Q 17,4/21/73/2 GEOLOGINEN TUTKIMUSLAITOS. Seppo Elo. Geofysiikan osasta FORTRAN IV ohjelmaseloste
|
|
- Albert Salminen
- 8 vuotta sitten
- Katselukertoja:
Transkriptio
1 Q 17,4/21/73/2 Seppo Elo GEOLOGINEN TUTKIMUSLAITOS 1. Geofysiikan osasta FORTRAN IV ohjelmaseloste FORTRAN IV OHJELMA JOKA LASKEE SARJAN VAAKASUORISTA SUORAKULMAISISTA MONIKULMIOSTA KOOSTUVIEN 3-DIMENSIONAALISTEN MALLIKAPPALEIDEN PAINO- VOIMA-ANOMALIOIDEN PYSTYKOMPONENTTEJA JA PIIRT## VASTAAVAT PROFIILI - PARVET.
2 Q17 4/21 /73/2 Seppo Elo Geologinen tutkimuslaitos Geofysiikan osasto FORTRAN IV oh jelmaseloste FORTRAN IV OHJELMA JOKA LASKEE SARJAN VAAKASUORISTA SUORAKUL- MAISISTA MONIKULMIOISTA KOOSTUVIEN 3-DIMENSIONAALISTEN MALLI- KAPPALEIDEN PAINOVOIMA-ANOMALIOIDEN PYSTYKOMPONENTTEJA JA PIIRTAA VASTAAVAT PROFIILIPARVET MENETELMA JA LASKUKAAVAT Ohjelma PROGRAM SE42 ( listaus liite 1 ) perustuu T, Kolbenheyerin ( 1968 ) kehittämään vaakasuoran suorakulmaisen monikulmion painovoima-anomalian lausekkeeseen R, Purasen ( 1971 ) esittämässä muodossa, Kukin mallikappale koostuu osista, jotka puolestaan rakentuvat vaakasuorista poikkileikkauksista, Ohjelma laskee poikkileikkauksien anomaliat, sovittaa näihin kolmen erissä ja vastaaviin pystykoordinaatteihin toisen asteen polynomit, integroi polynomit pystyakselin suhteen ja summaa mallin eri osien anomaliat, Profiiliparvet ohjelma laskee haluttuun suuntaan ja halutulla pistevälillä mallikappaleiden yli, ALIOHJELMAT Profiiliparven piirtämiseen ohjelma käyttää aliohjelmaa SUBROUTINE SEG4 ( listaus liite 2 ), Ohjelmalle syötetään reikänauhalta ( free-field input ) seuraavat tiedot:
3 a) tämä ryhma on koko mallisarjalle yhteinen NM NP RET LF -- NM mallisarjan mallien lukumäärä ( enintään viisi ) NP laskettavien ja piirrettävien profiiliparvien lukumaara b) tämä ryhma syötetaan kullekin mallille erikseen MN(1) mallien numero NO(1) mallin osien lukumaara ( enintään neljä ) bl) tämä alaryhmä syötetaan mallin kullekin osalle erikseen TIH(I,J) mallin osan tiheysarvo ( g/cm5 ) NZ(I, J) mallin osan poikkileikkauksien lukumäärä ( 3, 5 tai 7 ) b2) tämä alaryhma syötetaan kullekin mallin osan poikkileikkaukselle erikseen Z(I,J,K) poikkileikkauksen z-koordinaatti ( km ), Z(I,J,K)# KULMA(I,J,K) poikkileikkauksen kulmien lukumaara NZ(19J) KULMA(1, J,K) enintään 196 ) ( SUMMAK-l - X(I,J,N),Y(I,J,N) tit (km ) poikkileikkauksen kulmien x- ja y-koordinaa- ( Huom. Jos lista täytyy jakaa eri tietueisiin on kaikki paitsi viimeinen päätettävä / -- RET LF )
4 c) skaalausarvot ja jakovalit profiiliparvien piirtämistä varten, tama ryhma on yhteinen kaikille profiiliparville YM Yg XS YK XK -- RETLF YM anomalia-asteikon suurin arvo ( mgal ) Yg anomalia-asteikon pienin arvo ( mgal ) (YM-Yg) mgal = 260 mm XS etäisyysakselin mittakaava, ( XS ) km = 10 mm YK anomalia-asteikon jakovali ( mgal ) XK etäisyysasteikon jakovali ( km ) d) tamä ryhma syötetään erikseen jokaiselle profiiliparvelle PN XA YA SK S DS RETLF -- PN profiiliparven numero (XA,YA) profiiliparven alkupisteen koordinaatit x ja y mallisarjan koordinaatistossa ( km ) SK profiiliparven suuntakulma asteissa mallisarjan koordinaatistossa, positiivinen x-a:kselista myötapaivaan S profiiliparven pituus ( km ) DS laskettavien pisteiden väli ( S ja DS on valittava niin ettei laskettavien pisteiden lukumaara ole suurempi kuin 400 ) TULOSTUS Liite 3 on esimerkki tulostuksesta kun syöttö on ollut seuraava: ( mallisarjan kolme mallia approksimoivat samankokois- 3 ta palloa, jonka tiheysarvo on 1 g/cm, säde 1 km ja jonka keskipisteen z-koordinaatti on 1.5 km mallissa 1, 2.g km mallissa 2 ja 2.5 km mallissa 3 )
5 HET LF 1 1 KET LF ( malli m m g.5 4-r~~.g1 -.@lyglt@l -*@l *g1 -- RET LF REi' LF * RET 1.5 2% -- RET LF S RET LF RETLF =-.'.'? RET LF RET LF.@I -.@1.@1 -.@ RET LF 2 1 RET LF ( malli 2 ) 1 5 RETLF 1 4 RETLF -- x- ja y-koordinaatit samat kuin mallin 1 poikkileikkauksessa HET LF x- ja y-koordzaatit samat kuin mallin 1 poikkileikkauksessa @ --- HET LF x- ja y-koordinaatit samat kuin mallin 1 poikkileikkauksessa RET LF -7 x- ja y-koordinaatit samat kuin mallin 1 poikkileikkauksessa RET LF x- ja y-koordinaatit samat kuin mallin 1 poikkileikkauksessa RET LF ( malli 3 ) 1 5 m m ~TELF x- ja y-koordinaatit samat kuin mallin 1 poikkileikkauksessa "RET -- LF x- ja y-koordinaatit samat kuin mallin 1 poikkileikkauksessa @ -- RET LF x- ja y-koordinaatit samat kuin mallin 1 poikkileikkauksessa ?~-RETLF x- ja y-koordinaatit samat kuin mallin 1 poikkileikkauksessa RET LF x- ja y-koordinaatit samat kuin mallin 1 poikkileikkauksessa g RET LF -6 9@ g.2 RET LE' -
6 VIITTEET KOLBENHEYER, T. ( 1968 ) "Die Schwereanomalien eines horizontalen rechtwinkligen Vielecksn, Geoexploration, V. 6, No. 1, pp PURANEN, R. ( 1971 ) "Karkkilan-Riihimäen alueen kivila jien pet- rofysikaalisista tutkimuksista seka tulosten geofysikaalisesta ja geologisesta soveltamisesta", Lisensiaattityö, Geologinen tutkimuslaitos, SS
7
8
9
10
11
12
R. Puranen. GEOLOGINEN TUTKIMUSLAITOS Geofysiikan osasto HP-ohjelmaseloste 1975-04-13
Q 17.1/27/75/13 R. Puranen 1975-04-13 GEOLOGINEN TUTKIMUSLAITOS Geofysiikan osasto HP-ohjelmaseloste PETROFYSIKAALINEN KARTOITUS KASETEILTA (1:50 0001 HP 9820 A-OHJELMASELOSTE Q 17.1/27/75/13 Risto Puranen
LisätiedotQ 17.1/27.2/74/3. GEOLOGINEN TUTKIMUSLAITOS Geofysiikan osasto HP 9820 A-ohjelmaseloste. T. Jokinen SUSKEPTIBILITEETTIPROFIILI
Q 171/272/74/3 T Jokinen 1974-12-02 GEOLOGINEN TUTKIMUSLAITOS Geofysiikan osasto HP 9820 A-ohjelmaseloste SUSKEPTIBILITEETTIPROFIILI 4 171 /272/74/3 T Jokinen 1974-12-02 GEOLOGIIVEIV 'i-litkimuslaitos
LisätiedotQ 17.1/24.1/74/1. GEOLOGINEN TUTKIMUSLAITOS Geofysiikan osasto HP 9820 A-ohjelmaseloste. T. Jokinen SLINGRAM-PROFIILI
Q 17.1/24.1/74/1 T. Jokinen 1974-12-05 GEOLOGINEN TUTKIMUSLAITOS Geofysiikan osasto HP 9820 A-ohjelmaseloste SLINGRAM-PROFIILI Q 17.1/24.1/74/1 T. Jokinen 1974-12-05 GEOLOGINEN TUTKIMUSLAITOS Geofysiikan
LisätiedotQ 17.1/27/75/2. Risto Puranen GEOLOGINEN TUTKIMUSLAITOS Geofysiikan osasto
Q 17.1/27/75/2 Risto Puranen 197 5-01-08 GEOLOGINEN TUTKIMUSLAITOS Geofysiikan osasto Q 17.1/27/75/2 Risto Puranen 1975-01-08 GEOLOGINEN TUTKIMUSLAITOS Geofysiikan osasto HP 9820 A-ohjelmaseloste Ohjelman
LisätiedotR. Puranen Q 17.1 /27/74/23. GEOLOGINEN TUTKIMUSLAITOS Geofysiikan osasto HP 9820 A-ohjelmaseloste
Q 17.1 /27/74/23 R. Puranen 1974-03-07 GEOLOGINEN TUTKIMUSLAITOS Geofysiikan osasto HP 9820 A-ohjelmaseloste HAVAINTOPISTEIDEN PLOTTAUS (1:250001 JA TILASTOLLINEN KÄSITTELY 4 17.1 /27/74/23 R. Puranen
LisätiedotPETROFYSIKAALINEN SYVÄKAIRAUSPROFIILI (TULOSTEN ESITTÄMINENI
Q 17.1/27/74/21 R. Puranen 1974-12-28 GEOLOGINEN TUTKIMUSLAITOS Geofysiikan osasta HP 9820 A-ohjelrnaseloste PETROFYSIKAALINEN SYVÄKAIRAUSPROFIILI (TULOSTEN ESITTÄMINENI Q 17.1 /27/74/21 Risto Puranen
LisätiedotQ 17.1/27/74/19. HP 9820 A-ohjelmaseloste. GEOLOGINEN TUTKIMUSLAITOS Geofysiikan osasto. R. Puranen
Q 17.1/27/74/19 R. Puranen 1974-1 2-27 GEOLOGINEN TUTKIMUSLAITOS Geofysiikan osasto HP 9820 A-ohjelmaseloste PETROFYSIKAALISTEN TIETOJEN LÄVISTYS (SYVÄKAIRAUS- NÄYTTEET, P-KOODI = 4..61 Q 17.1/27/74/19
LisätiedotQ 17.1/16.2/73/6. GEOLOGINEN TUTKIMUSLAITOS Geofysiikan osasto HP-ohjelmaseloste 9820 A. P. Mikkola Koskee: Q 17.1/22
Q 171/162/73/6 P Mikkola 1973-12-17 GEOLOGINEN TUTKIMUSLAITOS Geofysiikan osasto HP-ohjelmaseloste 9820 A Koskee: Q 171/22 UZIANOMALIAN LASKEMINEN ( malli 17 puolizäretöntä levyä) Q 171/162/73/6 P Mikkola
LisätiedotPETROFYSIKAALINEN KARTOITUS REIKÄNAuHALTA (1:50 000)
Q 17.1/27/74/3 R. Puranen 1974-06-19 GEOLOGINEN TUTKIMUSLAITOS Geofysiikan osasto HP-oh jelmaseloste PETROFYSIKAALINEN KARTOITUS REIKÄNAuHALTA (1:50 000) HP 9820 A-OHJELMASELOSTE Q 17.1/27/74/3 Risto Puranen
LisätiedotHAVAINTOARVOJEN TLILOSTUS LCIMAKKEELLE PETROFYSIKAALISET LABORA- TURIOMITTAUKSET
Q 17.1/27/75/3 R. Puranen 1975-01 -22 GEOLOGINEN TUTKIMUSLAITOS Geofysiikan osasto HP 9820 A-ohjelmaseloste HAVAINTOARVOJEN TLILOSTUS LCIMAKKEELLE PETROFYSIKAALISET LABORA- TURIOMITTAUKSET - 1975. Q 17,1/27/75/3
LisätiedotMITTAUSARVOJEN TULOSTUS PETROFYSIKAALISIKSI REI~NAUHOIKSI
Q 17.1/27/74/2 Risto Puranen 1974-05-07 GEOLOGINEN TUTKIMUSLAITOS Geofysiikan osasto HP-ohjelmaseloste MITTAUSARVOJEN TULOSTUS PETROFYSIKAALISIKSI REI~NAUHOIKSI (NYRKKINÄYTTEET) I HP 9820 A-OHJELMASELOSTE
LisätiedotQ 17.1/27/75/4 Risto Puranen GEOLOGINEN TUTKIMUSLAITOS Geofysiikan osasto SUSKEPTIBILITEETIN RIIPPUVUUS TIHEYDESTÄ. JA KÄSIPLOTTAUS.
Q 17.1/27/75/4 Risto Puranen 1975-01-24 GEOLOGINEN TUTKIMUSLAITOS Geofysiikan osasto SUSKEPTIBILITEETIN RIIPPUVUUS TIHEYDESTÄ. JA KÄSIPLOTTAUS. TULOSTUSPDHJA Q 17.1 /27/75/4 R. Puranen 1975-01 -24 GEOLOGINEN
LisätiedotQ ~ i~.i/z~7a/t R. Puranen
Q ~ i~.i/z~7a/t R. Puranen 7 976-01 -05 GEOLOGINEN TUTKIMUSLAITOS Geofysiikan osasto RAPORTTITI EDOSTO -- P \ Q 17*1/27/76/V 2. Puranen GEOLOGIETEN rputkimusli1itos Geofysiikan osasto HP 9820 A-ohjelmaseloste
Lisätiedot/27/75/5. GEOLOGINEN TUTKIMUSLAITOS Geofysiikan osasto HP 9820 A-ohjelmaseloste. R. Puranen
4 1 7.1/27/75/5 R. Puranen 1975-01 -24 GEOLOGINEN TUTKIMUSLAITOS Geofysiikan osasto HP 9820 A-ohjelmaseloste SUSKEPTIBILITEETIN RIIPPUVUUS TIHEYDESTÄ. REIKÄNAUHALTA. TULOSTUS Q 17.1/27/75/5 R. Puranen
LisätiedotQ 17.1/27/74/7 R. Puranen GEOLOGINEN TUTKIMUSLAITOS. Geofysiikan osasto NÄYTETUNNUSTEN LÄVISTYS (PINTAN~YTTEET) HP 9820 A-OHJELMASELOSTE
Q 17.1/27/74/7 R. Puranen 1974-05-14 GEOLOGINEN TUTKIMUSLAITOS Geofysiikan osasto NÄYTETUNNUSTEN LÄVISTYS (PINTAN~YTTEET) HP 9820 A-OHJELMASELOSTE Q 17.1/27/74/7 R. Puranen 1974-05-14 GEOLOGINEN TUTKIMUSLAITOS
Lisätiedot4 17.1/24.34/74/1. Tarmo Jokinen. Geofysiikan osasto GEOLOGINEN TUTKIMUSLAITOS VLF-PRDFIILI
4 17.1/24.34/74/1 Tarmo Jokinen 1974-1 1-1 9 GEOLOGINEN TUTKIMUSLAITOS Geofysiikan osasto VLF-PRDFIILI 't LJ 17.1/2$.34/74/1 T. Jokinen 1974-1 1-19 GEOLOGINEN TUTKIMUSLAITOS Geofysiikan osasto HP 9820
LisätiedotHP 9820 A-OHJELMASELQSTE
Q 17.1/27f 741 14 Risto Puranen GEOLOGINEN TUTKIMUSLAITOS Geofysiikan osasto HP 9820 A-ohjelmaseloste PETROPY SIKAALISTEN TIETOJEN LAY ISTY S ( P INTAN~YTTEET, P-KOODI = 41 HP 9820 A-OHJELMASELQSTE Q 17.1/27/74/14
LisätiedotGeofysiikan osasto Q 17.1/27/75/9 1975-03-11 GECILOGINEN TUTKIMUSLAITOS. HP-ohj elmaseloste ALLIEELLINEN STATISTIIKKA REIKÄNAUHALTA IPINTA- IVÄYTTEETI
Q 17.1/27/75/9 R. Puranen 1975-03-11 GECILOGINEN TUTKIMUSLAITOS Geofysiikan osasto HP-ohj elmaseloste ALLIEELLINEN STATISTIIKKA REIKÄNAUHALTA IPINTA- IVÄYTTEETI Q 17.1/27/75/9 R. Puranen 1975-03-1 1 GEOLOGINEN
LisätiedotEP 9820 -A-Oh jelmaseloste
& 17.1/27/74/10 R. Puranen 1974-04-01 Geologinen tutkimuslaitos Geofysiikan osasto d EP 9820 -A-Oh jelmaseloste - PETROFYSIKAALISTEN TIETOJEN LAVISTYS ARKISTOKORTEILTA R. Puranen 1974-04-01 PETROFYSIKAALISTEN
LisätiedotYleistä vektoreista GeoGebralla
Vektoreita GeoGebralla Vektoreilla voi laskea joko komentopohjaisesti esim. CAS-ikkunassa tai piirtämällä piirtoikkunassa. Ensimmäisen tavan etuna on, että laskujen tueksi muodostuu kuva. Tästä on varmasti
Lisätiedot4 17.1/27/75/10 R. Puranen
4 17.1/27/75/10 R. Puranen 1975-04-12 GEOLOGINEN TUTK:CI/IUSLAITOS Geofysiikan osasto HP 9820 A-ohjelmaseloste RAPORTTITIEDOSTO KIVILAJIEN STATISTIIKKA KASETEILTA IPPNTANÄYTTEETI HP 9820 A-OHJELIYASELOSTE
Lisätiedot(NYRKKIN~YTTEET) Q 17.1/27/74/6 R. Puranen 1974-05-24. GEOLOGINEN TUTKIMUSLAITOS Geofysiikan osasto HAVAINTOARVOJEN ~SITTELY JA TULOSTUS LOMAKKEELLE A
Q 17.1/27/74/6 R. Puranen 1974-05-24 GEOLOGINEN TUTKIMUSLAITOS Geofysiikan osasto HAVAINTOARVOJEN ~SITTELY JA TULOSTUS LOMAKKEELLE A (NYRKKIN~YTTEET) HP 9 820 A-OHJELMASELOSTE Q 17.1/27/74/6 R. Puranen
LisätiedotHP 9820 A-OHJELMASELOSTE
Q 17.1/27/74/15 R. Puranen 1974-05-28 GEOLOGNEN TUTKMUSLATOS Geofysiikan osasto HP 9820 A-ohjelmaseloste STATSTKKA PETROFYSKAALSELTA REKÄNAUHALTA (PNTANAYTTEET) HP 9820 A-OHJELMASELOSTE Q 17.1/27/74/15
LisätiedotGEOLOGINEN TUTKIMUSLAITOS AZ-ANOMALIAN LASKEMINEN (GAY:N MUKAAN) Geofysiikan osasto HP-ohjelmaseloste 9820 A. Koskee: Q 17.1/22
GEOLOGINEN TUTKIMUSLAITOS Geofysiikan osasto HP-ohjelmaseloste 9820 A Koskee: Q 7./22 AZ-ANOMALIAN LASKEMINEN (GAY:N MUKAAN) Q 7,/6.2/73/%4 A. Villareal 973-09-24 GEOLOGINEN TUTKIMUSLAITOS Geofysiikan
LisätiedotQ 17.1/24.1/73/1. GEOLOGINEN TLITKIIYUSLAITOS Geofysiikan osasto. Tarmo Jokinen SLIINGRAM-PRCIFIILIIN PIIRTÄMINEN
Q 7/24/73/ Tarmo Jokinen 973-0-03 GEOLOGINEN TLITKIIYUSLAITOS Geofysiikan osasto SLIINGRAM-PRCIFIILIIN PIIRTÄMINEN 24 Q 7/=/73/ T Jokinen GEOLOGINEN TUTKIMUSLAITOS Geofysiikan osasto HP 9820 A -0h~emaseloste
Lisätiedot2 Pistejoukko koordinaatistossa
Pistejoukko koordinaatistossa Ennakkotehtävät 1. a) Esimerkiksi: b) Pisteet sijaitsevat pystysuoralla suoralla, joka leikkaa x-akselin kohdassa x =. c) Yhtälö on x =. d) Sijoitetaan joitain ehdon toteuttavia
LisätiedotTapa II: Piirretään voiman F vaikutussuora ja lasketaan momentti sen avulla. Kuva 3. d r. voiman F vaikutussuora
VOIMAN MOMENTTI Takastellaan jäykkää kappaletta, joka pääsee kietymään akselin O ympäi. VOIMAN MOMENTTI on voiman kietovaikutusta kuvaava suue. Voiman momentti määitellään voiman F ja voiman vaen tulona:
LisätiedotMäärätty integraali. Markus Helén. Mäntän lukio
Määrätty integraali Markus Helén Pinta-ala Monikulmio on tasokuvio, jota rajoittaa suljettu, itseään leikkaamaton murtoviiva. Monikulmio voidaan aina jakaa kolmioiksi. Alueen pinta-ala on näiden kolmioiden
LisätiedotKoordinaatistot 1/6 Sisältö ESITIEDOT: reaaliluvut
Koordinaatistot 1/6 Sisältö Koordinaatiston ja koordinaattien käsite Geometrisissa tehtävissä ja siten mös monissa kätännön ongelmissa on usein tarpeen ilmoittaa pisteiden sijainti jonkin kiinteän vertailussteemin
LisätiedotRATKAISUT a + b 2c = a + b 2 ab = ( a ) 2 2 ab + ( b ) 2 = ( a b ) 2 > 0, koska a b oletuksen perusteella. Väite on todistettu.
RATKAISUT 198 197 198. Olkoon suorakulmion erisuuntaisten sivujen pituudet a ja b sekä neliön sivun pituus c. Tehtävä on mielekäs vain, jos suorakulmio ei ole neliö, joten oletetaan, että a b. Suorakulmion
LisätiedotPinta-alojen ja tilavuuksien laskeminen 1/6 Sisältö ESITIEDOT: määrätty integraali
Pinta-alojen ja tilavuuksien laskeminen 1/6 Sisältö ESITIEDOT: Tasoalueen pinta-ala Jos funktio f saa välillä [a, b] vain ei-negatiivisia arvoja, so. f() 0, kun [a, b], voidaan kuvaajan y = f(), -akselin
LisätiedotTekijä Pitkä matematiikka
Tekijä Pitkä matematiikka 5..017 110 Valitaan suoralta kaksi pistettä ja piirretään apukolmio, josta koordinaattien muutokset voidaan lukea. Vaakasuoran suoran kulmakerroin on nolla. y Suoran a kulmakerroin
LisätiedotHP 9820 A-ohjelmaseloste
GEOLOGINEN TUTKIMUSLAITOS GeoQsiikan osasto HP 9820 A-ohjelmaseloste PETRQPY SIKAALISEN REI~NAUHAN QTSZKOINTI ( FINTAN#YTTEET 1 Q 17,1/27/74/9 R. Puranen 1974-05-03 GEOLOGINEN TUTKIMUSLAITOS Geofysiikan
Lisätiedot0 17.1/27/75/14 R. Puranen GECILOGINEN TUTKIMUSLAITOS. Geofysiikan osasto REIKÄNAUHAN LUKEMIIUEN KASETILLE
0 17.1/27/75/14 R. Puranen 1975-04-10 GECILOGINEN TUTKIMUSLAITOS Geofysiikan osasto REIKÄNAUHAN LUKEMIIUEN KASETILLE IMUSLAITOS R. Puranen GeofjsiSan osasto -. Ohjelman avulla voidôan silrtaa petrofysikaalinen
LisätiedotTekijä Pitkä matematiikka
K1 Tekijä Pitkä matematiikka 5 7..017 a) 1 1 + 1 = 4 + 1 = 3 = 3 4 4 4 4 4 4 b) 1 1 1 = 4 6 3 = 5 = 5 3 4 1 1 1 1 1 K a) Koska 3 = 9 < 10, niin 3 10 < 0. 3 10 = (3 10 ) = 10 3 b) Koska π 3,14, niin π
LisätiedotPyramidi 4 Analyyttinen geometria tehtävien ratkaisut sivu 180 Päivitetty Pyramidi 4 Luku Ensimmäinen julkaistu versio
Pyramidi 4 Analyyttinen geometria tehtävien ratkaisut sivu 8 Päivitetty 7.5.6 Pyramidi 4 Luku 5..6 Ensimmäinen julkaistu versio 7.5.6 Korjattu tehtävän 56 vastaus Pyramidi 4 Analyyttinen geometria tehtävien
LisätiedotTrigonometriset funktiot
Peruskäsitteet Y-peilaus X-peilaus Pistepeilaus Muistikulmat Muistikolmio 1 Muistikolmio 2 Jaksollisuus Esimerkki 5.A Esimerkki 5.B1 Esimerkki 5.B2 Esimerkki 5C.1 Esimerkki 5C.2 (1/2) (2/2) Muunnelmia
LisätiedotTekijä Pitkä matematiikka b) Kuvasta nähdään, että b = i 4 j. c) Käytetään a- ja b-kohtien tuloksia ja muokataan lauseketta.
Tekijä Pitkä matematiikka 4 9.1.016 79 a) Kuvasta nähdään, että a = 3i + j. b) Kuvasta nähdään, että b = i 4 j. c) Käytetään a- ja b-kohtien tuloksia ja muokataan lauseketta. 5a b = 5(3i + j) ( i 4 j)
LisätiedotYhtälön oikealla puolella on säteen neliö, joten r. = 5 eli r = ± 5. Koska säde on positiivinen, niin r = 5.
Tekijä Pitkä matematiikka 5 7..017 31 Kirjoitetaan yhtälö keskipistemuotoon ( x x ) + ( y y ) = r. 0 0 a) ( x 4) + ( y 1) = 49 Yhtälön vasemmalta puolelta nähdään, että x 0 = 4 ja y 0 = 1, joten ympyrän
LisätiedotPeilaus pisteen ja suoran suhteen Pythonin Turtle moduulilla
Peilaus pisteen ja suoran suhteen Pythonin Turtle moduulilla ALKUHARJOITUS Kynän ja paperin avulla peilaaminen koordinaatistossa a) Peilaa pisteen (0,0) suhteen koordinaatistossa sijaitseva - neliö, jonka
LisätiedotMetropolia ammattikorkeakoulu 05.02.2015 TI00AA43-3004: Ohjelmointi Kotitehtävät 3
: http://users.metropolia.fi/~pasitr/2014-2015/ti00aa43-3004/kt/03/ratkaisut/ Tehtävä 1. (1 piste) Tee ohjelma K03T01.cpp, jossa ohjelmalle syötetään kokonaisluku. Jos kokonaisluku on positiivinen, niin
Lisätiedot3 TOISEN ASTEEN POLYNOMIFUNKTIO
3 TOISEN ASTEEN POLYNOMIFUNKTIO POHDITTAVAA 1. Kuvasta voidaan arvioida, että frisbeegolfkiekko käy noin 9 metrin korkeudella ja se lentää noin 40 metrin päähän. Vastaus: Frisbeegolfkiekko käy n. 9 m:n
LisätiedotSINI- JA KOSINILAUSE. Laskentamenetelmät Geodeettinen laskenta - 1-1988-1999 M-Mies Oy
SINI- JA KOSINILAUSE SINILAUSE: Kolmiossa kulman sinien suhde on sama kuin kulman vastaisten sivujen suhde. Toisin sanoen samassa kolmiossa SIN Kulma / Sivu = Vakio (Jos > 100 gon: Kulma = 200 kulma).
LisätiedotSelostus Kemin tutkimusalueella suoritetuista linjoituksista sekä monikulmiomittauksista.
M 17/Ke-60/2 Kemi T. Siikarla 28.4.19 60 Selostus Kemin tutkimusalueella suoritetuista linjoituksista sekä monikulmiomittauksista. 1. Linjoitustyöt: Kemin alueen geofysikaalisia tutkimuksia varten paalutettiin
LisätiedotTUTKIMUSTYÖSELOSTUS KITTILÄN KUNNASSA VALTAUSALUEELLA JALKAJOKI 1, KAIV. REK. N:o 2813 SUORITETUISTA MALMITUTKIMUKSISTA
GEOLOGINEN TUTKIMUSLAITOS M 06/3722/-81/1/10 Kittilä Jalkajoki Markku Rask 30.11.1981 TUTKIMUSTYÖSELOSTUS KITTILÄN KUNNASSA VALTAUSALUEELLA JALKAJOKI 1, KAIV. REK. N:o 2813 SUORITETUISTA MALMITUTKIMUKSISTA
Lisätiedot1 2 3 4 5 6 7 8 9 10 2 12,999,976 km 9,136,765 km 1,276,765 km 499,892 km 245,066 km 112,907 km 36,765 km 24,159 km 7899 km 2408 km 76 km 12 14 16 1 12 7 3 1 6 2 5 4 3 11 9 10 8 18 20 21 22 23 24 25 26
LisätiedotQ 19/3713/-8211 ~, ,,,.=_.---.! GEOLOGINEN TUTI<IMUSLAITOS. 'Ii. Ke lu j oki.- Työraportti Pertti Turunen
,..+'i.'f:;. LI- Q 19/3713/-8211 ~,. -. -.,,,.=_.---.! GEOLOGINEN TUTI
Lisätiedot3. Kuvio taitetaan kuutioksi. Mikä on suurin samaa kärkeä ympäröivillä kolmella sivutahkolla olevien lukujen tulo?
Peruskoulun matematiikkakilpailu Loppukilpailu perjantaina 4.2.2011 OSA 1 Ratkaisuaika 30 min Pistemäärä 20 Tässä osassa ei käytetä laskinta. Esitä myös lasku, kuvio, päätelmä tai muu lyhyt perustelu.
Lisätiedot14 Monikulmiot 1. Nimeä monikulmio. a) b) c) Laske monikulmion piiri. a) 30,8 cm 18,2 cm. Laske sivun x pituus, kun monikulmion piiri on 25,0 cm.
1 14 Monikulmiot Nimeä monikulmio. a) b) c) kolmio nelikulmio 12-kulmio Laske monikulmion piiri. a) 4,2 cm b) 3,6 cm 11,2 cm 4,8 cm 3,6 cm 4,3 cm 30,8 cm 18,2 cm Laske sivun x pituus, kun monikulmion piiri
LisätiedotPRELIMINÄÄRIKOE PITKÄ MATEMATIIKKA 9.2.2011
PRELIMINÄÄRIKOE PITKÄ MATEMATIIKKA 9..0 Kokeessa saa vastata enintään kymmeneen tehtävään.. Sievennä a) 9 x x 6x + 9, b) 5 9 009 a a, c) log 7 + lne 7. Muovailuvahasta tehty säännöllinen tetraedri muovataan
LisätiedotQ 17.1/27/73/2 R. Puranen
Q 17.1/27/73/2 R. Puranen 1973-07-31 GEOLOGINEN TUTKIMUSLAITOS Geofysiikan osasto HP-ohjelmaseloste MERKKIEN SELTTYKSEN PIIRT#MINEN SUSaPTIBILZTEETTI- JA TIHEYSKARTTQIHIN Q 17 *1/37/73/2 R. Puranen 1973-07-31
Lisätiedot(iv) Ratkaisu 1. Sovelletaan Eukleideen algoritmia osoittajaan ja nimittäjään. (i) 7 = , 7 6 = = =
JOHDATUS LUKUTEORIAAN (syksy 07) HARJOITUS 7, MALLIRATKAISUT Tehtävä Etsi seuraavien rationaalilukujen ketjumurtokehitelmät: (i) 7 6 (ii) 4 7 (iii) 65 74 (iv) 63 74 Ratkaisu Sovelletaan Eukleideen algoritmia
Lisätiedot2) Kaksi lentokonetta lähestyy toisiaan samalla korkeudella kuvan osoittamalla tavalla. Millä korkeudella ja kuinka kaukana toisistaan ne ovat?
2..207 Määritelmä, (terävän kulman) trigonometriset funktiot: Suorakulmaisessa kolmiossa terävän kulman trigonometriset funktiot ovat: kulman sini hpotenuusa sin a c kulman kosini hpotenuusa kulman tangentti
Lisätiedot4.1 Kaksi pistettä määrää suoran
4.1 Kaksi pistettä määrää suoran Kerrataan aluksi kurssin MAA1 tietoja. Geometrisesti on selvää, että tason suora on täysin määrätty, kun tunnetaan sen kaksi pistettä. Joskus voi tulla vastaan tilanne,
Lisätiedot4 37.1/27/75/ R. Puranen. GEOLOGINEN TUTKIMUSLAITOS Geofysiikan osasto PETROFYSIKAALISTEN TIETOJEN NAUHOITUS (PINTANÄYTTEETI
4 37.1/27/75/38 R. Puranen 1975-04-3 6 GEOLOGINEN TUTKIMUSLAITOS Geofysiikan osasto PETROFYSIKAALISTEN TIETOJEN NAUHOITUS (PINTANÄYTTEETI i Q?7*1/27/75/18 R. Puranen 197 5-04-1 6 GEOLOGINEN TUTKIMUSLAITOS
LisätiedotTekijä Pitkä matematiikka Pisteen (x, y) etäisyys pisteestä (0, 2) on ( x 0) Pisteen (x, y) etäisyys x-akselista, eli suorasta y = 0 on y.
Tekijä Pitkä matematiikka 5 7..017 37 Pisteen (x, y) etäisyys pisteestä (0, ) on ( x 0) + ( y ). Pisteen (x, y) etäisyys x-akselista, eli suorasta y = 0 on y. Merkitään etäisyydet yhtä suuriksi ja ratkaistaan
LisätiedotMb8 Koe Kuopion Lyseon lukio (KK) sivu 1/2
Mb8 Koe 0.11.015 Kuopion Lyseon lukio (KK) sivu 1/ Kokeessa on kaksi osaa. Osa A ratkaistaan tehtäväpaperille ja osa B ratkaistaan konseptipaperille. Osa A: saat käyttää taulukkokirjaa mutta et laskinta.
LisätiedotKartio ja pyramidi
Kartio ja pyramidi Kun avaruuden suora s liikkuu pitkin itseään leikkaamatonta tason T suljettua käyrää ja lisäksi kulkee tason T ulkopuolisen pisteen P kautta, suora s piirtää avaruuteen pinnan, jota
LisätiedotQ 17.1/06/71/2. GEOLOGINEN TUTKIMUSLAITOS Geofysiikan osasto. Juha Korhonen HP-ohJ el mase l oste
Q 17.1/06/71/2 Juha Korhonen 1.4.1971 GEOLOGINEN TUTKIMUSLAITOS Geofysiikan osasto HP-ohJ el mase l oste SUORAVI IVAISTEN KOORDINAATTIEN MUUNTAMINEN MAANTIETEELLISIKSI OHJELMASELOSTE TRANSFORFAAT I ON
LisätiedotTEHTÄVIEN RATKAISUT. Luku a) Merkintä f (5) tarkoittaa lukua, jonka funktio tuottaa, kun siihen syötetään luku 5.
TEHTÄVIEN RATKAISUT Luku 4.1 183. a) Merkintä f (5) tarkoittaa lukua, jonka funktio tuottaa, kun siihen syötetään luku 5. Lasketaan funktioon syötetyn luvun neliö: 5 = 5. Saatuun arvoon lisätään luku 1:
LisätiedotMAB3 - Harjoitustehtävien ratkaisut:
MAB - Harjoitustehtävien ratkaisut: Funktio. Piirretään koordinaatistoakselit ja sijoitetaan pisteet:. a) Funktioiden nollakohdat löydetään etsimällä kuvaajien ja - akselin leikkauspisteitä. Funktiolla
LisätiedotSymmetrioiden tutkiminen GeoGebran avulla
Symmetrioiden tutkiminen GeoGebran avulla Tutustutaan esimerkkien kautta siihen, miten geometrista symmetriaa voidaan tutkia ja havainnollistaa GeoGebran avulla: peilisymmetria: peilaus pisteen ja suoran
Lisätiedot4. Kertausosa. 1. a) 12
. Kertausosa. a kun, : b kun, tai 8 . Paraabeli y a bc c aukeaa ylöspäin, jos a alaspäin, jos a a Funktion g kuvaaja on paraabeli, jolle a. Se aukeaa ylöspäin. b Funktion g kuvaaja on paraabeli, jolle
LisätiedotVektorilla on suunta ja suuruus. Suunta kertoo minne päin ja suuruus kuinka paljon. Se on siinä.
Koska varsinkin toistensa suhteen liikkuvien kappaleiden liikkeen esittäminen suorastaan houkuttelee käyttämään vektoreita, mutta koska ne eivät kaikille ehkä ole kuitenkaan niin tuttuja kuin ansaitsisivat,
Lisätiedotx + 1 πx + 2y = 6 2y = 6 x 1 2 πx y = x 1 4 πx Ikkunan pinta-ala on suorakulmion ja puoliympyrän pinta-alojen summa, eli
BM0A5810 - Differentiaalilaskenta ja sovellukset Harjoitus, Syksy 015 1. a) Funktio f ) = 1) vaihtaa merkkinsä pisteissä = 1, = 0 ja = 1. Lisäksi se on pariton funktio joten voimme laskea vain pinta-alan
LisätiedotJuuri 12 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty
Kertaus K. a) Polynomi P() = 3 + 8 on jaollinen polynomilla Q() = 3, jos = 3 on polynomin P nollakohta, eli P(3) = 0. P(3) = 3 3 3 + 8 3 = 54 08 + 54 = 0. Polynomi P on jaollinen polynomilla Q. b) Jaetaan
LisätiedotQ 17.1/27/75/17. Geofysiikan osasto. R. Puranen GEOLOGINEN TUTKIMUSLAITOS PETROFYSIKAALISEN KASETIN EOITOINTI
Q 17.1/27/75/17 R. Puranen 1975-04-14 GEOLOGINEN TUTKIMUSLAITOS Geofysiikan osasto PETROFYSIKAALISEN KASETIN EOITOINTI - Q 17*1/27/75/17 GZOLOGZiEN TUTKINUSLAITOS 2. Puzanen Geofysiikan osasto 1975-04-1
LisätiedotKERTAUSHARJOITUKSIA. 1. Rationaalifunktio a) ( ) 2 ( ) Vastaus: a) = = 267. a) a b) a. Vastaus: a) a a a a 268.
KERTAUSHARJOITUKSIA. Rationaalifunktio 66. a) b) + + + = + + = 9 9 5) ( ) ( ) 9 5 9 5 9 5 5 9 5 = = ( ) = 6 + 9 5 6 5 5 Vastaus: a) 67. a) b) a a) a 9 b) a+ a a = = a + a + a a + a a + a a ( a ) + = a
LisätiedotPreliminäärikoe Pitkä Matematiikka 3.2.2009
Preliminäärikoe Pitkä Matematiikka..9 x x a) Ratkaise yhtälö =. 4 b) Ratkaise epäyhtälö x > x. c) Sievennä lauseke ( a b) (a b)(a+ b).. a) Osakkeen kurssi laski aamupäivällä,4 % ja keskipäivällä 5,6 %.
LisätiedotCALCULATION OF PALEOMAGNETIC POLES
Q 17.1 /27.2/70/2 Lauri Pesonen 29.12.1970 GEOLOGINEN TUTKIMUSLAITOS Geof ys i i kan osasto HP-ohje l masel oste CALCULATION OF PALEOMAGNETIC POLES GTL/GEOP 291270 LJP HP-9 1 OOB CALCULATION OP PALEONAGNETIC
Lisätiedot3 Yleinen toisen asteen yhtälö ja epäyhtälö
Juuri Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 5.8.016 3 Yleinen toisen asteen yhtälö ja epäyhtälö ENNAKKOTEHTÄVÄT 1. a) x + x + 1 = 4 (x + 1) = 4 Luvun x + 1 tulee olla tai, jotta sen
LisätiedotSuorat ja tasot, L6. Suuntajana. Suora xy-tasossa. Suora xyzkoordinaatistossa. Taso xyzkoordinaatistossa. Tason koordinaattimuotoinen yhtälö.
Suorat ja tasot, L6 Suora xyz-koordinaatistossa Taso xyz-koordinaatistossa stä stä 1 Näillä kalvoilla käsittelemme kolmen laisia olioita. Suora xyz-avaruudessa. Taso xyz-avaruudessa. Emme nyt ryhdy pohtimaan,
Lisätiedot5.3 Suoran ja toisen asteen käyrän yhteiset pisteet
.3 Suoran ja toisen asteen käyrän yhteiset pisteet Tämän asian taustana on ratkaista sellainen yhtälöpari, missä yhtälöistä toinen on ensiasteinen ja toinen toista astetta. Tällainen pari ratkeaa aina
LisätiedotKenguru 2014 Student sivu 1 / 8 (lukion 2. ja 3. vuosi)
Kenguru 2014 Student sivu 1 / 8 Nimi Ryhmä Pisteet: Kenguruloikan pituus: Irrota tämä vastauslomake tehtävämonisteesta. Merkitse tehtävän numeron alle valitsemasi vastausvaihtoehto. Väärästä vastauksesta
LisätiedotSarake 1 Sarake 2 Sarake 3 Sarake 4. Vahvistumisen jälkeen tavaran hinta on 70. Uusi tilavuus on
AMMATTIKORKEAKOULUJEN TEKNIIKAN VALINTAKOE 1/5 TEHTÄVÄOSA / Ongelmanratkaisu 1.6. 2017 TEHTÄVÄOSA ONGELMANRATKAISU Vastaa kullekin tehtävälle varatulle ratkaisusivulle. Vastauksista tulee selvitä tehtävien
LisätiedotEnsimmäisen asteen polynomifunktio
Ensimmäisen asteen polnomifunktio Yhtälön f = a+ b, a 0 määrittelemää funktiota sanotaan ensimmäisen asteen polnomifunktioksi. Esimerkki. Ensimmäisen asteen polnomifuktioita ovat esimerkiksi f = 3 7, v()
LisätiedotMS-A0003/A0005 Matriisilaskenta Laskuharjoitus 2 / vko 45
MS-A0003/A0005 Matriisilaskenta Laskuharjoitus / vko 5 Tehtävä 1 (L): Hahmottele kompleksitasoon ne pisteet, jotka toteuttavat a) z 3 =, b) z + 3 i < 3, c) 1/z >. Yleisesti: ehto z = R, z C muodostaa kompleksitasoon
Lisätiedot! 7! = N! x 8. x x 4 x + 1 = 6.
9. 10. 2008 1. Pinnalta punaiseksi maalattu 3 3 3-kuutio jaetaan 27:ksi samankokoiseksi kuutioksi. Mikä osuus 27 pikkukuution kokonaispinta-alasta on punaiseksi maalattu? 2. Positiivisen kokonaisluvun
LisätiedotMetropolia ammattikorkeakoulu TI00AA : Ohjelmointi Kotitehtävät 3 opettaja: Pasi Ranne
Seuraavista tehtävistä saatu yhteispistemäärä (max 7 pistettä) jaetaan luvulla 3.5 ja näin saadaan varsinainen kurssipisteisiin laskettava pistemäärä. Bonustehtävien pisteet jaetaan luvulla 4 eli niistä
LisätiedotLukion matematiikkakilpailun alkukilpailu 2015
Lukion matematiikkakilpailun alkukilpailu 015 Avoimen sarjan tehtävät ja niiden ratkaisuja 1. Olkoot a ja b peräkkäisiä kokonaislukuja, c = ab ja d = a + b + c. a) Osoita, että d on kokonaisluku. b) Mitä
LisätiedotKäy vastaamassa kyselyyn kurssin pedanet-sivulla (TÄRKEÄ ensi vuotta ajatellen) Kurssin suorittaminen ja arviointi: vähintään 50 tehtävää tehtynä
Käy vastaamassa kyselyyn kurssin pedanet-sivulla (TÄRKEÄ ensi vuotta ajatellen) Kurssin suorittaminen ja arviointi: vähintään 50 tehtävää tehtynä (vihkon palautus kokeeseen tullessa) Koe Mahdolliset testit
LisätiedotSODANKYLÄN KUNNASSA VALTAUSALUEELLA KORPISELKÄ 1 KAIV.- REK. N:o 2787 SUORITETUT MALMITUTKIMUKSET
M06/3723/-79/1/10 GEOLOGINEN TUTKIMUSLAITOS Malmiosasto 5.12.1979 TUTKIMUSTYÖSELOSTUS SODANKYLÄN KUNNASSA VALTAUSALUEELLA KORPISELKÄ 1 KAIV.- REK. N:o 2787 SUORITETUT MALMITUTKIMUKSET Johdanto Valtausalueella
LisätiedotMAA4 - HARJOITUKSIA. 1. Esitä lauseke 3 x + 2x 4 ilman itseisarvomerkkejä. 3. Ratkaise yhtälö 2 x 7 3 + 4x = 2 (yksi ratkaisu, eräs neg. kokon.
MAA4 - HARJOITUKSIA 1. Esitä lauseke 3 + 4 ilman itseisarvomerkkejä.. Ratkaise yhtälö a ) 5 9 = 6 b) 6 9 = 0 c) 7 9 + 6 = 0 3. Ratkaise yhtälö 7 3 + 4 = (yksi ratkaisu, eräs neg. kokon. luku) 4. Ratkaise
LisätiedotJuuri 12 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty
Juuri Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 7.5.08 Kertaus K. a) Polynomi P() = + 8 on jaollinen polynomilla Q() =, jos = on polynomin P nollakohta, eli P() = 0. P() = + 8 = 54 08 +
LisätiedotMATEMATIIKKA 5 VIIKKOTUNTIA
EB-TUTKINTO 2008 MATEMATIIKKA 5 VIIKKOTUNTIA PÄIVÄMÄÄRÄ: 5. kesäkuuta 2008 (aamupäivä) KOKEEN KESTO: 4 tuntia (240 minuuttia) SALLITUT APUVÄLINEET: Europpa-koulun antama taulukkovihkonen Funktiolaskin,
Lisätiedotjoissa on 0 4 oikeata vastausta. Laskimet eivät ole sallittuja.
ÄÙ ÓÒ Ñ Ø Ñ Ø ÐÔ ÐÙÒ Ð Ù ÐÔ ÐÙÒ Ô ÖÙ Ö Tehtäviä on kahdella sivulla; kuusi ensimmäistä tehtävää on monivalintatehtäviä, joissa on 0 4 oikeata vastausta. Laskimet eivät ole sallittuja. 1. Kauppias on ostanut
LisätiedotMAB3 - Harjoitustehtävien ratkaisut:
MAB3 - Harjoitustehtävien ratkaisut: 1 Funktio 1.1 Piirretään koordinaatistoakselit ja sijoitetaan pisteet: 1 1. a) Funktioiden nollakohdat löydetään etsimällä kuvaajien ja - akselin leikkauspisteitä.
Lisätiedot11 MATEMAATTINEN ANALYYSI
Huippu Kertaus Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 0.7.08 MATEMAATTINEN ANALYYSI ALOITA PERUSTEISTA 444A. a) Funktion arvot ovat positiivisia silloin, kun kuvaaja on x-akselin yläpuolella.
Lisätiedot9. Vektorit. 9.1 Skalaarit ja vektorit. 9.2 Vektorit tasossa
9. Vektorit 9.1 Skalaarit ja vektorit Skalaari on koon tai määrän mitta. Tyypillinen esimerkki skalaarista on massa. Lukumäärä on toinen hyvä esimerkki skalaarista. Vektorilla on taas suuruus ja suunta.
LisätiedotGeogebra -koulutus. Ohjelmistojen pedagoginen hyödyntäminen
Geogebra -koulutus Ohjelmistojen pedagoginen hyödyntäminen Geogebra Ilmainen dynaaminen matematiikkaohjelmisto osoitteessa http://www.geogebra.org Geogebra-sovellusversion voi asentaa tietokoneilla ja
Lisätiedot1 Rationaalifunktio , a) Sijoitetaan nopeus 50 km/h vaihtoaikaa kuvaavan funktion lausekkeeseen.
Juuri 6 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 5.7.06 Rationaalifunktio. a) Sijoitetaan nopeus 50 km/h vaihtoaikaa kuvaavan funktion lausekkeeseen. f (50) 50 8 50 4 8 50 500 400 4 400
LisätiedotTUTKIMUSTYÖSELOSTUS RANTASALMEN KUNNASSA VALTAUSALUEILLA PIRILÄ 2 ja 3, KAIV. REK. N:O 3682/1-2, SUORITETUISTA TUTKIMUKSISTA
GEOLOGIAN TUTKIMUSKESKUS M 06/3233/-87 /1/10 RANTASALMI Pirilä II Hannu Makkonen 27.1.1987 TUTKIMUSTYÖSELOSTUS RANTASALMEN KUNNASSA VALTAUSALUEILLA PIRILÄ 2 ja 3, KAIV. REK. N:O 3682/1-2, SUORITETUISTA
LisätiedotAnna jokaisen kohdan vastaus kolmen merkitsevän numeron tarkkuudella muodossa
Preliminäärikoe Tehtävät Pitkä matematiikka / Kokeessa saa vastata enintään kymmeneen tehtävään Tähdellä (* merkittyjen tehtävien maksimipistemäärä on 9, muiden tehtävien maksimipistemäärä on 6 Jos tehtävässä
Lisätiedot4.1 Urakäsite. Ympyräviiva. Ympyrään liittyvät nimitykset
4.1 Urakäsite. Ympyräviiva. Ympyrään liittyvät nimitykset MÄÄRITELMÄ 6 URA Joukko pisteitä, joista jokainen täyttää määrätyn ehdon, on ura. Urakäsite sisältää siten kaksi asiaa. Pistejoukon jokainen piste
LisätiedotKERTAUS KERTAUSTEHTÄVIÄ K1. P( 1) = 3 ( 1) + 2 ( 1) ( 1) 3 = = 4
KERTAUS KERTAUSTEHTÄVIÄ K1. P( 1) = 3 ( 1) + ( 1) + 3 ( 1) 3 = 3 + 3 = 4 K. a) x 3x + 7x 5x = 4x + 4x b) 5x 3 (1 x ) = 5x 3 1 + x = 6x 4 c) (x + 3)(x 4) = x 3 4x + 3x 1 = x 3 + 3x 4x 1 Vastaus: a) 4x +
LisätiedotMAA02. A-osa. 1. Ratkaise. a) x 2 + 6x = 0 b) (x + 4)(x 4) = 9 a) 3x 6x
MAA0 A-osa. Ratkaise. a) x + 6x = 0 b) (x + 4)(x 4) = 9 a) 3x 6x a) Kirjoitetaan summa x + 6x yhteisen tekijän avulla tulomuotoon ja ratkaistaan yhtälö tulon nollasäännön avulla. x + 6x = 0 x(x + 6) =
Lisätiedot