3. Kuvio taitetaan kuutioksi. Mikä on suurin samaa kärkeä ympäröivillä kolmella sivutahkolla olevien lukujen tulo?
|
|
- Minna Laine
- 9 vuotta sitten
- Katselukertoja:
Transkriptio
1 Peruskoulun matematiikkakilpailu Loppukilpailu perjantaina OSA 1 Ratkaisuaika 30 min Pistemäärä 20 Tässä osassa ei käytetä laskinta. Esitä myös lasku, kuvio, päätelmä tai muu lyhyt perustelu. Tehtävistä 1 4 saa enintään kaksi ja tehtävistä 5 8 kolme pistettä. 1. Suorakulmion sivujen pituudet ovat 1 ja 2 (pituusyksikköä). Jaa se osiin, joista voit muodostaa neliön. Piirrä ratkaisusi. 2. Viisikulmion kulmien asteluvut ovat peräkkäisiä kokonaislukuja. Kuinka suuria kulmat ovat? 3. Kuvio taitetaan kuutioksi. Mikä on suurin samaa kärkeä ympäröivillä kolmella sivutahkolla olevien lukujen tulo? 4. Kokonaisluvut 1 20 kirjoitetaan peräkkäin ilman välejä: Viivaa yli 21 numeroa niin, että jäljelle jäävät muodostavat mahdollisimman suuren luvun, kun ne kirjoitetaan peräkkäin järjestystä vaihtamatta. Minkä luvun sait? 5. Olli kirjoitti erään kolminumeroisen luvun, sitten sen numeroiden summan ja lopuksi näin saadun luvun numeroiden summan. Kaikki kolme lukua voidaan kirjoittaa näin, kun kukin numero korvataan kuviolla: Mitkä luvut Olli kirjoitti? 6. Ympyrän säde on 10 (pituusyksikköä). Se jaetaan viiteen pinta-alaltaan yhtä suureen osaan, joista yksi on neliö (kuva). Laske neliön sivun pituuden likiarvo kokonaisten tarkkuudella. 7. Jos a : b = 3 : 4 ja a : (b + c) = 2 : 5, niin kuinka suuri on a : c? 8. Kuinka pitkä on puoliympyröistä muodostuvan kuvion piiri? (d = suurimman puoliympyrän katkoviivalla merkitty halkaisija)
2
3 Peruskoulun matematiikkakilpailu Loppukilpailu perjantaina OSA 2 Ratkaisuaika 45 min Pistemäärä 20 Dominolaatta on kahdesta neliöstä muodostuva suorakulmio. Kummassakin neliössä on pisteitä, joita kutsutaan silmiksi. Tavallisen laattasetin silmäluku on 0 6. Tällöin koko setissä on laatat, joiden silmäluvut ovat 00, 01, 11, 02, 12, 22, 03,..., 56, 66, toisin sanoen laatan puolikkaan pienin silmäluku on 0 ja suurin silmäluku 6 eikä setissä ole kahta samanlaista laattaa. On olemassa myös laattasettejä, joissa silmäluku on 0 9. Tehtävän sijoittelusääntö on, että laattoja asetellaan peräkkäin niin, että aina seuraavan alkupäässä on sama silmäluku kuin edellisen laatan loppupäässä ja jonoa jatketaan aina viimeksi pannun laatan päästä. Esimerkkikuvassa on käytetty settiä, jossa silmäluku on 0 6. Kun aloitetaan vasemmalta ylhäältä, niin ensimmäinen laatta on 04. Koko laattajonoa voidaan kuvata numerojonolla Kuvassa olevan jonon pituus on kuusi laattaa. Jonoa muodostettaessa on käytetty sellaista lisäsääntöä, että laatan silmälukujen summa kasvaa yhdellä. 1. Käytössä on dominolaatat, joissa on 0 6 silmää. Sijoittelusääntö on voimassa. Kuvaile kukin jono. (3 pist.) a) Kuinka pitkä jono saadaan, jos aloitetaan laatasta 23, laatan silmälukujen summan pitää kasvaa kahdella ja jatketaan mahdollisimman pitkään? b) Kuinka pitkä jono saadaan, jos saadaan aloittaa mistä laatasta tahansa, laatan silmälukujen summa kasvaa kolmella ja muodostetaan mahdollisimman pitkä jono? c) Kokoa mahdollisimman pitkä jono. Saat valita vapaasti sekä aloituslaatan että silmälukujen vakiolisäyksen. 2. Kuinka pitkä laattajono voi enintään olla, kun sekä aloituslaatan että silmälukujen summan vakiolisäyksen saa valita vapaasti ja silmäluku on 0 9? Kuvaile jono. (2 pist.) 3. Kuinka monta laattaa olisi koko setissä, jos silmäluku olisi a) 0 9, b) 0 n? (4 pist.) KÄÄNNÄ!
4 Seuraavissa tehtävissä laattasetin silmäluku on 0 6. Sijoittelusääntö ei ole voimassa. 4. Suorakulmaisen särmiön kunakin sivutahkona on yksi dominolaatta ja kumpanakin pohjatahkona, siis sekä ylä- että alapohjassa, kaksi dominolaattaa (kuva). Jokaisen tahkon silmälukujen summa on sama. a) Kuinka suuri yhden tahkon silmälukujen summa voi olla? b) Kuinka monella eri tavalla voidaan tehdä ylin tahko? Esitä tavat. (7 pist.) 5. Valitaan neljä dominolaattaa, joista voidaan muodostaa sellainen neliö, että kunkin sivun silmälukujen summa on sama. Esimerkkikuvassa kunkin sivun silmälukujen summa on 11. Muodosta yhden dominosetin laatoista niin monta tällaista neliötä kuin voit. Kaikkien neliöiden sivujen silmälukujen summan ei tarvitse olla yhtä suuria. Vaaditaan vain, että kunkin yksittäisen neliön kaikilla neljällä sivulla silmälukujen summa on sama. Esimerkkineliön ei tarvitse olla ratkaisun osa. (4 pist.)
5 Peruskoulun matematiikkakilpailu Loppukilpailu perjantaina OSA 3 Ratkaisuaika 60 min Pistemäärä 30 Kaikkiin tehtäviin laskuja tai perusteluja näkyviin. Kunkin tehtävän maksimipistemäärä on kuusi. 1. Martalla, Villellä ja Tepolla on kullakin kaksi ammattia, joita ei muilla kahdella ole. Heidän ammattinsa ovat kirjailija, arkkitehti, opettaja, lääkäri, juristi ja taiteilija. Samassa vihjeessä mainitut ammatit viittaavat eri henkilöihin. 1) Kirjailija ja opettaja menivät Martan kanssa hiihtämään. 2) Lääkäri pyysi taiteilijaa maalaamaan muotokuvansa. 3) Lääkärillä ja opettajalla oli yhteinen tapaaminen. 4) Taiteilija on sukua arkkitehdille. 5) Teppo päihitti Villen sekä taiteilijan shakissa. 6) Ville asuu kirjailijan naapurissa. Mitkä ovat kenenkin ammatit? 2. Kolme puhelintornia sijaitsevat niin, että kunkin etäisyys kahdesta muusta on 6,00 km. Kunkin lähettämä signaali kuuluu ympyränmuotoisella alueella, jonka säde on noin 3,5 km. Alue, jolla kaikkien kolmen puhelintornin signaali kuuluu, supistuu tällöin pisteeksi. Laske sen alueen pintaala, jossa kuuluu kahden tornin signaali. 3. Mikä on lausekkeen. arvo, kun a = 10, b = 1 ja n = 5. KÄÄNNÄ!
6 4. Kolmion DEF kärkipisteet D ja E ovat kiinteitä ja piste F liikkuu kolmion ABC piiriä pitkin. Piirrä kolmion DEF pintaalan kuvaaja itse valitsemaasi koordinaatistoon pisteestä A piiriä pitkin vastapäivään kiertäen mitatun matkan funktiona. 5. Palindromi on positiivinen luku joka luettuna oikealta vasemmalle tai vasemmalta oikealle on sama. Esimerkiksi luvut 5, 232 ja ovat palindromeja. a) Määritä seitsennumeroisten palindromien määrä. b) Kun a-kohdan palindromit kirjoitetaan pienimmästä suurimpaan, mikä on järjestyksessä palindromi listassa?
Tehtävä 1 2 3 4 5 6 7 Vastaus
Kenguru Benjamin, vastauslomake Nimi Luokka/Ryhmä Pisteet Kenguruloikka Irrota tämä vastauslomake tehtävämonisteesta. Merkitse tehtävän numeron alle valitsemasi vastausvaihtoehto. Jätä ruutu tyhjäksi,
4. Varastossa on 24, 23, 17 ja 16 kg:n säkkejä. Miten voidaan toimittaa täsmälleen 100 kg:n tilaus avaamatta yhtään säkkiä?
Peruskoulun matematiikkakilpailu Loppukilpailu perjantaina 3.2.2012 OSA 1 Ratkaisuaika 30 min Pistemäärä 20 Tässä osassa ei käytetä laskinta. Kaikkiin tehtäviin laskuja, kuvia tai muita perusteluja näkyviin.
Kaikkiin tehtäviin laskuja, kuvia tai muita perusteluja näkyviin.
Peruskoulun matematiikkakilpailu Loppukilpailu perjantaina 1.2.2013 OSA 1 Ratkaisuaika 30 min Pistemäärä 20 Tässä osassa ei käytetä laskinta. Kaikkiin tehtäviin laskuja, kuvia tai muita perusteluja näkyviin.
Kenguru 2016 Student lukiosarja
sivu 1 / 9 NIMI LUOKKA Pisteet: Kenguruloikan pituus: Irrota tämä vastauslomake tehtävämonisteesta. Merkitse tehtävän numeron alle valitsemasi vastausvaihtoehto. Väärästä vastauksesta saat miinuspisteitä
Tässä osassa ei käytetä laskinta. Kaikkiin tehtäviin laskuja tai perusteluja näkyviin, ellei muuta ole mainittu.
Peruskoulun matematiikkakilpailu Loppukilpailu perjantaina 6..009 OSA Ratkaisuaika 30 min Pistemäärä 0 Tässä osassa ei käytetä laskinta. Kaikkiin tehtäviin laskuja tai perusteluja näkyviin, ellei muuta
PERUSKOULUN MATEMATIIKKAKILPAILU LOPPUKILPAILU PERJANTAINA
PERUSKOULUN MATEMATIIKKAKILPAILU LOPPUKILPAILU PERJANTAINA 4..005 OSA 1 Laskuaika 30 min Pistemäärä 0 pistettä 1. Mikä on lukujonon seuraava jäsen? Minkä säännön mukaan lukujono muodostuu? 1 4 5 1 1 1
Kenguru 2013 Student sivu 1 / 7 (lukion 2. ja 3. vuosi)
Kenguru 2013 Student sivu 1 / 7 NIMI RYHMÄ Pisteet: Kenguruloikan pituus: Irrota tämä vastauslomake tehtävämonisteesta. Merkitse tehtävän numeron alle valitsemasi vastausvaihtoehto. Väärästä vastauksesta
Oulun seitsemäsluokkalaisten matematiikkakilpailu 18.1.2012 Tehtävät ja ratkaisut
Oulun seitsemäsluokkalaisten matematiikkakilpailu 18.1.2012 Tehtävät ja ratkaisut (1) Kolmen peräkkäisen kokonaisluvun summa on 42. Luvuista keskimmäinen on a) 13 b) 14 c) 15 d) 16. Ratkaisu. Jos luvut
4. Oheisessa 4x4 ruudukossa jokainen merkki tarkoittaa jotakin lukua. Mikä lukua salmiakki vastaa?
Peruskoulun matematiikkakilpailu Loppukilpailu perjantaina 30.1.2015 OSA 1 Ratkaisuaika 30 min Pistemäärä 20 Tässä osassa ei käytetä laskinta. Kaikkiin tehtäviin laskuja, kuvia tai muita perusteluja näkyviin.
Kenguru 2012 Junior sivu 1 / 8 (lukion 1. vuosi)
Kenguru 2012 Junior sivu 1 / 8 Nimi Ryhmä Pisteet: Kenguruloikan pituus: Irrota tämä vastauslomake tehtävämonisteesta. Merkitse tehtävän numeron alle valitsemasi vastausvaihtoehto. Väärästä vastauksesta
B. 2 E. en tiedä C. 6. 2 ovat luonnollisia lukuja?
Nimi Koulutus Ryhmä Jokaisessa tehtävässä on vain yksi vastausvaihtoehto oikein. Laske tehtävät ilman laskinta.. Missä pisteessä suora y = 3x 6 leikkaa x-akselin? A. 3 D. B. E. en tiedä C. 6. Mitkä luvuista,,,
Tässä osassa ei käytetä laskinta. Selitä päätelmäsi lyhyesti tai perustele ratkaisusi laskulausekkeella, kuviolla tms.
OSA 1 Ratkaisuaika 30 min Pistemäärä 20 Tässä osassa ei käytetä laskinta. Selitä päätelmäsi lyhyesti tai perustele ratkaisusi laskulausekkeella, kuviolla tms. 1. Mikä on suurin kokonaisluku, joka toteuttaa
Preliminäärikoe Tehtävät Pitkä matematiikka 4.2.2014 1 / 3
Preliminäärikoe Tehtävät Pitkä matematiikka / Kokeessa saa vastata enintään kymmeneen tehtävään Tähdellä (* merkittyjen tehtävien maksimipistemäärä on 9, muiden tehtävien maksimipistemäärä on 6 Jos tehtävässä
Kenguru 2019 Student lukio
sivu 0 / 7 NIMI LUOKKA Pisteet: Kenguruloikan pituus: Koodi (ope täyttää): Irrota tämä vastauslomake tehtävämonisteesta. Merkitse tehtävän numeron alle valitsemasi vastausvaihtoehto. Oikeasta vastauksesta
Helsingin seitsemäsluokkalaisten matematiikkakilpailu 18.1.2012 Tehtävät ja ratkaisut
Helsingin seitsemäsluokkalaisten matematiikkakilpailu 18.1.2012 Tehtävät ja ratkaisut (1) Laske 6 5 4 5 4 3 + 4 3 2 3 2 1. a) 88 b) 66 c) 78 d) 76 Ratkaisu. Suoralla laskulla: 6 5 4 5 4 3 + 4 3 2 3 2 1
Kenguru 2012 Student sivu 1 / 8 (lukion 2. ja 3. vuosi)
Kenguru 2012 Student sivu 1 / 8 Nimi Ryhmä Pisteet: Kenguruloikan pituus: Irrota tämä vastauslomake tehtävämonisteesta. Merkitse tehtävän numeron alle valitsemasi vastausvaihtoehto. Väärästä vastauksesta
27. 10. joissa on 0 4 oikeata vastausta. Laskimet eivät ole sallittuja.
ÄÙ ÓÒÑ Ø Ñ Ø ÐÔ ÐÙÒ Ð Ù ÐÔ ÐÙÒÔ ÖÙ Ö Tehtäviä on kahdella sivulla; kuusi ensimmäistä tehtävää on monivalintatehtäviä, joissa on 0 4 oikeata vastausta. Laskimet eivät ole sallittuja. 1. Hiiri juoksee tasaisella
Helsingin seitsemäsluokkalaisten matematiikkakilpailu 7.2.2013 Ratkaisuita
Helsingin seitsemäsluokkalaisten matematiikkakilpailu..013 Ratkaisuita 1. Eräs kirjakauppa myy pokkareita yhdeksällä eurolla kappale, ja siellä on meneillään mainoskampanja, jossa seitsemän sellaista ostettuaan
Kenguru 2014 Student sivu 1 / 8 (lukion 2. ja 3. vuosi)
Kenguru 2014 Student sivu 1 / 8 Nimi Ryhmä Pisteet: Kenguruloikan pituus: Irrota tämä vastauslomake tehtävämonisteesta. Merkitse tehtävän numeron alle valitsemasi vastausvaihtoehto. Väärästä vastauksesta
Tehtävä 1 2 3 4 5 6 7 Vastaus
Kenguru Cadet, vastauslomake Nimi Luokka/Ryhmä Pisteet Kenguruloikka Irrota tämä vastauslomake tehtävämonisteesta. Merkitse tehtävän numeron alle valitsemasi vastausvaihtoehto. Jätä ruutu tyhjäksi, jos
Loppukilpailu perjantaina OSA 1 Ratkaisuaika 30 min Pistemäärä 20. Peruskoulun matematiikkakilpailu
Peruskoulun matematiikkakilpailu Loppukilpailu perjantaina 31.1.2014 OSA 1 Ratkaisuaika 30 min Pistemäärä 20 Tässä osassa ei käytetä laskinta. Kaikkiin tehtäviin laskuja, kuvia tai muita perusteluja näkyviin.
MAY1 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 12.4.2016 Julkaiseminen sallittu vain koulun suljetussa verkossa.
KERTAUS Lukujono KERTAUSTEHTÄVIÄ K1. Ratkaisussa annetaan esimerkit mahdollisista säännöistä. a) Jatketaan lukujonoa: 2, 4, 6, 8, 10, 12, 14, 16, Rekursiivinen sääntö on, että lukujonon ensimmäinen jäsen
Kenguru 2006 sivu 1 Cadet-ratkaisut
Kenguru 2006 sivu 1 3 pistettä 1. Kenguru astuu sisään sokkeloon. Se saa käydä vain kolmion muotoisissa huoneissa. Mistä se pääsee ulos? A) a B) b C) c D) d E) e 2. Kengurukilpailu on pidetty Euroopassa
Turun seitsemäsluokkalaisten matematiikkakilpailu 18.1.2012 Tehtävät ja ratkaisut
(1) Laske 20 12 11 21. Turun seitsemäsluokkalaisten matematiikkakilpailu 18.1.2012 Tehtävät ja ratkaisut a) 31 b) 0 c) 9 d) 31 Ratkaisu. Suoralla laskulla 20 12 11 21 = 240 231 = 9. (2) Kahden peräkkäisen
A Lausekkeen 1,1 3 arvo on 1,13 3,3 1,331 B Tilavuus 0,5 m 3 on sama kuin 50 l 500 l l C Luvuista 2 3, 6 7
1 Tuotteen hinta nousee ensin 10 % ja laskee sitten 10 %, joten lopullinen hinta on... alkuperäisestä hinnasta. alkuperäisestä hinnasta. YLIOPPILASTUTKINTO- LAUTAKUNTA 23.3.2016 MATEMATIIKAN KOE PITKÄ
Kenguru Student (lukion 2. ja 3. vuosi) sivu 1 / 6
Kenguru Student (lukion 2. ja 3. vuosi) sivu 1 / 6 NIMI LUOKKA/RYHMÄ Pisteet: Kenguruloikan pituus: Irrota tämä vastauslomake tehtävämonisteesta. Merkitse tehtävän numeron alle valitsemasi vastausvaihtoehto.
Peruskoulun matematiikkakilpailu Loppukilpailu 2010 Ratkaisuja OSA 1
Peruskoulun matematiikkakilpailu Loppukilpailu 010 Ratkaisuja OSA 1 1. Mikä on suurin kokonaisluku, joka toteuttaa seuraavat ehdot? Se on suurempi kuin 100. Se on pienempi kuin 00. Kun se pyöristetään
Kenguru 2016 Benjamin (6. ja 7. luokka)
sivu 1 / 8 NIMI LUOKKA Pisteet: Kenguruloikan pituus: Irrota tämä vastauslomake tehtävämonisteesta. Merkitse tehtävän numeron alle valitsemasi vastausvaihtoehto. Väärästä vastauksesta saat miinuspisteitä
Kolmioitten harjoituksia. Säännöllisten monikulmioitten harjoituksia. Pythagoraan lauseeseen liittyviä harjoituksia
Kolmioitten harjoituksia Piirrä kolmio, jonka sivujen pituudet ovat 4cm, 5 cm ja 10 cm. Minkä yleisen kolmion sivujen pituuksia ja niitten eroja koskevan johtopäätöksen vedät? Määritä huippukulman α suuruus,
MATEMATIIKAN KOE PITKÄ OPPIMÄÄRÄ
YLIOPPILSTUTKINTO- LUTKUNT..7 MTEMTIIKN KOE PITKÄ OPPIMÄÄRÄ -osa Ratkaise kaikki tämän osan tehtävät. Tehtävät arvostellaan pistein. Kunkin tehtävän ratkaisu kirjoitetaan tehtävän alla olevaan ruudukkoon.
Kenguru 2012 Cadet (8. ja 9. luokka)
sivu 1 / 7 NIMI LUOKKA Pisteet: Kenguruloikan pituus: Irrota tämä vastauslomake tehtävämonisteesta. Merkitse tehtävän numeron alle valitsemasi vastausvaihtoehto. Väärästä vastauksesta saat miinuspisteitä
Lieriö ja särmiö Tarkastellaan pintaa, joka syntyy, kun tasoa T leikkaava suora s liikkuu suuntansa
Lieriö ja särmiö Tarkastellaan pintaa, joka syntyy, kun tasoa T leikkaava suora s liikkuu suuntansa säilyttäen pitkin tason T suljettua käyrää (käyrä ei leikkaa itseään). Tällöin suora s piirtää avaruuteen
2 Pistejoukko koordinaatistossa
Pistejoukko koordinaatistossa Ennakkotehtävät 1. a) Esimerkiksi: b) Pisteet sijaitsevat pystysuoralla suoralla, joka leikkaa x-akselin kohdassa x =. c) Yhtälö on x =. d) Sijoitetaan joitain ehdon toteuttavia
Kenguru 2010 Cadet (8. ja 9. luokka) sivu 1 / 5
Kenguru 2010 Cadet (8. ja 9. luokka) sivu 1 / 5 NIMI LUOKKA/RYHMÄ Pisteet: Kenguruloikan pituus: Irrota tämä vastauslomake tehtävämonisteesta. Merkitse tehtävän numeron alle valitsemasi vastausvaihtoehto.
Kenguru 2015 Benjamin (6. ja 7. luokka)
sivu 1 / 8 NIMI LUOKKA Pisteet: Kenguruloikan pituus: Irrota tämä vastauslomake tehtävämonisteesta. Merkitse tehtävän numeron alle valitsemasi vastausvaihtoehto. Väärästä vastauksesta saat miinuspisteitä
Kenguru 2017 Cadet (8. ja 9. luokka)
sivu 1 / 8 NIMI LUOKKA Pisteet: Kenguruloikan pituus: Irrota tämä vastauslomake tehtävämonisteesta. Merkitse tehtävän numeron alle valitsemasi vastausvaihtoehto. Oikeasta vastauksesta saa 3, 4 tai 5 pistettä.
1. a) Laske lukujen 1, 1 ja keskiarvo. arvo. b) Laske lausekkeen. c) Laske integraalin ( x xdx ) arvo. MATEMATIIKAN MALLIKOE PITKÄ OPPIMÄÄRÄ
1 YLIOPPILASTUTKINTO- LAUTAKUNTA 13..015 MATEMATIIKAN MALLIKOE PITKÄ OPPIMÄÄRÄ A-osa Ratkaise kaikki tämän osan tehtävät 1 4. Tehtävät arvostellaan pistein 0 6. Kunkin tehtävän ratkaisu kirjoitetaan tehtävän
Preliminäärikoe Tehtävät A-osio Pitkä matematiikka kevät 2016 Sivu 1 / 4
Preliminäärikoe Tehtävät A-osio Pitkä matematiikka kevät 06 Sivu / 4 Laske yhteensä enintään 0 tehtävää. Kaikki tehtävät arvostellaan asteikolla 0-6 pistettä. Osiossa A EI SAA käyttää laskinta. Osiossa
YLIOPPILASTUTKINTO 22. 3. 2000 MATEMATIIKAN KOE - PITKÄ OPPIMÄÄRÄ
INTERNETIX Ylioppilaskirjoitusten tehtävät Page YLIOPPILSTUTINTO MTEMTIIN OE PITÄ OPPIMÄÄRÄ okeessa saa vastata enintään kymmeneen tehtävään Eräät tehtävät sisältävät useita osia [merkittynä a), b) jne],
Turun seitsemäsluokkalaisten matematiikkakilpailu 22.1.2014 Ratkaisuita
Turun seitsemäsluokkalaisten matematiikkakilpailu 22.1.2014 Ratkaisuita 1. Laske 3 21 12 3. a) 27 b) 28 c) 29 d) 30 e) 31 Ratkaisu. 3 21 12 3 = 63 36 = 27. 2. Peräkylän matematiikkakerholla on kaksi tapaa
Kenguru 2015 Cadet (8. ja 9. luokka)
sivu 1 / 9 NIMI LUOKKA Pisteet: Kenguruloikan pituus: Irrota tämä vastauslomake tehtävämonisteesta. Merkitse tehtävän numeron alle valitsemasi vastausvaihtoehto. Väärästä vastauksesta saat miinuspisteitä
PRELIMINÄÄRIKOE. Lyhyt Matematiikka 3.2.2015
PRELIMINÄÄRIKOE Lyhyt Matematiikka..015 Vastaa enintään kymmeneen tehtävään. Kaikki tehtävät arvostellaan asteikolla 0-6 pistettä. 1. a) Sievennä x( x ) ( x x). b) Ratkaise yhtälö 5( x 4) 5 ( x 4). 1 c)
Kenguru 2011 Benjamin (6. ja 7. luokka)
sivu 1 / 6 NIMI LUOKKA/RYHMÄ Pisteet: Kenguruloikan pituus: Irrota tämä vastauslomake tehtävämonisteesta. Merkitse tehtävän numeron alle valitsemasi vastausvaihtoehto. Jätä ruutu tyhjäksi, jos et halua
Kenguru 2013 Cadet (8. ja 9. luokka)
sivu 1 / 7 NIMI LUOKKA Pisteet: Kenguruloikan pituus: Irrota tämä vastauslomake tehtävämonisteesta. Merkitse tehtävän numeron alle valitsemasi vastausvaihtoehto. Väärästä vastauksesta saat miinuspisteitä
Kenguru 2010 Ecolier (4. ja 5. luokka) sivu 1 / 6
Kenguru 2010 Ecolier (4. ja 5. luokka) sivu 1 / 6 NIMI LUOKKA/RYHMÄ Pisteet: Kenguruloikan pituus: Irrota tämä vastauslomake tehtävämonisteesta. Merkitse tehtävän numeron alle valitsemasi vastausvaihtoehto.
MAA2 POLYNOMIFUNKTIOT JA -YHTÄLÖT
MAA POLYNOMIFUNKTIOT JA YHTÄLÖT 17.11.017 Nimi: 1 3 Yhteensä Kokeessa on kolme osaa: A, B1 ja B. Aosa: Tehtävät tehdään ilman laskinta Tee kaikki neljä () tehtävää (jokainen max 6p) Kun palautat tämän
Matemaattisten Aineiden Opettajien Liitto MAOL ry Valtakunnallinen kuudennen luokan matematiikan koe 2014
Matemaattisten Aineiden Opettajien Liitto MAOL ry Valtakunnallinen kuudennen luokan matematiikan koe 2014 MFKA-Kustannus Oy Rautatieläisenkatu 6, 0020 HELSINKI, puh. (09) 102 378 http://www.mfka.fi Peruskoulun
Kenguru 2013 Cadet (8. ja 9. luokka)
sivu 1 / 12 3 pistettä 1. Annalla on neliöistä koostuva ruutupaperiarkki. Hän leikkaa paperista ruutujen viivoja pitkin mahdollisimman monta oikeanpuoleisessa kuvassa näkyvää kuviota. Kuinka monta ruutua
Kenguru Ecolier, ratkaisut (1 / 5) 4. - 5. luokka
3 pisteen tehtävät Kenguru Ecolier, ratkaisut (1 / 5) 1. Missä kenguru on? (A) Ympyrässä ja kolmiossa, mutta ei neliössä. (B) Ympyrässä ja neliössä, mutta ei kolmiossa. (C) Kolmiossa ja neliössä, mutta
Merkitse kertolasku 3 3 3 3 potenssin avulla ja laske sen arvo.
13 Luvun potenssi Kertolasku, jonka kaikki tekijät ovat samoja, voidaan merkitä lyhyemmin potenssin avulla. Potenssimerkinnässä eksponentti ilmaisee, kuinka monta kertaa kantaluku esiintyy tulossa. Potenssin
Kenguru 2016 Cadet (8. ja 9. luokka)
sivu 1 / 8 NIMI LUOKKA Pisteet: Kenguruloikan pituus: Irrota tämä vastauslomake tehtävämonisteesta. Merkitse tehtävän numeron alle valitsemasi vastausvaihtoehto. Väärästä vastauksesta saat miinuspisteitä
Monikulmiot 1/5 Sisältö ESITIEDOT: kolmio
Monikulmiot 1/5 Sisältö Monikulmio Monikulmioksi kutsutaan tasokuviota, jota rajaa perättäisten janojen muodostama monikulmion piiri. Janat ovat monikulmion sivuja, niiden päätepisteet monikulmion kärkipisteitä.
A-osio. Ilman laskinta. MAOL-taulukkokirja saa olla käytössä. Maksimissaan tunti aikaa. Laske kaikki tehtävät:
MAA3 Geometria Koe 5.2.2016 Jussi Tyni Lue ohjeet ja tee tehtävät huolellisesti! Tee tarvittavat välivaiheet, vaikka laskimesta voikin ottaa tuloksia. Välivaiheet perustelevat vastauksesi. Tee pisteytysruudukko
a b c d + + + + + + + + +
28. 10. 2010!"$#&%(')'+*(#-,.*/1032/465$*784 /(9:*;9."$ *;5> *@9 a b c d 1. + + + 2. 3. 4. 5. 6. + + + + + + + + + + P1. Valitaan kannaksi sivu, jonka pituus on 4. Koska toinen jäljelle jäävistä sivuista
MATEMATIIKAN KOE PITKÄ OPPIMÄÄRÄ
1 YLIOPPILASTUTKINTO- LAUTAKUNTA 25.9.2017 MATEMATIIKAN KOE PITKÄ OPPIMÄÄRÄ A-osa Ratkaise kaikki tämän osan tehtävät 1 4. Tehtävät arvostellaan pistein 0 6. Kunkin tehtävän ratkaisu kirjoitetaan tehtävän
Kenguru 2015 Mini-Ecolier (2. ja 3. luokka) RATKAISUT
sivu 1 / 10 3 pistettä 1. Kuinka monta pilkkua kuvan leppäkertuilla on yhteensä? (A) 17 (B) 18 (C) 19 (D) 20 (E) 21 Ratkaisu: Pilkkuja on 1 + 1 + 1 + 2 + 2 + 1 + 3 + 2 + 3 + 3 = 19. 2. Miltä kuvan pyöreä
Mb02 Koe 26.1.2015 Kuopion Lyseon lukio (KK) sivu 1/1
Mb0 Koe 6.1.015 Kuopion Lyseon lukio (KK) sivu 1/1 Kokeessa on kolme osiota: A, B1 ja B. Osiossa A et saa käyttää laskinta. Palautettuasi Osion A ratkaisut, saat laskimen pöydältä. Taulukkokirjaa voit
PRELIMINÄÄRIKOE PITKÄ MATEMATIIKKA 9.2.2011
PRELIMINÄÄRIKOE PITKÄ MATEMATIIKKA 9..0 Kokeessa saa vastata enintään kymmeneen tehtävään.. Sievennä a) 9 x x 6x + 9, b) 5 9 009 a a, c) log 7 + lne 7. Muovailuvahasta tehty säännöllinen tetraedri muovataan
RATKAISUT a + b 2c = a + b 2 ab = ( a ) 2 2 ab + ( b ) 2 = ( a b ) 2 > 0, koska a b oletuksen perusteella. Väite on todistettu.
RATKAISUT 198 197 198. Olkoon suorakulmion erisuuntaisten sivujen pituudet a ja b sekä neliön sivun pituus c. Tehtävä on mielekäs vain, jos suorakulmio ei ole neliö, joten oletetaan, että a b. Suorakulmion
MATEMATIIKAN KOE, LYHYT OPPIMÄÄRÄ 23.9.2015 HYVÄN VASTAUKSEN PIIRTEITÄ
MATEMATIIKAN KOE, LYHYT OPPIMÄÄRÄ 3.9.05 HYVÄN VASTAUKSEN PIIRTEITÄ Alla oleva vastausten piirteiden, sisältöjen ja pisteitysten luonnehdinta ei sido ylioppilastutkintolautakunnan arvostelua. Lopullisessa
Kenguru 2014 Cadet (8. ja 9. luokka)
sivu 1 / 8 NIMI LUOKKA Pisteet: Kenguruloikan pituus: Irrota tämä vastauslomake tehtävämonisteesta. Merkitse tehtävän numeron alle valitsemasi vastausvaihtoehto. Väärästä vastauksesta saat miinuspisteitä
1 Rationaalifunktio , a) Sijoitetaan nopeus 50 km/h vaihtoaikaa kuvaavan funktion lausekkeeseen.
Juuri 6 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 5.7.06 Rationaalifunktio. a) Sijoitetaan nopeus 50 km/h vaihtoaikaa kuvaavan funktion lausekkeeseen. f (50) 50 8 50 4 8 50 500 400 4 400
Kenguru 2016 Ecolier (4. ja 5. luokka)
sivu 1 / 13 NIMI LUOKKA Pisteet: Kenguruloikan pituus: Irrota tämä vastauslomake tehtävämonisteesta. Merkitse tehtävän numeron alle valitsemasi vastausvaihtoehto. Väärästä vastauksesta saat miinuspisteitä
Kenguru 2016 Student lukiosarjan ratkaisut
sivu 1 / 22 Ratkaisut TEHTÄVÄ 1 2 3 4 5 6 7 8 9 10 VASTAUS A C E C A A B A D A TEHTÄVÄ 11 12 13 14 15 16 17 18 19 20 VASTAUS A C B C B C D B E B TEHTÄVÄ 21 22 23 24 25 26 27 28 29 30 VASTAUS D C C E E
Kenguru 2019 Benjamin 6. ja 7. luokka
sivu 0 / 7 NIMI LUOKKA Pisteet: Kenguruloikan pituus: Koodi: Irrota tämä vastauslomake tehtävämonisteesta. Merkitse tehtävän numeron alle valitsemasi vastausvaihtoehto. Oikeasta vastauksesta saa 3, 4 tai
Matematiikan taito 9, RATKAISUT. , jolloin. . Vast. ]0,2] arvot.
7 Sovelluksia 90 a) Koska sin saa kaikki välillä [,] olevat arvot, niin funktion f ( ) = sin pienin arvo on = ja suurin arvo on ( ) = b) Koska sin saa kaikki välillä [0,] olevat arvot, niin funktion f
Kenguru 2019 Student Ratkaisut
sivu 0 / 22 3 pistettä TEHTÄVÄ 1 2 3 4 5 6 7 8 VASTAUS C B D C B E C A 4 pistettä TEHTÄVÄ 9 10 11 12 13 14 15 16 VASTAUS B B E D A E A A 5 pistettä TEHTÄVÄ 17 18 19 20 21 22 23 24 VASTAUS E E D D C C B
Helsingin seitsemäsluokkalaisten matematiikkakilpailu Ratkaisuita
Helsingin seitsemäsluokkalaisten matematiikkakilpailu 22..204 Ratkaisuita. Laske 23 45. a) 4000 b) 4525 c) 4535 d) 5525 e) 5535 Ratkaisu. Lasketaan allekkain: 45 23 35 90 45 5535 2. Yhden maalipurkin sisällöllä
1 Ensimmäisen asteen polynomifunktio
Ensimmäisen asteen polynomifunktio ENNAKKOTEHTÄVÄT. a) f(x) = x 4 b) Nollakohdassa funktio f saa arvon nolla eli kuvaaja kohtaa x-akselin. Kuvaajan perusteella funktion nollakohta on x,. c) Funktion f
Kenguru 2017 Cadet (8. ja 9. luokka)
sivu 1 / 16 3 pistettä 1. Kello on 17.00. Kuinka paljon kello on 17 tunnin kuluttua? (A) 8.00 (B) 10.00 (C) 11.00 (D) 12.00 (E) 13.00 17 tuntia on 7 tuntia vaille täysi vuorokausi. 17 7 = 10, joten 17
Kenguru 2011 Junior (lukion 1. vuosi)
sivu 1 / 8 NIMI LUOKKA/RYHMÄ Pisteet: Kenguruloikan pituus: Irrota tämä vastauslomake tehtävämonisteesta. Merkitse tehtävän numeron alle valitsemasi vastausvaihtoehto. Jätä ruutu tyhjäksi, jos et halua
1.1 Funktion määritelmä
1.1 Funktion määritelmä Tämän kappaleen otsikoksi valittu funktio on hyvä esimerkki matemaattisesta käsitteestä, johon usein jopa tietämättämme törmäämme arkielämässä. Tutkiessamme erilaisia Jos joukkojen
LAUSEKKEET JA NIIDEN MUUNTAMINEN
LAUSEKKEET JA NIIDEN MUUNTAMINEN 1 LUKULAUSEKKEITA Ratkaise seuraava tehtävä: Retkeilijät ajoivat kahden tunnin ajan polkupyörällä maantietä pitkin 16 km/h nopeudella, ja sitten vielä kävelivät metsäpolkua
MATEMATIIKAN KOE PITKÄ OPPIMÄÄRÄ Merkitään f(x) =x 3 x. Laske a) f( 2), b) f (3) ja c) YLIOPPILASTUTKINTO- LAUTAKUNTA
1 YLIOPPILASTUTKINTO- LAUTAKUNTA 26.3.2018 MATEMATIIKAN KOE PITKÄ OPPIMÄÄRÄ A-osa Ratkaise kaikki tämän osan tehtävät 1 4. Tehtävät arvostellaan pistein 0 6. Kunkin tehtävän ratkaisu kirjoitetaan tehtävän
Kenguru Cadet, ratkaisut (1 / 6) luokka
Kenguru Cadet, ratkaisut (1 / 6) 3 pisteen tehtävät 1. Mikä luvuista on parillinen? (A) 2009 (B) 2 + 0 + 0 + 9 (C) 200 9 (D) 200 9 (E) 200 + 9 Ainoa parillinen on 200 9 = 1800. 2. Kuvan tähti koostuu 12
Avaruuslävistäjää etsimässä
Avaruuslävistäjää etsimässä Avainsanat: avaruusgeometria, mittaaminen Luokkataso: 6.-9. lk, lukio Välineet: lankaa, särmiön muotoisia kartonkisia pakkauksia(esim. maitotölkki tms.), sakset, piirtokolmio,
Kenguru 2015 Student (lukiosarja)
sivu 1 / 9 NIMI RYHMÄ Pisteet: Kenguruloikan pituus: Irrota tämä vastauslomake tehtävämonisteesta. Merkitse tehtävän numeron alle valitsemasi vastausvaihtoehto. Väärästä vastauksesta saat miinuspisteitä
Harjoitustehtävät, syys lokakuu 2010. Helpommat
Harjoitustehtävät, syys lokakuu 010. Helpommat Ratkaisuja 1. Kellon minuutti- ja tuntiosoittimet ovat tasan suorassa kulmassa kello 9.00. Milloin ne ovat seuraavan kerran tasan suorassa kulmassa? Ratkaisu.
Tasogeometria. Tasogeometrian käsitteitä ja osia. olevia pisteitä. Piste P on suoran ulkopuolella.
Tasogeometria Tasogeometrian käsitteitä ja osia Suora on äärettömän pitkä. A ja B ovat suoralla olevia pisteitä. Piste P on suoran ulkopuolella. Jana on geometriassa kahden pisteen välinen suoran osuus.
joissa on 0 4 oikeata vastausta. Laskimet eivät ole sallittuja.
ÄÙ ÓÒ Ñ Ø Ñ Ø ÐÔ ÐÙÒ Ð Ù ÐÔ ÐÙÒ Ô ÖÙ Ö Tehtäviä on kahdella sivulla; kuusi ensimmäistä tehtävää on monivalintatehtäviä, joissa on 0 4 oikeata vastausta. Laskimet eivät ole sallittuja. 1. Kauppias on ostanut
Määrätty integraali. Markus Helén. Mäntän lukio
Määrätty integraali Markus Helén Pinta-ala Monikulmio on tasokuvio, jota rajoittaa suljettu, itseään leikkaamaton murtoviiva. Monikulmio voidaan aina jakaa kolmioiksi. Alueen pinta-ala on näiden kolmioiden
Kenguru 2017 Student lukio
sivu 1 / 9 NIMI LUOKKA Pisteet: Kenguruloikan pituus: Irrota tämä vastauslomake tehtävämonisteesta. Merkitse tehtävän numeron alle valitsemasi vastausvaihtoehto. Oikeasta vastauksesta saa 3, 4 tai 5 pistettä.
Kenguru 2011 Cadet (8. ja 9. luokka)
sivu 1 / 7 NIMI LUOKKA/RYHMÄ Pisteet: Kenguruloikan pituus: Irrota tämä vastauslomake tehtävämonisteesta. Merkitse tehtävän numeron alle valitsemasi vastausvaihtoehto. Jätä ruutu tyhjäksi, jos et halua
XXIII Keski-Suomen lukiolaisten matematiikkakilpailu 23.1.2014, tehtävien ratkaisut
XXIII Keski-Suomen lukiolaisten matematiikkakilpailu 23.1.2014, tehtävien ratkaisut 1. Avaruusalus sijaitsee tason origossa (0, 0) ja liikkuu siitä vakionopeudella johonkin suuntaan, joka ei muutu. Tykki
Avainsanat: geometria, kolmio, ympyrä, pallo, trigonometria, kulma
OuLUMA - Jussi Tyni OuLUMA, sivu 1 Ihastellaan muotoja Avainsanat: geometria, kolmio, ympyrä, pallo, trigonometria, kulma Luokkataso: lukio Välineet: kynä, paperia, laskin Tavoitteet: Tarkoitus on arkielämään
Vastaukset 1. A = (-4,3) B = (6,1) C = (4,8) D = (-7,-1) E = (-1,0) F = (3,-3) G = (7,-9) 3. tämä on ihan helppoa
Vastaukset 1. A = (4,3) B = (6,1) C = (4,8) D = (7,1) E = (1,0) F = (3,3) G = (7,9) 2. 3. tämä on ihan helppoa 4. 5. a) (0, 0) b) Kolmannessa c) Ensimmäisessä d) toisessa ja neljännessä 117 6. 7. 8. esimerkiksi
ClassPad 330 plus ylioppilaskirjoituksissa apuna
ClassPad 330 plus ylioppilaskirjoituksissa apuna Suomessa sallittiin CAS (Computer Algebra System) laskimien käyttö keväästä 2012 alkaen ylioppilaskirjoituksissa. Norjassa ja Ruotsissa vastaava kehitys
Cadets Sivu 1
Cadets 2004 - Sivu 1 3 pistettä 1/ Laske 2004 4 200 A 400800 B 400000 C 1204 1200 E 2804 2/ Tasasivuista kolmiota AC kierretään vastapäivään pisteen A ympäri. Kuinka monta astetta sitä on kierrettävä kunnes
15 Yhtäsuuruuksia 1. Päättele x:llä merkityn punnuksen massa. a) x 4 kg. x 3 kg
1 15 Yhtäsuuruuksia Päättele :llä merkityn punnuksen massa. a) 1 kg 1 kg 1 kg 1 kg 1 kg 1 kg b) 1 kg 5 kg 5 kg 4 kg 3 kg Kuinka monta ympyrää jälkimmäisen vaa an oikealle puolelle on laitettava, jotta
Preliminäärikoe Tehtävät A-osio Pitkä matematiikka kevät 2016 Sivu 1 / 4
Preliminäärikoe Tehtävät A-osio Pitkä matematiikka kevät 06 Sivu / Laske yhteensä enintään 0 tehtävää. Kaikki tehtävät arvostellaan asteikolla 0-6 pistettä. Osiossa A EI SAA käyttää laskinta. Osiossa A
4.1 Urakäsite. Ympyräviiva. Ympyrään liittyvät nimitykset
4.1 Urakäsite. Ympyräviiva. Ympyrään liittyvät nimitykset MÄÄRITELMÄ 6 URA Joukko pisteitä, joista jokainen täyttää määrätyn ehdon, on ura. Urakäsite sisältää siten kaksi asiaa. Pistejoukon jokainen piste
Kenguru Écolier (4. ja 5. luokka) sivu 1/5
Kenguru Écolier (4. ja 5. luokka) sivu 1/5 3 pisteen tehtävät 1. Miettisen perhe syö 3 ateriaa päivässä. Kuinka monta ateriaa he syövät viikon aikana? A) 7 B) 18 C) 21 D) 28 E) 37 2. Aikuisten pääsylippu
Cadets 2004 - Sivu 1 RATKAISUT
Cadets 2004 - Sivu 1 3 pistettä 1/ Laske 2004 4 200 A 400800 B 400000 C 1204 1200 E 2804 2004 4 200= 2004 800= 1204 2/ Tasasivuista kolmiota AC kierretään vastapäivään pisteen A ympäri. Kuinka monta astetta
Preliminäärikoe Pitkä Matematiikka 3.2.2009
Preliminäärikoe Pitkä Matematiikka..9 x x a) Ratkaise yhtälö =. 4 b) Ratkaise epäyhtälö x > x. c) Sievennä lauseke ( a b) (a b)(a+ b).. a) Osakkeen kurssi laski aamupäivällä,4 % ja keskipäivällä 5,6 %.
a) Sievennä lauseke 1+x , kun x 0jax 1. b) Aseta luvut 2, 5 suuruusjärjestykseen ja perustele vastauksesi. 3 3 ja
1 YLIOPPILASTUTKINTO- LAUTAKUNTA 1.10.2018 MATEMATIIKAN KOE PITKÄ OPPIMÄÄRÄ A-osa Ratkaise kaikki tämän osan tehtävät 1 4. Tehtävät arvostellaan pistein 0 6. Kunkin tehtävän ratkaisu kirjoitetaan tehtävän
Lisätehtäviä. Rationaalifunktio. x 2. a b ab. 6u x x x. kx x
MAA6 Lisätehtäviä Laske lisätehtäviä omaan tahtiisi kurssin aikan Palauta laskemasi tehtävät viimeistään kurssikokeeseen. Tehtävät lasketaan ilman laskint Rationaalifunktio Tehtäviä Hyvitys kurssiarvosanassa
Syksyn 2015 Lyhyen matematiikan YO-kokeen TI-Nspire CAS -ratkaisut
Sksn 015 Lhen matematiikan YO-kokeen TI-Nspire CAS -ratkaisut Tekijät: Olli Karkkulainen ja Markku Parkkonen Ratkaisut on laadittu TI-Nspire CAS -tietokoneohjelmalla kättäen Muistiinpanot -sovellusta.
[MATEMATIIKKA, KURSSI 8]
2015 Puustinen, Sinn PYK [MATEMATIIKKA, KURSSI 8] Trigometrian ja avaruusgeometrian teoriaa, tehtäviä ja linkkejä peruskoululaisille Sisällysluettelo 8.1 PYTHAGORAAN LAUSE... 3 8.1.1 JOHDANTOTEHTÄVÄT 1-6...
Kenguru Écolier (4. ja 5. luokka) ratkaisut sivu 1/5
Kenguru Écolier (4. ja 5. luokka) ratkaisut sivu 1/5 3 pisteen tehtävät 1) Miettisen perhe syö 3 ateriaa päivässä. Kuinka monta ateriaa he syövät viikon aikana? A) 7 B) 18 C) 21 D) 28 E) 37 2) Aikuisten
Peruskoulun matematiikkakilpailun alkukilpailun tulosten ja tehtävien analysointi vuodelta 2009
Peruskoulun matematiikkakilpailun alkukilpailun tulosten ja tehtävien analysointi vuodelta 2009 Anastasia Vlasova Peruskoulun matematiikkakilpailutyöryhmä Tämän työn tarkoituksena oli saada käsitys siitä,