x, y) = 0 Olkoon
Vapaus. Määritelmä. jos c 1 v 1 + c 2 v c k v k = 0 joillakin c 1,..., c k R, niin c 1 = 0, c 2 = 0,..., c k = 0.
Vapaus Määritelmä Oletetaan, että v 1, v 2,..., v k R n, missä n {1, 2,... }. Vektorijono ( v 1, v 2,..., v k ) on vapaa eli lineaarisesti riippumaton, jos seuraava ehto pätee: jos c 1 v 1 + c 2 v 2 +
FYSA234 Potentiaalikuoppa, selkkarityö
FYSA234 Potentiaalikuoppa, selkkarityö Jari Partanen, Jani Komppula JYFL FL246, S118 japapepa@jyu.fi, jani.komppula@jyu.fi 16. lokakuuta 2013 Ohjaus Työn ja ohjelman esittely (15-30 min) Harjoitellaan
KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme
KJR-C1001 Statiikka ja dynamiikka Luento 17.3.2016 Susanna Hurme Päivän aihe: Energian, työn ja tehon käsitteet sekä energiaperiaate (Kirjan luku 14) Osaamistavoitteet: Osata tarkastella partikkelin kinetiikkaa
Luento 14: Periodinen liike, osa 2. Vaimennettu värähtely Pakkovärähtely Resonanssi F t F r
Luento 14: Periodinen liike, osa 2 Vaimennettu värähtely Pakkovärähtely Resonanssi θ F µ F t F r m g 1 / 20 Luennon sisältö Vaimennettu värähtely Pakkovärähtely Resonanssi 2 / 20 Vaimennettu värähtely
2 Osittaisderivaattojen sovelluksia
2 Osittaisderivaattojen sovelluksia 2.1 Ääriarvot Yhden muuttujan funktiolla f(x) on lokaali maksimiarvo (lokaali minimiarvo) pisteessä a, jos f(x) f(a) (f(x) f(a)) kaikilla x:n arvoilla riittävän lähellä
Varatun hiukkasen liike
Luku 16 Varatun hiukkasen liike SM-kentässä Tarkastellaan lopuksi varatun hiukkasen liikettä sähkömagneettisessa kentässä. Liikeyhtälö on tullut esiin useaan otteeseen kurssin aikana aiemminkin. Yleisesti
12 Jatkuva-aikaisten tehtävien numeerinen ratkaiseminen
12 Jatkuva-aikaisten tehtävien numeerinen ratkaiseminen Ratkaisumenetelmät jaetaan epäsuoriin ja suoriin menetelmiin Epäsuora menetelmä yrittää ratkaista Pontryaginin minimiperiaatteen mukaiset vättlämättömät
FYSA234 Potentiaalikuoppa, selkkarityö
FYSA234 Potentiaalikuoppa, selkkarityö Jari Partanen, Jani Komppula JYFL FL246, S118 japapepa@jyu.fi, jani.komppula@jyu.fi 13. lokakuuta 2014 Ohjaus Työn ja ohjelman esittely (15-30 min) Harjoitellaan
Dynaamiset regressiomallit
MS-C2128 Ennustaminen ja Aikasarja-analyysi, Lauri Viitasaari Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy 2016 Tilastolliset aikasarjat voidaan jakaa kahteen
Numeeriset menetelmät TIEA381. Luento 4. Kirsi Valjus. Jyväskylän yliopisto. Luento 4 () Numeeriset menetelmät / 44
Numeeriset menetelmät TIEA381 Luento 4 Kirsi Valjus Jyväskylän yliopisto Luento 4 () Numeeriset menetelmät 21.3.2013 1 / 44 Luennon 4 sisältö Lineaarisen yhtälöryhmän ratkaisemisesta: Choleskyn menetelmä
k=0 saanto jokaisen kolmannen asteen polynomin. Tukipisteet on talloin valittu
LIS AYKSI A kirjaan Reaalimuuttujan analyysi 1.6. Numeerinen integrointi: Gaussin kaavat Edella kasitellyt numeerisen integroinnin kaavat eli kvadratuurikaavat Riemannin summa, puolisuunnikassaanto ja
Avaruuden R n aliavaruus
Avaruuden R n aliavaruus 1 / 41 Aliavaruus Esimerkki 1 Kuva: Suora on suljettu yhteenlaskun ja skalaarilla kertomisen suhteen. 2 / 41 Esimerkki 2 Kuva: Suora ei ole suljettu yhteenlaskun ja skalaarilla
Insinöörimatematiikka D
Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot
Klassisen mekaniikan muotoilu symplektisen geometrian avulla
Klassisen mekaniikan muotoilu symplektisen geometrian avulla Ville Kivioja 21. kesäkuuta 2017 Tämän lyhyen artikkelin tarkoituksena on muotoilla klassinen mekaniikka mahdollisimman yleisesti ja käyttäen
Klassisen mekaniikan historiasta
Torstai 4.9.2014 1/18 Klassisen mekaniikan historiasta Nikolaus Kopernikus (puolalainen pappi 1473-1543): aurinkokeskeinen maailmankuva Johannes Kepler (saksalainen tähtitieteilijä 1571-1630): planeettojen
Esimerkki: Tarkastellaan korkeudella h ht () putoavaa kappaletta, jonka massa on m (ks. kuva).
6 DIFFERENTIAALIYHTÄLÖISTÄ Esimerkki: Tarkastellaan korkeudella h ht () putoavaa kappaletta, jonka massa on m (ks. kuva). Newtonin II:n lain (ma missä Yhtälö dh dt m dh dt F) mukaan mg, on kiihtyvyys ja
[4A] DIFFERENTIAALIYHTÄLÖT 1. Alkuarvotehtävät
[4A] DIFFERENTIAALIYHTÄLÖT 1. Alkuarvotehtävät Numeerisen integroinnin yhteydessä ratkoimme jo tavallisia ensimmäisen kertaluvun alkuarvotehtäviä integroimalla eli t y (t) =f(t, y(t)) y(t) =y(t a )+ f(t,
1 Di erentiaaliyhtälöt
Taloustieteen mat.menetelmät syksy 2017 materiaali II-5 1 Di erentiaaliyhtälöt 1.1 Skalaariyhtälöt Määritelmä: ensimmäisen kertaluvun di erentiaaliyhtälö on muotoa _y = F (y; t) oleva yhtälö, missä _y
Yhtälöryhmät 1/6 Sisältö ESITIEDOT: yhtälöt
Yhtälöryhmät 1/6 Sisältö Yhtälöryhmä Yhtälöryhmässä on useita yhtälöitä ja yleensä myös useita tuntemattomia. Tavoitteena on löytää tuntemattomille sellaiset arvot, että kaikki yhtälöt toteutuvat samanaikaisesti.
Numeeriset menetelmät
Numeeriset menetelmät Luento 14 To 20.10.2011 Timo Männikkö Numeeriset menetelmät Syksy 2011 Luento 14 To 20.10.2011 p. 1/39 p. 1/39 Nopeat Fourier-muunnokset Diskreetti Fourier-muunnos ˆf k = 1 N 1 N
Kun järjestelmää kuvataan operaattorilla T, sisäänmenoa muuttujalla u ja ulostuloa muuttujalla y, voidaan kirjoittaa. y T u.
DEE-00 Lineaariset järjestelmät Harjoitus, ratkaisuehdotukset Järjestelmien lineaarisuus ja aikainvarianttisuus Kun järjestelmää kuvataan operaattorilla T, sisäänmenoa muuttujalla u ja ulostuloa muuttujalla
Harjoitus 6: Simulink - Säätöteoria. Syksy 2006. Mat-2.2107 Sovelletun matematiikan tietokonetyöt 1
Harjoitus 6: Simulink - Säätöteoria Mat-2.2107 Sovelletun matematiikan tietokonetyöt Syksy 2006 Mat-2.2107 Sovelletun matematiikan tietokonetyöt 1 Harjoituksen aiheita Tutustuminen säätötekniikkaan Takaisinkytkennän
Kompleksiluvun logaritmi: Jos nyt z = re iθ = re iθ e in2π, missä n Z, niin saadaan. ja siihen vaikuttava
Kompleksiluvun logaritmi: ln z = w z = e w Jos nyt z = re iθ = re iθ e inπ, missä n Z, niin saadaan w = ln z = ln r + iθ + inπ, n Z Logaritmi on siis äärettömän moniarvoinen funktio. Helposti nähdään että
Mat Dynaaminen optimointi, mallivastaukset, kierros Vaimennetun heilurin tilanyhtälöt on esitetty luennolla: θ = g sin θ r θ
Mat-48 Dynaaminen optimointi, mallivastaukset, kierros Vaimennetun heilurin tilanyhtälöt on esitetty luennolla: θ = g sin θ r θ L ẋ = x ẋ = g L sin x rx Epälineaarisen systeemin tasapainotiloja voidaan
(s 2 + 9)(s 2 + 2s + 5) ] + s + 1. s 2 + 2s + 5. Tästä saadaan tehtävälle ratkaisu käänteismuuntamalla takaisin aikatasoon:
TEKNILLINEN KORKEAKOULU Systeemianalyysin laboratorio Mat-2429 Systeemien Identifiointi 2 harjoituksen ratkaisut Yhtälö voitaisiin ratkaista suoraankin, mutta käytetään Laplace-muunnosta tehtävän ratkaisemisessa
Jos siis ohjausrajoitusta ei olisi, olisi ratkaisu triviaalisti x(s) = y(s). Hamiltonin funktio on. p(0) = p(s) = 0.
Mat-.148 Dynaaminen optimointi Mitri Kitti/Ilkka Leppänen Mallivastaukset, kierros 1 1. Olkoon maaston korkeus y(s) derivoituva funktio ja etsitään tien profiilia x(s). Päätösmuuttuja on tien jyrkkyys
Lineaarikuvausten. Lineaarikuvaus. Lineaarikuvauksia. Ydin. Matriisin ydin. aiheita. Aiheet. Lineaarikuvaus. Lineaarikuvauksen matriisi
Lineaarikuvaukset aiheita ten ten 1 Matematiikassa sana lineaarinen liitetään kahden lineaariavaruuden väliseen kuvaukseen. ten Määritelmä Olkoon (L, +, ) ja (M, ˆ+, ˆ ) reaalisia lineaariavaruuksia, ja
Matemaattinen Analyysi
Vaasan yliopisto, kevät 01 / ORMS1010 Matemaattinen Analyysi. harjoitus, viikko 1 R1 ke 1 16 D11 (..) R to 10 1 D11 (..) 1. Määritä funktion y(x) MacLaurinin sarjan kertoimet, kun y(0) = ja y (x) = (x
Iteratiiviset ratkaisumenetelmät
Iteratiiviset ratkaisumenetelmät Keijo Ruotsalainen Division of Mathematics Yleinen iteraatio Lineaarisen yhtälöryhmän iteratiivinen ratkaisumenetelmä voidaan esittää muodossa: Anna alkuarvaus: x 0 R n
Epälineaaristen yhtälöiden ratkaisumenetelmät
Epälineaaristen yhtälöiden ratkaisumenetelmät Keijo Ruotsalainen Division of Mathematics Perusoletus Lause 3.1 Olkoon f : [a, b] R jatkuva funktio siten, että f(a)f(b) < 0. Tällöin funktiolla on ainakin
DYNAMIIKKA II, LUENTO 7 (SYKSY 2015) Arttu Polojärvi
DYNAMIIKKA II, LUENTO 7 (SYKSY 2015) Arttu Polojärvi LUENNON SISÄLTÖ Kertausta edelliseltä luennolta: Liikemäärän ja liikemäärän momentin tase. Hyrräyhtälöt. Liikeyhtälöiden muodostaminen. Lagrangen formalismi:
Useita oskillaattoreita yleinen tarkastelu
Useita oskillaattoreita yleinen tarkastelu Useita riippumattomia vapausasteita q i, i =,..., n ja potentiaali vastaavasti U(q, q 2,..., q n). Tasapainoasema {q 0, q0 2,..., q0 n} q 0 Käytetään merkintää
1.4 Funktioiden kertaluokat
1.4 Funktioiden kertaluokat f on kertaluokkaa O(g), merk. f = O(g), jos joillain c > 0, m N pätee f(n) cg(n) aina kun n m f on samaa kertaluokkaa kuin g, merk. f = Θ(g), jos joillain a, b > 0, m N pätee
Kanta ja dimensio 1 / 23
1 / 23 Kuten ollaan huomattu, saman aliavaruuden voi virittää eri määrä vektoreita. Seuraavaksi määritellään mahdollisimman pieni vektorijoukko, joka virittää aliavaruuden. Jokainen aliavaruuden alkio
MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 7: Pienimmän neliösumman menetelmä ja Newtonin menetelmä.
MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 7: Pienimmän neliösumman menetelmä ja Newtonin menetelmä. Antti Rasila Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Kevät 2016
BM20A0900, Matematiikka KoTiB3
BM20A0900, Matematiikka KoTiB3 Luennot: Matti Alatalo Oppikirja: Kreyszig, E.: Advanced Engineering Mathematics, 8th Edition, John Wiley & Sons, 1999, luvut 1 4. 1 Sisältö Ensimmäisen kertaluvun differentiaaliyhtälöt
5.9 Voiman momentti (moment of force, torque)
5.9 Voiman momentti (moment of force, torque) Voiman momentti määritellään ristitulona M = r F missä r on voiman F vaikutuspisteen paikkavektori tarkasteltavan pisteen suhteen Usean voiman tapauksessa
Antti Rasila. Kevät Matematiikan ja systeemianalyysin laitos Aalto-yliopisto. Antti Rasila (Aalto-yliopisto) MS-A0204 Kevät / 16
MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 5: Gradientti ja suunnattu derivaatta. Vektoriarvoiset funktiot. Taylor-approksimaatio. Antti Rasila Matematiikan ja systeemianalyysin laitos
Mat Systeemien identifiointi, aihepiirit 1/4
, aihepiirit 1/4 Dynaamisten systeemien matemaattinen mallintaminen ja analyysi Matlab (System Identification Toolbox), Simulink 1. Matemaattinen mallintaminen: Mallintamisen ja mallin määritelmät Fysikaalinen
BM20A1501 Numeeriset menetelmät 1 - AIMO
6. marraskuuta 2014 Opetusjärjestelyt Luennot + Harjoitukset pe 7.11.2014 10-14 2310, 14-17 7337 la 8.11.2014 9-12 2310, 12-16 7337 pe 14.11.2014 10-14 2310, 14-17 6216 la 15.11.2014 9-12 2310, 12-16 7337
6 Variaatiolaskennan perusteet
6 Variaatiolaskennan perusteet Sivut ss. 22 26 pääosin lähteen [Kirk, Ch. 4, ss. 107 127] pohjalta Variaatiolaskenta keskittyy lokaaliin analyysiin eli funktion lokaalin minimin vastineisiin funktionaaleilla.
Katso Opetus.tv:n video: Kirchhoffin 1. laki http://opetus.tv/fysiikka/fy6/kirchhoffin-lait/
4.1 Kirchhoffin lait Katso Opetus.tv:n video: Kirchhoffin 1. laki http://opetus.tv/fysiikka/fy6/kirchhoffin-lait/ Katso Kimmo Koivunoron video: Kirchhoffin 2. laki http://www.youtube.com/watch?v=2ik5os2enos
Numeeriset menetelmät
Numeeriset menetelmät Luento 3 Ti 13.9.2011 Timo Männikkö Numeeriset menetelmät Syksy 2011 Luento 3 Ti 13.9.2011 p. 1/37 p. 1/37 Epälineaariset yhtälöt Newtonin menetelmä: x n+1 = x n f(x n) f (x n ) Sekanttimenetelmä:
Numeeriset menetelmät TIEA381. Luento 3. Kirsi Valjus. Jyväskylän yliopisto. Luento 3 () Numeeriset menetelmät / 45
Numeeriset menetelmät TIEA381 Luento 3 Kirsi Valjus Jyväskylän yliopisto Luento 3 () Numeeriset menetelmät 20.3.2013 1 / 45 Luennon 3 sisältö Luku 2: Epälineaarisen yhtälön ratkaiseminen Polynomin reaaliset
Säätötekniikkaa. Säätöongelma: Hae (mahdollisesti ulostulon avulla) ohjaus, joka saa systeemin toimimaan halutulla tavalla
Säätötekniikkaa Säätöongelma: Hae (mahdollisesti ulostulon avulla) ohjaus, joka saa systeemin toimimaan halutulla tavalla servo-ongelma: ulostulon seurattava referenssisignaalia mahdollisimman tarkasti,
MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt
MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Differentiaaliyhtälöt, osa 3 Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2015 1 / 28 R. Kangaslampi Matriisihajotelmista