CHEM-C2200 Kemiallinen termodynamiikka Työselostuksen laatiminen TYÖSELOSTUKSEN LAATIMINEN
|
|
- Marja Kivelä
- 7 vuotta sitten
- Katselukertoja:
Transkriptio
1 CHEM-C00 Kemiallinen termodynamiikka TYÖSELOSTUKSEN LAATIMINEN Ohjeita löytyy kurssin MyCourses-sivuilta: Laboratoriotyöt > > kansio Työselostusohjeet Numeerinen virhearvio Selostuksen tarkistuslista Yleisohje gf 1
2 SELOSTUKSEN JAOTTELU Nimilehti Nimilehtipohjia saa laboratoriosta ja kotisivuilta. 1. Johdanto Työn tausta, itse työ ja sen tarkoitus. Ei kaavoja.. Teoreettinen tarkastelu Ei pitkiä johtoja. Oleelliset kaavat esitetään, muokataan tarvittavaan muotoon. 3. Työn kuvaus Koelaitteisto, mittausmenetelmät, materiaalit. 4. Tulokset Mittaustulokset mittauspöytäkirjasta koottuna. Laskut välivaiheineen. Jokaisesta yhtälöstä sijoitusesimerkki ratkaisuineen. Lasketut tulokset koottuna. 5. Virhetarkastelu 6. Tulosten tarkastelu ja johtopäätökset Esitetään tärkeimmät tulokset virheineen. Verrataan kirjallisuusarvoihin. Arvioidaan tuloksia. 7. Lähdeluettelo 8. Liitteet SELOSTUKSEN KIRJOITTAMINEN Kieliasu on tärkeä tekstin on oltava lyhyttä ja ytimekästä, ei puhekieltä joka virkkeessä pitää olla verbi tekstissä käytetään aina passiivi- ja imperfektimuotoja merkintätapaa 5E-6 ei saa käyttää, vaan tämä merkitään desimaaliluvuissa käytetään ISO-standardin mukaisesti suomenkielisessä tekstissä pilkkua luvut esitetään järkevästi pyöristettyinä mittaustarkkuuden mukaisesti. gf
3 Ulkoasun pitää olla siisti ja helposti luettava kirjaintyyppinä käytetään selkeää perus-kirjasinta, esim. Calibri tai Arial teksti kirjoitetaan yhdelle palstalle rivivälillä 1,5 ja molemmat reunat tasataan. marginaalit: vasemmalle puolelle 3,5 cm ja muualle 3 cm. lukujen pääotsikot kirjoitetaan koolla 14 lihavoituna, alaotsikot koolla 1 lihavoituna. itse teksti kirjoitetaan koolla 1 (Calibri) tai 11 (Arial). lukujen otsikoissa käytetään yläpuolella kappaleväliä (spacing) 36 ja alapuolella 4. alaotsikoissa käytetään yläpuolella kappaleväliä 4 ja alapuolella 1. Uusi luku voidaan aloittaa joko kesken sivun tai aina uudelta sivulta. Alaotsikoita ei aloiteta uudelta sivulta. Pelkkä otsikko ei voi olla eri sivulla kuin sitä seuraava teksti. Tekstikappaleiden väliin jätetään tyhjä rivi ja teksti aloitetaan aina rivin alusta. Kuvat, taulukot ja yhtälöt erotetaan tekstistä tyhjällä rivillä kummallakin puolella. Työselostus tulostetaan siististi A4-kokoisille arkeille yksipuolisena. Suureet ja yhtälöt Yhtälöt numeroidaan juoksevalla numerolla, joka sijoitetaan sivun oikeaan reunaan kaarisulkuihin. Yhtälöt tulee selittää tekstissä ennen niiden esittämistä. Yhtälöiden numerointi esitetään tekstissä kaarisuluin erotettuna. Esimerkki suureyhtälöstä: q P < nc P, mχt (1) missä q P siirtynyt lämpömäärä n ainemäärä C P,m moolinen lämpökapasiteetti ΧT lämpötilaero tai missä q P on siirtynyt lämpömäärä, n ainemäärä, C P,m moolinen lämpökapasiteetti ja ΧT lämpötilaero. gf 3
4 Laadutettua suureyhtälöä käytetään aina, kun yhtälö ei ole laaduiltaan homogeeninen eli laadut eivät ns. supistu pois. Esimerkki laadutetusta suureyhtälöstä:,m(h,g) < 9, 064, 0, , 1 JK mol C P, 7, T 0, K T K () missä C P,m (H,g) on vetykaasun moolinen lämpökapasiteetti ja T lämpötila. Selostuksessa jokaisesta yhtälöstä on esitettävä sijoitusesimerkki, jossa mittaus- tai muut arvot ovat dimensioineen. Esimerkki sijoitusesimerkistä: Yhtälöstä (1) saadaan q P kj < 75,3 555mol < mol 33, 83( K 1670kJ Kuvat ja taulukot Kuville ja taulukoille käytetään kullekin erillistä juoksevaa numerointia kautta tekstin. Kuvateksti tulee kuvan alapuolelle, taulukkoteksti taulukon yläpuolelle. Kuva 1. Kytkentä kalorimetrin lämpökapasiteetin määritystä varten. V on jännitemittari, A virtamittari,e jännitelähde gf 4
5 Taulukko 1. n-propanolin höyrynpaineen P riippuvuus lämpötilasta T Koe T / K 10 3 K / T P / kpa ln (P/kPa) 1 333,15 3, ,6,98 343,15,914 31,3 3, ,15, ,1 3,91 Kuvaajat Kuvaajalla pitää olla kuvanumero ja kuvateksti kuvaajan alapuolella. Mitatut tai lasketut pisteparit piirretään koordinaatistoon kuvan mukaisesti. Akselit nimetään ja niille ilmoitetaan mittayksiköt. Havaintopisteitä ei saa yhdistää murtoviivalla! 30 lämpötila/k aika/min Kuva. Lämpötilan nousu ajan funktiona kokeessa XX. gf 5
6 Liitteet Liitteet sijoitetaan työn loppuun. Sivunumerointia ei jatketa liitteisiin, vaan kukin liite saa oman juoksevan numeronsa (LIITE 1, LIITE jne.). Kaikkiin liitteisiin on viitattava selostuksen tekstissä. MITTAUSTULOSTEN KÄSITTELY JA VIRHEARVIO Karkea virhe esim. laitehäiriöt, lukemavirheet, tulosten kirjausvirheet Systemaattinen virhe pyrkii vääristämään tulosta aina samaan suuntaan Satunnainen virhe eli tilastollinen virhe ei vääristä tulosta mihinkään tiettyyn suuntaan. Systemaattisten virheiden osuus pieni mittauksen oikeellisuus (trueness) on hyvä Satunnaisten virheiden osuus pieni tuloksen toistotarkkuus (precision) on hyvä gf 6
7 virta/a jännite/v Kuvassa mittaustulosten systemaattinen virhe on pieni (teoreettinen suora eli katkoviiva kuvaa mittauspisteitä hyvin) mutta satunnainen virhe on suuri (pisteiden virherajat suuret, pisteistössä hajontaa) virta/a jännite/v Kuvassa mittaustulosten satunnainen virhe on pieni (virherajat pienet, pisteet sopivat hyvin samalle suoralle) mutta systemaattinen virhe on suuri (pisteet eivät sovi teoreettiselle suoralle eli katkoviivalle). gf 7
8 Mitattujen suureiden virheiden arviointi Karkeista ja systemaattisista virheistä esitetään kvalitatiivinen arvio. Jokaisen mitatun suureen satunnaisvirheen maksimi arvioidaan kvantitatiivisesti (mittarin lukematarkkuus, mittarilukeman heilahtelu, tms.). Huomaa, että mittauksen virhe on tyypillisesti yhtä suuri koko mittausalueella. Siten mittausvirhe on absoluuttinen eikä suhteellinen. Laskettujen suureiden virheiden arviointi Virhearvion laskeminen kokonaisdifferentiaalin avulla On mitattu suureet x 1 ja x ja näille virheet Χx 1 ja Χx. Tutkittavaan ilmiöön liittyy malli F = F(x 1, x ). Jos jokaisessa muuttujassa tapahtuu pieni muutos dx i F F df < dx1 dx x x 1 F:n virhettä laskettaessa korvataan dx i virherajalla Χx i. Osittaisderivaatoista otetaan itseisarvo, jotta saataisiin virheelle yläraja-arvo. F F ΧF < Χx1 Χx x x 1 gf 8
9 Esim. Natriumkloridin vesiliuoksen konsentraation laskeminen Punnittu massa m = (0,354 0,0005) g Mittapullon tilavuus V = (10,00 0,04) ml n c < V < m MV < 58,5gmol 0,354g < 0,6051moldm, ,00 10 dm Konsentraation virhe c c 1 m c < Χm ΧV < Χm, m V MV MV Χ Χc < ΧV 1 0,354g 0,0005g 0,04 10, 3, dm ( dm 1 58,5 gmol dm 58,5 gmol 3 Χc < 0,00085 mol dm 0,004 mol dm < 0,0037 mol dm Näin ollen konsentraatiolle saadaan c < 0,605 0,003 ( mol dm Virhearvion laskeminen logaritmisen derivoinnin avulla Jos matemaattinen malli sisältää vain kerto- ja jakolaskuja sekä potenssiin korotuksia, voidaan käyttää logaritmista derivointia. Esimerkki: ln c < lnm, lnm, lnv Χc < c Χm ΧV, m V 0,0005 g < 0,354 g 0,04ml 10,00ml < 0, ,00400 < 0,00541 Χc < 0, ,6051moldm < 0,0037mol dm Eli konsentraatioksi saadaan nytkin c < 0,605 0,003( moldm gf 9
10 Lukuarvoista: Välitulosten kohdalla voidaan käyttää runsaasti numeroita. Lopputuloksen virhe ilmoitetaan yhden tai korkeintaan kahden merkitsevän numeron tarkkuudella. Lopputulos ilmoitetaan samalla tarkkuudella kuin virhe. Esim. x = 3,4547 0,00187 x = 3,45 0,00 jos x on lähtöarvo tai välitulos jos x on lopputulos Suureiden välisen riippuvuuden tutkiminen Graafinen esitys on havainnollisin tapa esittää fysikaalista riippuvuutta. Selostuksessa piirretään tuloksista graafinen esitys. Mikäli mahdollista, riippuvuus muotoillaan suoran yhtälöksi, s.e. haluttu vakio esiintyy kulmakertoimessa. Esim: y = e ax ln y = ax piirretään suure ln y suureen x funktiona Kulmakerroin ja suoran vakiotermi määritetään graafisesti tai pienimmän neliösumman (PNS) menetelmällä. gf 10
11 Graafinen määritys: Suora y = kx + b Piirretyltä suoralta valitaan kaksi pistettä, jotka yleensä eivät ole mitattuja pisteitä. y, y1 k < x, x 1 Virhesuorien kulmakertoimista saadaan suoran kulmakertoimen virhe Χk k max, k Χk < min Vakiob saadaan suoran ja pystyakselin leikkauspisteen y-koordinaatin arvosta. b:n virherajat saadaan virhesuorien ja pystyakselin leikkauspisteistä. lä m p ö tila /K aika/min Kuvassa suora y = kx + b y on lämpötila, x on aika Pienimmän neliösumman menetelmä (PNS): Sovitettava funktio y = kx + b PNS-sovitus antaa tilastomatematiikan avulla suoran k Χk ja b Χb. Esim. Mitatut pisteparit (5 arvoparia): x i y i 1,0,0,0 3,1 3,0 3,9 4,0 4,9 5,0 6,0 gf 11
12 Excelin laskema tulos: SUMMARY OUTPUT Regression Statistics Multiple R R Square Standard E Observation 5 ANOVA df SS MS F ignificance F Regression E-05 Residual Total Coefficientstandard Erro t Stat P-value Lower 95%Upper 95%Lower 95.0%Upper 95.0% Intercept X Variable E Lopputulos kulmakerroin: k = 0,98 0,03 leikkauspiste: b = 1,04 0,09 LÄHDEVIITE JA LÄHDELUETTELO Suositellaan nk. numeroviitejärjestelmää. Tekstiin sijoitetaan tekstiviite, joka viittaa lähdeluetteloon. Viite merkitään tekstiin käyttäen viitenumeroa hakasuluissa. Esimerkki tekstiviitteestä: Vetyionipitoisuus saadaan Christianin [1] mukaan seuraavasti... Lähdeluettelossa lähdeviitteet esitetään täydellisinä ja luetteloituna esiintymisjärjestyksen mukaiseen järjestykseen. Esimerkki lähdeluettelosta: 1. Christian, G.D., Analytical Chemistry, 4 th Ed., John Wiley & Sons, New York 1986, s Corsaro, G., J. Chem. Ed. 48 (1964) IUPAC, Quantities, Units and Symbols in Physical Chemistry, toim. I. Mills, T. Cvitas, K. Homann, N. Kallay ja K. Kuchitsu, Blackwell Scientific Publications, Oxford 1988, s. 3. gf 1
Työselostusohjeen käyttäjälle
CHEM-C2200 Kemiallinen termodynamiikka TYÖN NIMI Selostuksen tekijä Kaisa Kemisti, 43210A Työpari Teemu Teekkari, 121212 Assistentti Aapo Assistentti Työ suoritettu Selostus jätetty Palautettu korjattuna
CHEM-AXXX Kurssin nimi TYÖN NIMI. Ryhmä X Anonyymi Oppilas, 12345G Kaisa Kemisti, 43210A Teemu Teekkari, Joku Muu,
CHEM-AXXX Kurssin nimi TYÖN NIMI Ryhmä X Anonyymi Oppilas, 12345G Kaisa Kemisti, 43210A Teemu Teekkari, 121212 Joku Muu, 999999 Työ suoritettu 4.2.2014 Selostus jätetty 7.2.2014 Palautettu korjattuna 4.3.2014
LIITE 1 VIRHEEN ARVIOINNISTA
Oulun yliopisto Fysiikan opetuslaboratorio Fysiikan laboratoriotyöt 1 1 LIITE 1 VIRHEEN RVIOINNIST Mihin tarvitset virheen arviointia? Mittaustuloksiin sisältyy aina virhettä, vaikka mittauslaite olisi
LIITE 1 VIRHEEN ARVIOINNISTA
1 Mihin tarvitset virheen arviointia? Mittaustuloksiin sisältyy aina virhettä, vaikka mittauslaite olisi miten uudenaikainen tai kallis tahansa ja mittaaja olisi alansa huippututkija Tästä johtuen mittaustuloksista
PHYS-A1110 Laboratoriotyöosuus. Vastaava opettaja Jani Sainio puh: 050-5756914 jani.sainio@aalto.fi huone 138 (OK 4A)
PHYS-A1110 Laboratoriotyöosuus Vastaava opettaja Jani Sainio puh: 050-5756914 jani.sainio@aalto.fi huone 138 (OK 4A) Kurssin järjestelyt Miksi? Fysiikka on havaintoja ja niiden selittämistä / ennustamista
LIITE 1 VIRHEEN ARVIOINNISTA
1 LIITE 1 VIRHEEN ARVIOINNISTA Mihin tarvitset virheen arviointia? Mittaustulokset ovat aina todellisten luonnonvakioiden ja tutkimuskohdetta kuvaavien suureiden likiarvoja, vaikka mittauslaite olisi miten
OHJEITA TYÖSELOSTUKSEN LAATIMISEEN
OHJEITA TYÖSELOSTUKSEN LAATIMISEEN Raportointi kuuluu tärkeänä osana jokaisen fyysikon työhön riippumatta siitä työskenteleekö hän tutkijana yliopistossa, opettajana koulussa vai teollisuuden palveluksessa.
Ohjeita fysiikan ylioppilaskirjoituksiin
Ohjeita fysiikan ylioppilaskirjoituksiin Kari Eloranta 2016 Jyväskylän Lyseon lukio 11. tammikuuta 2016 Kokeen rakenne Fysiikan kokeessa on 13 tehtävää, joista vastataan kahdeksaan. Tehtävät 12 ja 13 ovat
Aineopintojen laboratoriotyöt 1. Veden ominaislämpökapasiteetti
Aineopintojen laboratoriotyöt 1 Veden ominaislämpökapasiteetti Aki Kutvonen Op.nmr 013185860 assistentti: Marko Peura työ tehty 19.9.008 palautettu 6.10.008 Sisällysluettelo Tiivistelmä...3 Johdanto...3
LIITE 1 VIRHEEN ARVIOINNISTA
Oulun yliopisto Fysiikan opetuslaboratorio Fysikaalisen kemian laboratorioharjoitukset I 1 Mittaustuloksiin sisältyy aina virhettä, vaikka mittauslaite olisi miten uudenaikainen tai kallis tahansa ja mittaaja
Työ 1: ph-indikaattorin tasapainovakion arvon määrittäminen spektrofotometrisesti
CHEM-C2200 Kemiallinen termodynamiikka Työ 1: ph-indikaattorin tasapainovakion arvon määrittäminen spektrofotometrisesti Työohje 1 Johdanto Happo-emäsindikaattorina käytetty bromitymolisininen muuttaa
Työ 1: ph-indikaattorin tasapainovakion arvon määrittäminen spektrofotometrisesti
CHEM-C2200 Kemiallinen termodynamiikka Työ 1: ph-indikaattorin tasapainovakion arvon määrittäminen spektrofotometrisesti Työohje 1 Johdanto Happo-emäsindikaattorina käytetty bromitymolisininen muuttaa
Virhearviointi. Fysiikassa on tärkeää tietää tulosten tarkkuus.
Virhearviointi Fysiikassa on tärkeää tietää tulosten tarkkuus. Virhelajit A. Tilastolliset virheet= satunnaisvirheet, joita voi arvioida tilastollisin menetelmin B. Systemaattiset virheet = virheet, joita
Laskun vaiheet ja matemaattiset mallit
Laskun vaiheet ja matemaattiset mallit Jukka Sorjonen sorjonen.jukka@gmail.com 26. syyskuuta 2016 Jukka Sorjonen (Jyväskylän Normaalikoulu) Mallit ja laskun vaiheet 26. syyskuuta 2016 1 / 14 Hieman kertausta
1 Opinnäytetyön graafiset ohjeet. 2 Sivun asetukset. 3 Sivunumerointi. 4 Otsikot
1 1 Opinnäytetyön graafiset ohjeet Metropolia Ammattikorkeakoulun opinnäytetöissä noudatetaan seuraavia graafisia ohjeita. Graafiset ohjeet on tehty Metropolian opinnäytetyöryhmässä. Näiden graafisten
Laskun vaiheet ja matemaattiset mallit
Laskun vaiheet ja matemaattiset mallit Jukka Sorjonen sorjonen.jukka@gmail.com 28. syyskuuta 2016 Jukka Sorjonen (Jyväskylän Normaalikoulu) Mallit ja laskun vaiheet 28. syyskuuta 2016 1 / 22 Hieman kertausta
Mittaustulosten käsittely
Mittaustulosten käsittely Virhettä ja epävarmuutta ilmaisevat käsitteet Toistokoe ja satunnaisten virheiden tilastollinen käsittely. Mittaustulosten jakaumaa kuvaavat tunnusluvut. Normaalijakauma 8. Toistokoe
Käy vastaamassa kyselyyn kurssin pedanet-sivulla (TÄRKEÄ ensi vuotta ajatellen) Kurssin suorittaminen ja arviointi: vähintään 50 tehtävää tehtynä
Käy vastaamassa kyselyyn kurssin pedanet-sivulla (TÄRKEÄ ensi vuotta ajatellen) Kurssin suorittaminen ja arviointi: vähintään 50 tehtävää tehtynä (vihkon palautus kokeeseen tullessa) Koe Mahdolliset testit
Mittaustekniikka (3 op)
530143 (3 op) Yleistä Luennoitsija: Ilkka Lassila Ilkka.lassila@helsinki.fi, huone C319 Assistentti: Ville Kananen Ville.kananen@helsinki.fi Luennot: ti 9-10, pe 12-14 sali E207 30.10.-14.12.2006 (21 tuntia)
Laboratoriotyöselostuksen laatiminen
CHEM-C2210 Alkuainekemia ja epäorgaanisten materiaalien synteesi ja karakterisointi Kevät 2016 Laboratoriotyöselostuksen laatiminen Työselostus tehdään kurssin ryhmätyöstä: Atomi/molekyylikerroskasvatuksella
Fysiikan laboratoriotyöt 1, työ nro: 2, Harmoninen värähtelijä
Fysiikan laboratoriotyöt 1, työ nro: 2, Harmoninen värähtelijä Tekijä: Mikko Laine Tekijän sähköpostiosoite: miklaine@student.oulu.fi Koulutusohjelma: Fysiikka Mittausten suorituspäivä: 04.02.2013 Työn
761121P-01 FYSIIKAN LABORATORIOTYÖT 1. Oulun yliopisto Fysiikan tutkinto-ohjelma Kevät 2016
1 76111P-01 FYSIIKAN LABORATORIOTYÖT 1 Oulun yliopisto Fysiikan tutkinto-ohjelma Kevät 016 JOHDANTO Fysiikassa pyritään löytämään luonnosta lainalaisuuksia, joita voidaan mitata kokeellisesti ja kuvata
CHEM-C2230 Pintakemia. Työ 2: Etikkahapon adsorptio aktiivihiileen. Työohje
CHEM-C2230 Pintakemia Tö 2: Etikkahapon orptio aktiivihiileen Töohje 1 Johdanto Kaasun ja kiinteän aineen rajapinnalla tapahtuu leensä kaasun orptiota. Mös liuoksissa tapahtuu usein liuenneen aineen orptiota
Aluksi. 1.1. Kahden muuttujan lineaarinen yhtälö
Aluksi Matematiikan käsite suora on tarkalleen sama asia kuin arkikielen suoran käsite. Vai oliko se toisinpäin? Matematiikan luonteesta johtuu, että sen soveltaja ei tyydy pelkkään suoran nimeen eikä
origo III neljännes D
Sijoita pisteet A(1,4) ja B(4,5;5) sekä C(-3,4) ja D(-4,--5) y II neljännes C A I neljännes B x origo III neljännes D IV neljännes KOTIT. Sijoita ja nimeä koordinaatistoon pisteitä niin, että pisteet yhdistettäessä
Tekijä Pitkä matematiikka Pisteen (x, y) etäisyys pisteestä (0, 2) on ( x 0) Pisteen (x, y) etäisyys x-akselista, eli suorasta y = 0 on y.
Tekijä Pitkä matematiikka 5 7..017 37 Pisteen (x, y) etäisyys pisteestä (0, ) on ( x 0) + ( y ). Pisteen (x, y) etäisyys x-akselista, eli suorasta y = 0 on y. Merkitään etäisyydet yhtä suuriksi ja ratkaistaan
jakokulmassa x 4 x 8 x 3x
Laudatur MAA ratkaisut kertausarjoituksiin. Polynomifunktion nollakodat 6 + 7. Suoritetaan jakolasku jakokulmassa 5 4 + + 4 8 6 6 5 4 + 0 + 0 + 0 + 0+ 6 5 ± 5 5 4 ± 4 4 ± 4 4 ± 4 8 8 ± 8 6 6 + ± 6 Vastaus:
Aki Taanila YHDEN SELITTÄJÄN REGRESSIO
Aki Taanila YHDEN SELITTÄJÄN REGRESSIO 26.4.2011 SISÄLLYS JOHDANTO... 1 LINEAARINEN MALLI... 1 Selityskerroin... 3 Excelin funktioita... 4 EKSPONENTIAALINEN MALLI... 4 MALLIN KÄYTTÄMINEN ENNUSTAMISEEN...
Mittaustuloksen esittäminen Virhetarkastelua. Mittalaitetekniikka NYMTES 13 Jussi Hurri syksy 2014
Mittaustuloksen esittäminen Virhetarkastelua Mittalaitetekniikka NYMTES 13 Jussi Hurri syksy 2014 SI järjestelmä Kansainvälinen mittayksikköjärjestelmä Perussuureet ja perusyksiköt Suure Tunnus Yksikkö
Kahden suoran leikkauspiste ja välinen kulma (suoraparvia)
Kahden suoran leikkauspiste ja välinen kulma (suoraparvia) Piste x 0, y 0 on suoralla, jos sen koordinaatit toteuttavat suoran yhtälön. Esimerkki Olkoon suora 2x + y + 8 = 0 y = 2x 8. Piste 5,2 ei ole
Differentiaali- ja integraalilaskenta
Differentiaali- ja integraalilaskenta Opiskelijan nimi: DIFFERENTIAALILASKENTA 1. Raja-arvon käsite, derivaatta raja-arvona 1.1 Raja-arvo pisteessä 1.2 Derivaatan määritelmä 1.3 Derivaatta raja-arvona
Ohje tutkielman tekemiseen
Sauvon koulukeskus 2011 Ohje tutkielman tekemiseen Aiheen valinta Etsi materiaalia Valitse itseäsi kiinnostava aihe. Sovi opettajan kanssa aiheen rajaus. Pyydä opettajalta tutkielmapassiin merkintä aiheen
Ohje laboratoriotöiden tekemiseen. Sisältö. 1 Ennen laboratorioon tuloa 2. 2 Mittausten suorittaminen 2
OHJE 1 (13) Ohje laboratoriotöiden tekemiseen Sisältö 1 Ennen laboratorioon tuloa 2 2 Mittausten suorittaminen 2 3 Mittauspöytäkirja 2 3.1 Mittauspöytäkirjan hyväksyminen................. 3 3.2 Tietokoneella
KEMS448 Fysikaalisen kemian syventävät harjoitustyöt
KEMS448 Fysikaalisen kemian syventävät harjoitustyöt Jakaantumislaki 1 Teoriaa 1.1 Jakaantumiskerroin ja assosioituminen Kaksi toisiinsa sekoittumatonta nestettä ovat rajapintansa välityksellä kosketuksissa
Differentiaalilaskennan tehtäviä
Differentiaalilaskennan tehtäviä DIFFERENTIAALILASKENTA 1. Raja-arvon käsite, derivaatta raja-arvona 1.1 Raja-arvo pisteessä 1.2 Derivaatan määritelmä 1.3 Derivaatta raja-arvona 2. Derivoimiskaavat 2.1
1. Lineaarinen optimointi
0 1. Lineaarinen optimointi 1. Lineaarinen optimointi 1.1 Johdatteleva esimerkki Esimerkki 1.1.1 Giapetto s Woodcarving inc. valmistaa kahdenlaisia puuleluja: sotilaita ja junia. Sotilaan myyntihinta on
= P 0 (V 2 V 1 ) + nrt 0. nrt 0 ln V ]
766328A Termofysiikka Harjoitus no. 7, ratkaisut (syyslukukausi 2014) 1. Sylinteri on ympäristössä, jonka paine on P 0 ja lämpötila T 0. Sylinterin sisällä on n moolia ideaalikaasua ja sen tilavuutta kasvatetaan
Opinnäytteen nimi ja mahdollinen alaotsikko (tämä pohja toimii parhaiten Word2010-versiolla)
T A M P E R E E N Y L I O P I S T O Opinnäytteen nimi ja mahdollinen alaotsikko (tämä pohja toimii parhaiten Word2010-versiolla) Kasvatustieteiden yksikkö Kasvatustieteiden pro gradu -tutkielma NIMI NIMINEN
VASTUSMITTAUKSIA. 1 Työn tavoitteet
Oulun yliopisto Fysiikan opetuslaboratorio Sähkö ja magnetismiopin laboratoriotyöt VASTUSMTTAUKSA Työn tavoitteet Tässä työssä tutustut Ohmin lakiin ja joihinkin menetelmiin, joiden avulla vastusten resistansseja
LABORAATIOSELOSTUSTEN OHJE H. Honkanen
LABORAATIOSELOSTUSTEN OHJE H. Honkanen Tämä ohje täydentää ja täsmentää osaltaan selostuskäytäntöä laboraatioiden osalta. Yleinen ohje työselostuksista löytyy intranetista, ohjeen on laatinut Eero Soininen
KAAVAT. Sisällysluettelo
Excel 2013 Kaavat Sisällysluettelo KAAVAT KAAVAT... 1 Kaavan tekeminen... 2 Kaavan tekeminen osoittamalla... 2 Kaavan kopioiminen... 3 Kaavan kirjoittaminen... 3 Summa-funktion lisääminen... 4 Suorat eli
y=-3x+2 y=2x-3 y=3x+2 x = = 6
MAA Koe, Arto Hekkanen ja Jussi Tyni 5.5.015 Loppukoe LASKE ILMAN LASKINTA. 1. Yhdistä kuvaaja ja sen yhtälö a) 3 b) 1 c) 5 d) Suoran yhtälö 1) y=3x ) 3x+y =0 3) x y 3=0 ) y= 3x 3 5) y= 3x 6) 3x y+=0 y=-3x+
Teddy 7. harjoituksen malliratkaisu syksy 2011
Teddy 7. harjoituksen malliratkaisu syksy 2011 1. Systeemin käyttäytymistä faasirajalla kuvaa Clapeyronin yhtälönä tunnettu keskeinen relaatio dt = S m. (1 V m Koska faasitasapainossa reaktion Gibbsin
b) Määritä/Laske (ei tarvitse tehdä määritelmän kautta). (2p)
Matematiikan TESTI, Maa7 Trigonometriset funktiot RATKAISUT Sievin lukio II jakso/017 VASTAA JOKAISEEN TEHTÄVÄÄN! MAOL/LIITE/taulukot.com JA LASKIN ON SALLITTU ELLEI TOISIN MAINITTU! TARKISTA TEHTÄVÄT
TEHTÄVÄN NIMI YHDELLE TAI USEAMMALLE RIVILLE FONTTIKOKO 24 Tarvittaessa alaotsikko fonttikoko 20
Etunimi Sukunimi fonttikoko 16 Ryhmätunnus TEHTÄVÄN NIMI YHDELLE TAI USEAMMALLE RIVILLE FONTTIKOKO 24 Tarvittaessa alaotsikko fonttikoko 20 Tehtävätyyppi Koulutusohjelma fonttikoko 16 Elokuu 2010 SISÄLTÖ
Ch 12-4&5 Elastisuudesta ja lujuudesta
Ch 12-4&5 Elastisuudesta ja lujuudesta Jännitys ja venymä Hooken laki F = k l Δl = 1 k F Jousivakio k riippuu langan dimensioista Saadaan malli Δl = l o EA F k = E A l o Lisäksi tarvitaan materiaalia kuvaava
m h = Q l h 8380 J = J kg 1 0, kg Muodostuneen höyryn osuus alkuperäisestä vesimäärästä on m h m 0,200 kg = 0,
76638A Termofysiikka Harjoitus no. 9, ratkaisut syyslukukausi 014) 1. Vesimäärä, jonka massa m 00 g on ylikuumentunut mikroaaltouunissa lämpötilaan T 1 110 383,15 K paineessa P 1 atm 10135 Pa. Veden ominaislämpökapasiteetti
Perusopintojen Laboratoriotöiden Työselostus 1
Perusopintojen Laboratoriotöiden Työselostus 1 Kalle Hyvönen Työ tehty 1. joulukuuta 008, Palautettu 30. tammikuuta 009 1 Assistentti: Mika Torkkeli Tiivistelmä Laboratoriossa tehdyssä ensimmäisessä kokeessa
MATEMATIIKAN KOE, LYHYT OPPIMÄÄRÄ HYVÄN VASTAUKSEN PIIRTEITÄ
MATEMATIIKAN KOE, LYHYT OPPIMÄÄRÄ.3.07 HYVÄN VASTAUKSEN PIIRTEITÄ Tutkintoaineen sensorikokous on hyväksynyt seuraavat hyvän vastauksen piirteet. Hyvästä suorituksesta näkyy, miten vastaukseen on päädytty.
Kuva 1. Ohmin lain kytkentäkaavio. DC; 0 6 V.
TYÖ 37. OHMIN LAKI Tehtävä Tutkitaan metallijohtimen päiden välille kytketyn jännitteen ja johtimessa kulkevan sähkövirran välistä riippuvuutta. Todennetaan kokeellisesti Ohmin laki. Välineet Tasajännitelähde
H 2 O. Kuva 1. Kalorimetri. missä on kalorimetriin tuotu lämpömäärä. Lämpökapasiteetti taas määräytyy yhtälöstä
KALORIMETRI 1 TEORIAA Kalorimetri on laite, jolla voidaan mitata lämpömääriä. Mittaus voidaan suorittaa tarkastelemalla lämpömuutoksia, faasimuutoksia, kemiallisia reaktioita jne. Kun mittaus perustuu
Matematiikan tukikurssi
Matematiikan tukikurssi Kurssikerta 9 1 Implisiittinen derivointi Tarkastellaan nyt yhtälöä F(x, y) = c, jossa x ja y ovat muuttujia ja c on vakio Esimerkki tällaisesta yhtälöstä on x 2 y 5 + 5xy = 14
Työ 21 Valon käyttäytyminen rajapinnoilla. Työvuoro 40 pari 1
Työ 21 Valon käyttäytyminen rajapinnoilla Työvuoro 40 pari 1 Tero Marttila Joel Pirttimaa TLT 78949E EST 78997S Selostuksen laati Tero Marttila Mittaukset suoritettu 12.11.2012 Selostus palautettu 19.11.2012
3 Eksponentiaalinen malli
Eksponentiaalinen malli Eksponentiaalinen kasvaminen ja väheneminen 6. Kulunut aika (h) Bakteerien määrä 0 80 0 60 0 0 7 7 0 0 0 6. 90 % 0,90 Pienennöksiä (kpl) Piirroksen korkeus (cm) 0,90 6,0, 0,90 6,0,06,
MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ HYVÄN VASTAUKSEN PIIRTEITÄ
MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ 6.3.09 HYVÄN VASTAUKSEN PIIRTEITÄ Alla oleva vastausten piirteiden, sisältöjen ja pisteitysten luonnehdinta ei sido ylioppilastutkintolautakunnan arvostelua. Lopullisessa
P = kv. (a) Kaasun lämpötila saadaan ideaalikaasun tilanyhtälön avulla, PV = nrt
766328A Termofysiikka Harjoitus no. 2, ratkaisut (syyslukukausi 204). Kun sylinterissä oleva n moolia ideaalikaasua laajenee reversiibelissä prosessissa kolminkertaiseen tilavuuteen 3,lämpötilamuuttuuprosessinaikanasiten,ettäyhtälö
MS-A0107 Differentiaali- ja integraalilaskenta 1 (CHEM)
. Lasketaan valmiiksi derivaattoja ja niiden arvoja pisteessä x = 2: f(x) = x + 3x 3 + x 2 + 2x + 8, f(2) = 56, f (x) = x 3 + 9x 2 + 2x + 2, f (2) = 7, f (x) = 2x 2 + 8x + 2, f (2) = 86, f (3) (x) = 2x
Lämpötila Lämpölaajeneminen Ideaalikaasu. Luku 17
Lämpötila Lämpölaajeneminen Ideaalikaasu Luku 17 Ch 17-1 3 Termodynaaminen tasapaino Termodynaaminen tasapaino: Tuotaessa kaksi systeemiä lämpökontaktiin niiden termodynaaminen tasapaino on saavutettu,
MS-A0104 Differentiaali- ja integraalilaskenta 1 (ELEC2) MS-A0106 Differentiaali- ja integraalilaskenta 1 (ENG2)
MS-A4 Differentiaali- ja integraalilaskenta (ELEC2) MS-A6 Differentiaali- ja integraalilaskenta (ENG2) Harjoitukset 3L, syksy 27 Tehtävä. a) Määritä luvun π likiarvo käyttämällä Newtonin menetelmää yhtälölle
Mittaustarkkuus ja likiarvolaskennan säännöt
Mittaustarkkuus ja likiarvolaskennan säännöt Mittaustulokset ovat aina likiarvoja, joilla on tietty tarkkuus Kokeellisissa luonnontieteissä käsitellään usein mittaustuloksia. Mittaustulokset ovat aina
Fysiikan laboratoriotyöt 3 Sähkömotorinen voima
Fysiikan laboratoriotyöt 3 Sähkömotorinen voima Työn suorittaja: Antti Pekkala (1988723) Mittaukset suoritettu 8.10.2014 Selostus palautettu 16.10.2014 Valvonut assistentti Martti Kiviharju 1 Annettu tehtävä
Sovelletun fysiikan pääsykoe
Sovelletun fysiikan pääsykoe 7.6.016 Kokeessa on neljä (4) tehtävää. Vastaa kaikkiin tehtäviin. Muista kirjoittaa myös laskujesi välivaiheet näkyviin. Huom! Kirjoita tehtävien 1- vastaukset yhdelle konseptille
MAB3 - Harjoitustehtävien ratkaisut:
MAB3 - Harjoitustehtävien ratkaisut: 1 Funktio 1.1 Piirretään koordinaatistoakselit ja sijoitetaan pisteet: 1 1. a) Funktioiden nollakohdat löydetään etsimällä kuvaajien ja - akselin leikkauspisteitä.
Siun soten julkaisuja. Julkaisuohjeet
2019 Siun soten julkaisuja Julkaisuohjeet 2(7) Sisällysluettelo Sisällysluettelo... 2 1. Toimintaperiaatteet... 3 1.1 Sarjan nimi... 3 1.2 Sarjan sisältö... 3 1.3 Sarjan osat... 3 1.4 Käsikirjoituksen
KERTAUS KERTAUSTEHTÄVIÄ K1. P( 1) = 3 ( 1) + 2 ( 1) ( 1) 3 = = 4
KERTAUS KERTAUSTEHTÄVIÄ K1. P( 1) = 3 ( 1) + ( 1) + 3 ( 1) 3 = 3 + 3 = 4 K. a) x 3x + 7x 5x = 4x + 4x b) 5x 3 (1 x ) = 5x 3 1 + x = 6x 4 c) (x + 3)(x 4) = x 3 4x + 3x 1 = x 3 + 3x 4x 1 Vastaus: a) 4x +
MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 7: Pienimmän neliösumman menetelmä ja Newtonin menetelmä.
MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 7: Pienimmän neliösumman menetelmä ja Newtonin menetelmä. Antti Rasila Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Kevät 2016
BM20A0300, Matematiikka KoTiB1
BM20A0300, Matematiikka KoTiB1 Luennot: Heikki Pitkänen 1 Oppikirja: Robert A. Adams: Calculus, A Complete Course Luku 12 Luku 13 Luku 14.1 Tarvittava materiaali (luentokalvot, laskuharjoitustehtävät ja
SATAKUNNAN AMMATTIKORKEAKOULU. Hakala Toni Varpelaide Heidi TEKSTINKÄSITTELYN OHJEET CASE: OPINNÄYTETYÖN RAPORTOINTI WORDILLA
SATAKUNNAN AMMATTIKORKEAKOULU Hakala Toni Varpelaide Heidi TEKSTINKÄSITTELYN OHJEET CASE: OPINNÄYTETYÖN RAPORTOINTI WORDILLA Liiketalous ja tietojenkäsittely Huittinen Liiketalous Taloushallinto 2005 1
Spektrofotometria ja spektroskopia
11 KÄYTÄNNÖN ESIMERKKEJÄ INSTRUMENTTIANALYTIIKASTA Lisätehtävät Spektrofotometria ja spektroskopia Esimerkki 1. Mikä on transmittanssi T ja transmittanssiprosentti %T, kun absorbanssi A on 0, 1 ja 2. josta
Diplomi-insinööri- ja arkkitehtikoulutuksen yhteisvalinta 2017 Insinöörivalinnan matematiikan koe , Ratkaisut (Sarja A)
Diplomi-insinööri- ja arkkitehtikoulutuksen yhteisvalinta 017 Insinöörivalinnan matematiikan koe 30..017, Ratkaisut (Sarja A) 1. a) Lukujen 9, 0, 3 ja x keskiarvo on. Määritä x. (1 p.) b) Mitkä reaaliluvut
Käytännöt, työselostuksen rakenne ja mittaustulosten käsittely
Fysiikan laboratoriotyöt Käytännöt, työselostuksen rakenne ja mittaustulosten käsittely 1 (11) 1 Yleistä ysiikan laboratoriotyöt opintojaksosta 1.1 Sisältö ja tavoitteet Opintojakson tavoitteena on perehdyttää
MATEMATIIKAN KOE PITKÄ OPPIMÄÄRÄ Merkitään f(x) =x 3 x. Laske a) f( 2), b) f (3) ja c) YLIOPPILASTUTKINTO- LAUTAKUNTA
1 YLIOPPILASTUTKINTO- LAUTAKUNTA 26.3.2018 MATEMATIIKAN KOE PITKÄ OPPIMÄÄRÄ A-osa Ratkaise kaikki tämän osan tehtävät 1 4. Tehtävät arvostellaan pistein 0 6. Kunkin tehtävän ratkaisu kirjoitetaan tehtävän
Lineaarinen yhtälöryhmä
Lineaarinen yhtälöryhmä 1 / 39 Lineaarinen yhtälö Määritelmä 1 Lineaarinen yhtälö on muotoa a 1 x 1 + a 2 x 2 + + a n x n = b, missä a i, b R, i = 1,..., n ovat tunnettuja ja x i R, i = 1,..., n ovat tuntemattomia.
HARJOITTELURAPORTIN KIRJOITUSOHJE Liiketalouden koulutusala HARJOITTELURAPORTIN KIRJOITUSOHJE
HARJOITTELURAPORTIN KIRJOITUSOHJE Liiketalouden koulutusala HARJOITTELURAPORTIN KIRJOITUSOHJE SISÄLTÖ 1 HARJOITTELURAPORTIN RAKENNE JA ULKOASU.. 3 1.1 Rakenne. 3 1.2 Ulkoasu 3 2 HARJOITTELUKERTOMUS.. 4
HARJOITTELURAPORTIN KIRJOITUSOHJE
HARJOITTELURAPORTIN KIRJOITUSOHJE Tekniikan toimiala HARJOITTELURAPORTIN KIRJOITUSOHJE 7/2010 jn SISÄLTÖ 1 HARJOITTELURAPORTIN RAKENNE JA ULKOASU.. 3 1.1 Rakenne. 3 1.2 Ulkoasu 3 2 HARJOITTELUKERTOMUS..
ENY-C2001 Termodynamiikka ja lämmönsiirto TERVETULOA!
ENY-C2001 Termodynamiikka ja lämmönsiirto TERVETULOA! Luento 14.9.2015 / T. Paloposki / v. 03 Tämän päivän ohjelma: Aineen tilan kuvaaminen pt-piirroksella ja muilla piirroksilla, faasimuutokset Käsitteitä
Matematiikan tukikurssi
Matematiikan tukikurssi Kertausluento 2. välikokeeseen Toisessa välikokeessa on syytä osata ainakin seuraavat asiat:. Potenssisarjojen suppenemissäde, suppenemisväli ja suppenemisjoukko. 2. Derivaatan
MATEMATIIKAN KOE, LYHYT OPPIMÄÄRÄ 18.3.2015 HYVÄN VASTAUKSEN PIIRTEITÄ
MATEMATIIKAN KOE, LYHYT OPPIMÄÄRÄ 8..05 HYVÄN VASTAUKSEN PIIRTEITÄ Alla oleva vastausten piirteiden, sisältöjen ja pisteitysten luonnehdinta ei sido ylioppilastutkintolautakunnan arvostelua. Lopullisessa
3 TOISEN ASTEEN POLYNOMIFUNKTIO
3 TOISEN ASTEEN POLYNOMIFUNKTIO POHDITTAVAA 1. Kuvasta voidaan arvioida, että frisbeegolfkiekko käy noin 9 metrin korkeudella ja se lentää noin 40 metrin päähän. Vastaus: Frisbeegolfkiekko käy n. 9 m:n
Huippu 7 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty
Huippu 7 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 8..08 KERTAUS KERTAUSTEHTÄVIÄ K. a) Keskimääräinen muutosnopeus välillä [0, ] saadaan laskemalla kohtia x = 0 ja x = vastaavien kuvaajan
Tekijä Pitkä matematiikka a) Ratkaistaan nimittäjien nollakohdat. ja x = 0. x 1= Funktion f määrittelyehto on x 1 ja x 0.
Tekijä Pitkä matematiikka 6 9.5.017 K1 a) Ratkaistaan nimittäjien nollakohdat. x 1= 0 x = 1 ja x = 0 Funktion f määrittelyehto on x 1 ja x 0. Funktion f määrittelyjoukko on R \ {0, 1}. b) ( 1) ( 1) f (
TIETOKONE DATA-ANALYYSIN APUVÄLINEENÄ PIKAOPAS
TIETOKONE DATA-ANALYYSIN APUVÄLINEENÄ PIKAOPAS 1 Johdanto Oppilaslaboratorion mittausdatan analyysiä voi helpottaa huomattavasti käyttämällä apuna tietokoneohjelmia. Sen sijaan, että esimerkiksi laskisimme
Juuri 12 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty
Juuri Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 7.5.08 Kertaus K. a) Polynomi P() = + 8 on jaollinen polynomilla Q() =, jos = on polynomin P nollakohta, eli P() = 0. P() = + 8 = 54 08 +
1 Ensimmäisen asteen polynomifunktio
Ensimmäisen asteen polynomifunktio ENNAKKOTEHTÄVÄT. a) f(x) = x 4 b) Nollakohdassa funktio f saa arvon nolla eli kuvaaja kohtaa x-akselin. Kuvaajan perusteella funktion nollakohta on x,. c) Funktion f
Ene LVI-tekniikan mittaukset ILMASTOINTIKONEEN MITTAUKSET TYÖOHJE
Ene-58.4139 LVI-tekniikan mittaukset ILMASTOINTIKONEEN MITTAUKSET TYÖOHJE Aalto yliopisto LVI-tekniikka 2013 SISÄLLYSLUETTELO ILMASTOINTIKONEEN MITTAUKSET...2 1 HARJOITUSTYÖN TAVOITTEET...2 2 TUTUSTUMINEN
Aloita Ratkaise Pisteytä se itse Merkitse pisteet saanut riittävästi pisteitä voit siirtyä seuraavaan osioon ei ole riittävästi
Aloita A:sta Ratkaise osion (A, B, C, D, jne ) yhtälö vihkoosi. Pisteytä se itse ohjeen mukaan. Merkitse pisteet sinulle jaettavaan tehtävä- ja arviointilappuun. Kun olet saanut riittävästi pisteitä (6)
1 ENSIMMÄISEN ASTEEN POLYNOMIFUNKTIO
1 ENSIMMÄISEN ASTEEN POLYNOMIFUNKTIO POHDITTAVAA 1. Lämpötila maanpinnalla nähdään suoran ja y-akselin leikkauspisteen y- koordinaatista, joka on noin 10. Kun syvyys on 15 km, nähdään suoralta, että lämpötila
EVTEK/ Antti Piironen & Pekka Valtonen 1/6 TM01S/ Elektroniikan komponentit ja järjestelmät Laboraatiot, Syksy 2003
EVTEK/ Antti Piironen & Pekka Valtonen 1/6 TM01S/ Elektroniikan komponentit ja järjestelmät Laboraatiot, Syksy 2003 LABORATORIOTÖIDEN OHJEET (Mukaillen työkirjaa "Teknillisten oppilaitosten Elektroniikka";
n. asteen polynomilla on enintään n nollakohtaa ja enintään n - 1 ääriarvokohtaa.
MAA 12 kertaus Funktion kuvaaja n. asteen polynomilla on enintään n nollakohtaa ja enintään n - 1 ääriarvokohtaa. Funktion nollakohta on piste, jossa f () = 0, eli kuvaaja leikkaa -akselin. Kuvaajan avulla
Matematiikka B1 - avoin yliopisto
28. elokuuta 2012 Opetusjärjestelyt Luennot 9:15-11:30 Harjoitukset 12:30-15:00 Tentti Nettitehtävät Kurssin sisältö 1/2 Osittaisderivointi Usean muuttujan funktiot Raja-arvot Osittaisderivaatta Pinnan
MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ HYVÄN VASTAUKSEN PIIRTEITÄ
MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ 4.9.09 HYVÄN VASTAUKSEN PIIRTEITÄ Alustavat hyvän vastauksen piirteet on suuntaa-antava kuvaus kokeen tehtäviin odotetuista vastauksista ja tarkoitettu ensisijaisesti
MAB3 - Harjoitustehtävien ratkaisut:
MAB - Harjoitustehtävien ratkaisut: Funktio. Piirretään koordinaatistoakselit ja sijoitetaan pisteet:. a) Funktioiden nollakohdat löydetään etsimällä kuvaajien ja - akselin leikkauspisteitä. Funktiolla
Sarake 1 Sarake 2 Sarake 3 Sarake 4. Vahvistumisen jälkeen tavaran hinta on 70. Uusi tilavuus on
AMMATTIKORKEAKOULUJEN TEKNIIKAN VALINTAKOE 1/5 TEHTÄVÄOSA / Ongelmanratkaisu 1.6. 2017 TEHTÄVÄOSA ONGELMANRATKAISU Vastaa kullekin tehtävälle varatulle ratkaisusivulle. Vastauksista tulee selvitä tehtävien
1/6 TEKNIIKKA JA LIIKENNE FYSIIKAN LABORATORIO V1.31 9.2011
1/6 333. SÄDEOPTIIKKA JA FOTOMETRIA A. INSSIN POTTOVÄIN JA TAITTOKYVYN MÄÄRITTÄMINEN 1. Työn tavoite. Teoriaa 3. Työn suoritus Työssä perehdytään valon kulkuun väliaineissa ja niiden rajapinnoissa sädeoptiikan
Muutoksen arviointi differentiaalin avulla
Muutoksen arviointi differentiaalin avulla y y = f (x) y = f (x + x) f (x) dy y dy = f (x) x x x x x + x Luento 7 1 of 15 Matematiikan ja tilastotieteen laitos Turun yliopisto Muutoksen arviointi differentiaalin