MATEMATIIKKAKILPAILU

Koko: px
Aloita esitys sivulta:

Download "MATEMATIIKKAKILPAILU"

Transkriptio

1 Tekniikan Opettajat TOP y Teknologiateollisuuden Kustannusosakeyhtiö Opetushallitus 00-vuotissäätiö Otava AMMATIKKA top Toisen asteen aattillisen koulutuksen kaikkien alojen yhteinen MATEMATIIKKAKILPAILU Nii: Oppilaitos:. Koulutusala:... Luokka:.. Sajat: MERKITSE OMA SARJA O O O. Ylioppilastutkinto. Kaksoistutkinto. Toisen asteen peustutkinto O. Tekniikka ja liikenneala O. Matkailu-, avitseus- ja talousala O. Yhteiskuntatieteiden, liiketalouden ja hallinnon ala sekä Luonnontieteiden ala O. Sosiaali-, teveys- ja liikunta-ala O 5. Kulttuuiala, Luonnonvaa- ja ypäistöala sekä Huanistinen ja kasvatusala AIKAA KOKEEN TEKEMISEEN 0 MINUUTTIA MUKANA KYNÄ, KUMI, VIIVOTIN JA LASKIN

2 . Muunna seuaavat yksiköt a) 000 = b) kg = 000 g c) lita = 000 d) 50 in =,5 h c e) 0 /s = 7 k/h f) 0 o C = 9 K. Laske seuaavat tehtävät. ) : a) b) 6 0, 5 6 c) 6,50 hintainen tuote yytiin 0 % alennuksella. Mikä on tuotteen uusi hinta? p) 9,90 d) Ajattelen eästä lukua. Keon sen :lla ja lisään tuloon. Pyyhin pois viieisen nollan ja vähennän saadusta luvusta, niin silloin saan luvun. Mitä lukua ajattelen? p) e) Juna lähteen klo.5 ja atka kestää h 5 in. Milloin juna on peillä? p) f) Supista ahdollisian yksinketaiseksi utoluvuksi 78 p)

3 . Suoessa on käytössä suhteellinen vaalitapa. Eäässä vaalipiiissä oli neljä puoluetta ja siinä annettiin seuaavasti ääniä: A-puolue 8 77 B-puolue 7 6 C-puolue 70 D-puolue 5 A+B+C+D= 6 07 Äänioikeutettuja oli 7958 a) Mikä oli vaalien äänestysposentti? p) % 77,5% 7958 b) Missä jäjestyksessä edustajat valittiin, kun paikkoja oli jaossa kahdeksan 8)? p) ääniäää/edustaja A-puolue 877 ) 988,5 6) 65,7 8) 59,5 B-puolue 76 ) 85,5 ) 90, 5) 6 907,75 7) 5 56, C-puolue 70 ) 5865 D-puolue 5 B A B C B A B A. a ) Laske palkka, kun tuntipalkka on 5 tunnissa ja 0 tunnin ylittävältä osalta saa 50 % paepaa palkkaa aanantaina klo tiistaina klo keskiviikkona klo tostaina klo pejantaina klo p).5 h h 5in,5h,5h 50% 5,5h 5 68, 00%

4 b) Laske oheisen kuvan kyenkulion) piii ja pinta ala. p) Puuttuvat itat c c 0c c 6c,5c 5,5c Piii Pint a ala 0c c c c 5,5c,5c,5c,5c 6c c 8c c 0c c 5,5c,5c,5c 8,75c 5.a) Eäs keiallinen aine hajoaa siten, että se puoliintuu aina kahdessa viikossa. a) Kuinka onta % aineesta on jäljellä kahdeksan viikon kuluttua? p) b) Kuinka pitkän ajan kuluttua aineen äää alittaa poillen ajan laske aineen alkupeäisestä ääästä)? p) viikkoa / / /8 /6 / /6 /8 /56 /5 /0 a) 00% 6,5% b) 0viikon kuluttua 6 9x 9x 6.a) Ratkaise x yhtälöstä. 9x p) x 9x 5 9x 5 9 5x 8x 90x x 0 5 7x 50 x 0

5 b) Potilaalle on ääätty injektiona annettavaa lääkettä g/kg/vk. Injektioneste on vahvuudeltaan 5 g/l ja sitä annetaan kahdesti vuookaudessa. Kun potilas painaa 56 kg, niin kuinka onta illilitaa liuosta annetaan yhdellä kealla? p) 56kg g / kg/ vk g / vk 8,96l / vk,8l / ke ta,5 l / ke ta ke taa / vk g / vk 8,96l / vk 5g / l 7.a) Neljä henkilöä A, B, C ja D yivät oistaansa siivousalan yityksen. Yityksen avo uodostui kauppahinnasta ja euon saatavista. Tekeiensä työpanosten peusteella A sai yityksen avosta yhden kolasosan, B yhden neljäsosan ja C euoa. Lisäksi oli sovittu, että D saa ainoastaan sijoittaansa alkupääoan euoa 0 posentilla kootettuna. Laske yityksen kauppahinta. p) x x 78000, 5000 x x x x 8000 kauppahint a x b) Nuoipai oli suunnitteleassa asunnon ostoa ja heillä oli käytettävissä ahaa Pankki lupasi ahoittaa 65 % asunnon hinnasta ja kaupan sivukuluista. Vaainsiitoveo kaupan sivukuluina on % ja se lasketaan asunnon hinnasta. Minkä hintainen asunto heillä oli ahdollisuus ostaa? p) Asuntosijoitus kauppahint a va ainsiitoveo Pankin osuus 65%, nuoenpain osuus 5% 0,5 hint a va ainsiitoveo ) hint a vsv ,5 h 0,0h 85 hint a va ainsiitoveo 85 85,0 0 h 000

6 8. Oheisen kuvion ukaisesti akennuksen toiseen päätyseinään on kiinnitetty liekaköysi, jonka toisessa päässä on uohoa ahiva aasi. Aasi ulottuu 6 päähän. a) Piiä hyvä) kuva aasin laidun alueesta. p) b) Laske laituen pinta-ala. p) c) Aasi haluaa 50 % suuean laituen. Kuinka paljon liekaköyttä on jatkettava? Laskusuoitukset näkyviin.) p) 76,5,5 6 ) A b jatkettava toteudu ei istetaan A c,, 6 7, ),6 7,,7,5 7,75,5,5 6,5,5,875,5,5 0,875, sup,5 )) 9) 6 ) ) )

7 9. Maahantuojan vaastossa oli autoja ja oottoipyöiä sekä kolipyöäisiä opoautoja kolipyöiä) yhteensä 0 kappaletta. Kaikkiin näihin ajoneuvoihin tilattiin talvienkaat. Niitä tavittiin yhteensä 8 kappaletta. Kolipyöien ja oottoipyöien enekki oli vähäisepää ja yhteensä niitä olikin vaastossa 0 % väheän kuin autoja. Kuinka onta kappaletta kutakin ajoneuvoa oli aahantuojan vaastossa? 6 p) auto a) oottoipyöä ) kolipyöiä k) 0 a k 8 k 0,6a a 50 k 90 a k) k k 8 0 a 0,6a k 8 k,6a Lentonäytöksessä katsoja kuulee koneen äänen suoaan yläpuoleltaan kiloetin kokeudessa lentävästä koneesta pisteestä A. Katsojan näköhavainto ketoo kuitenkin, että vaakalennossa ollut kone onkin jo pisteessä B. Koneen nopeus on 900 k/h ja äänennopeus on 00 /s. a) Laske välin AB pituus. p) b) Pisteestä B kone poikkeaa lentosuunnasta oikealle 0 astetta ja vähentää nopeuttaan lukeaan 70 k/h. Lennettyään näin 5 sekuntia kone on pisteessä C. Kuinka kauan ääni tulee katsojan kovaan pisteestä C? p) a) Ääni tulee kiloetin kokeudesta ajassa k 000 t s 00 / s 00 / s Koneen lentää atka s v t s s 900k/ h s 8 600s t t s v

8 b) Välin BC pituus s v t s 70k/ h 5s 00 / s 5s 000 Kun koneablinjasta poikkesioikealle pisteessä B, niin siityä oli C oikealle eli väli DCon 500. sin 0 o pisteeseen Kun eteni ABlinjasta pisttestä B pisteeseen D cos 0 niin etäisyys on AD o , Etäisyys AC Etäisyys pisteestä C kuulijan kovaan aassaon 05 Aika 6,8s 00 / s aksii 60 pistettä

MATEMATIIKKAKILPAILU

MATEMATIIKKAKILPAILU Tekniikan Opettajat TOP ry Teknologiateollisuuden Kustannusosakeyhtiö Opetushallitus 100-vuotissäätiö Otava AMMATIKKA top 13.11.2008 Toisen asteen ammattillisen koulutuksen kaikkien alojen yhteinen MATEMATIIKKAKILPAILU

Lisätiedot

MATEMATIIKKAKILPAILU

MATEMATIIKKAKILPAILU Tekniikan Opettajat TOP ry Teknologiateollisuuden Kustannusosakeyhtiö Opetushallitus 100-vuotissäätiö Otava AMMATIKKA top 11.11.2010 Toisen asteen ammattillisen koulutuksen kaikkien alojen yhteinen MATEMATIIKKAKILPAILU

Lisätiedot

MATEMATIIKKAKILPAILU

MATEMATIIKKAKILPAILU Tekniikan Opettajat TOP ry Teknologiateollisuuden Kustannusosakeyhtiö Opetushallitus 100-vuotissäätiö Otava AMMATIKKA top 14.11.2013 Toisen asteen ammattillisen koulutuksen kaikkien alojen yhteinen MATEMATIIKKAKILPAILU

Lisätiedot

MATEMATIIKKAKILPAILU

MATEMATIIKKAKILPAILU Tekniikan Opettajat TOP ry Teknologiateollisuuden Kustannusosakeyhtiö Opetushallitus 100-vuotissäätiö Otava AMMATIKKA top 17.11.2011 Toisen asteen ammattillisen koulutuksen kaikkien alojen yhteinen MATEMATIIKKAKILPAILU

Lisätiedot

MATEMATIIKKAKILPAILU

MATEMATIIKKAKILPAILU Tekniikan Opettajat TOP ry Teknologiateollisuuden Kustannusosakeyhtiö Opetushallitus 100-vuotissäätiö Otava AMMATIKKA top 15.11.2012 Toisen asteen ammattillisen koulutuksen kaikkien alojen yhteinen MATEMATIIKKAKILPAILU

Lisätiedot

MATEMATIIKKAKILPAILU

MATEMATIIKKAKILPAILU Tekniikan Opettajat TOP ry Teknologiateollisuuden Kustannusosakeyhtiö Opetushallitus 100-vuotissäätiö Otava AMMATIKKA top 17.11.2011 Toisen asteen ammattillisen koulutuksen kaikkien alojen yhteinen MATEMATIIKKAKILPAILU

Lisätiedot

100-vuotissäätiö RATKAISUT. Toisen asteen ammattillisen koulutuksen kaikkien alojen yhteinen MATEMATIIKKAKILPAILU

100-vuotissäätiö RATKAISUT. Toisen asteen ammattillisen koulutuksen kaikkien alojen yhteinen MATEMATIIKKAKILPAILU Tekniikan Opettajat TOP ry Teknologiateollisuuden Kustannusosakeyhtiö Opetushallitus 00-vuotissäätiö Otava RATKAISUT AMMATIKKA top 5..0 Toisen asteen ammattillisen koulutuksen kaikkien alojen yhteinen

Lisätiedot

MATEMATIIKKAKILPAILU

MATEMATIIKKAKILPAILU Tekniikan Opettajat TOP ry Teknologiateollisuuden Kustannusosakeyhtiö Opetushallitus 100-vuotissäätiö Otava AMMATIKKA top 13.11.2014 Toisen asteen ammattillisen koulutuksen kaikkien alojen yhteinen MATEMATIIKKAKILPAILU

Lisätiedot

MATEMATIIKKAKILPAILU

MATEMATIIKKAKILPAILU Tekniikan Opettajat TOP ry Teknologiateollisuuden Kustannusosakeyhtiö Opetushallitus 100-vuotissäätiö Otava AMMATIKKA top 12.11.2009 Toisen asteen ammattillisen koulutuksen kaikkien alojen yhteinen MATEMATIIKKAKILPAILU

Lisätiedot

MATEMATIIKAN KOE. AMMATIKKA top 17.11.2005. 2. asteen ammatillisen koulutuksen kaikkien alojen yhteinen matematiikka kilpailu. Oppilaitos:.

MATEMATIIKAN KOE. AMMATIKKA top 17.11.2005. 2. asteen ammatillisen koulutuksen kaikkien alojen yhteinen matematiikka kilpailu. Oppilaitos:. AMMATIKKA top 17.11.005 MATEMATIIKAN KOE. asteen ammatillisen koulutuksen kaikkien alojen yhteinen matematiikka kilpailu Nimi: Oppilaitos:. Koulutusala:... Luokka:.. Sarjat: MERKITSE OMA SARJA 1. Tekniikka

Lisätiedot

MATEMATIIKKAKILPAILU

MATEMATIIKKAKILPAILU Tekniikan Opettajat TOP ry Teknologiateollisuuden Kustannusosakeyhtiö Opetushallitus 100-vuotissäätiö Otava AMMATIKKA top 12.11.2015 Toisen asteen ammatillisen koulutuksen kaikkien alojen yhteinen MATEMATIIKKAKILPAILU

Lisätiedot

1. Muunna seuraavat yksiköt. Ammatillisen koulutuksen kaikkien alojen yhteinen matematiikan valmiuksien kilpailu. Oppilaitos:.. Koulutusala:...

1. Muunna seuraavat yksiköt. Ammatillisen koulutuksen kaikkien alojen yhteinen matematiikan valmiuksien kilpailu. Oppilaitos:.. Koulutusala:... MATEMATIIKAN KOE Ammatillisen koulutuksen kaikkien alojen yhteinen matematiikan valmiuksien kilpailu Nimi: Oppilaitos:.. Koulutusala:... Luokka:.. Sarjat: LAITA MERKKI OMAAN SARJAASI. Tekniikka ja liikenne:..

Lisätiedot

AMMATIKKA top 16.11.2006

AMMATIKKA top 16.11.2006 AMMATIKKA top 16.11.2006 Toisen asteen ammatillisen koulutuksen kaikkien alojen yhteinen MATEMATIIKKAKILPAILU Nimi Oppilaitos Koulutusala Luokka Sarjat: MERKITSE OMA SARJA 1. Tekniikka ja liikenne: O 2.

Lisätiedot

Ammatillisen koulutuksen kaikkien alojen yhteinen matematiikan valmiuksien kilpailu

Ammatillisen koulutuksen kaikkien alojen yhteinen matematiikan valmiuksien kilpailu MATEMATIIKAN KOE Ammatillisen koulutuksen kaikkien alojen yhteinen matematiikan valmiuksien kilpailu Nimi: Oppilaitos:.. Koulutusala:... Luokka:.. AIKAA KOKEEN TEKEMISEEN 90 MINUUTTIA MUKANA KYNÄ, KUMI,

Lisätiedot

Yksinkertainen korkolasku

Yksinkertainen korkolasku Sivu 1/7 Rahan lainaus voidaan innastaa tavaan vuokaukseen, jolloin lainatusta ahasta maksetaan kokoa sitä enemmän, mitä suuemmasta ahamääästä on kysymys ja mitä pidempään aha on lainattuna. äyttöön saatua

Lisätiedot

AMMATIKKA top

AMMATIKKA top AMMATIKKA top 6..006 Toisen asteen ammatillisen koulutuksen kaikkien alojen yhteinen MATEMATIIKKAKILPAILU Nimi Oppilaitos Koulutusala Luokka Sarjat: MERKITSE OMA SARJA. Tekniikka ja liikenne: O. Matkailu-,

Lisätiedot

Ammatillisen koulutuksen kaikkien alojen yhteinen matematiikan valmiuksien kilpailu

Ammatillisen koulutuksen kaikkien alojen yhteinen matematiikan valmiuksien kilpailu MATEMATIIKAN KOE Ammatillisen koulutuksen kaikkien alojen yhteinen matematiikan valmiuksien kilpailu Nimi: Oppilaitos:.. Koulutusala:... Luokka:.. AIKAA KOKEEN TEKEMISEEN 90 MINUUTTIA MUKANA KYNÄ, KUMI,

Lisätiedot

1. a. Ratkaise yhtälö 8 x 5 4 x + 2 x+2 = 0 b. Määrää joku toisen asteen epäyhtälö, jonka ratkaisu on 2 x 1.

1. a. Ratkaise yhtälö 8 x 5 4 x + 2 x+2 = 0 b. Määrää joku toisen asteen epäyhtälö, jonka ratkaisu on 2 x 1. ABIKertaus.. a. Ratkaise yhtälö 8 5 4 + + 0 b. Määrää joku toisen asteen epäyhtälö, jonka ratkaisu on. 4. Jaa polynomi 8 0 5 ensimmäisen asteen tekijöihin ja ratkaise tämän avulla 4 epäyhtälö 8 0 5 0.

Lisätiedot

Ammatillisen koulutuksen kaikkien alojen yhteinen matematiikan valmiuksien kilpailu

Ammatillisen koulutuksen kaikkien alojen yhteinen matematiikan valmiuksien kilpailu MTEMTIIKN KOE mmatiisen kouutuksen kaikkien aojen yhteinen matematiikan vamiuksien kipaiu Nimi: Oppiaitos:.. Kouutusaa:... Luokka:.. Sarjat: LIT MERKKI OMN SRJSI. Tekniikka ja iikenne:... Matkaiu-,ravitsemus-

Lisätiedot

1 Kappaleet ympärillämme 1.

1 Kappaleet ympärillämme 1. 1 1 Kappaleet ypärilläe Mitkä kappaleista ovat a) lieriöitä B, D ja F b) kartioita? A ja E A B C D E F Nieä avaruuskappale. a) b) c) d) kuutio ypyräkartio (neliöpohjainen) pallo pyraidi Kuinka onta pikkukuutiota

Lisätiedot

MATEMATIIKKAKILPAILU

MATEMATIIKKAKILPAILU Tekniikan Opettajat TOP ry Teknologiateollisuuden Kustannusosakeyhtiö Opetushallitus 100-vuotissäätiö Otava AMMATIKKA top 15.11.2007 Toisen asteen ammattillisen koulutuksen kaikkien alojen yhteinen MATEMATIIKKAKILPAILU

Lisätiedot

Öljysäiliö maan alla

Öljysäiliö maan alla Kaigasniemen koulu Öljysäiliö maan alla Yläkoulun ketaava ja syventävä matematiikan tehtävä Vesa Maanselkä 009 Ostat talon jossa on öljylämmitys. Takapihalle on kaivettu maahan sylintein muotoinen öljysäiliö

Lisätiedot

Lukion. Calculus. Paavo Jäppinen Alpo Kupiainen Matti Räsänen Otava PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN

Lukion. Calculus. Paavo Jäppinen Alpo Kupiainen Matti Räsänen Otava PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN alculus Lukion M Geometia Paavo Jäppinen lpo Kupiainen Matti Räsänen Otava PIKTESTIN J KERTUSKOKEIEN TEHTÄVÄT RTKISUINEEN Geometia (M) Pikatesti ja ketauskokeet Tehtävien atkaisut 1 Pikatesti (M) 1 Määitä

Lisätiedot

5.3 Ensimmäisen asteen polynomifunktio

5.3 Ensimmäisen asteen polynomifunktio Yllä olevat polynomit P ( x) = 2 x + 1 ja Q ( x) = 2x 1 ovat esimerkkejä 1. asteen polynomifunktioista: muuttujan korkein potenssi on yksi. Yleisessä 1. asteen polynomifunktioissa on lisäksi vakiotermi;

Lisätiedot

A-osio. Tehdään ilman laskinta ja taulukkokirjaa! Valitse tehtävistä A1-A3 kaksi ja vastaa niihin. Maksimissaan tunti aikaa suorittaa A-osiota.

A-osio. Tehdään ilman laskinta ja taulukkokirjaa! Valitse tehtävistä A1-A3 kaksi ja vastaa niihin. Maksimissaan tunti aikaa suorittaa A-osiota. MAA5.2 Loppukoe 24.9.2013 Jussi Tyni Valitse 6 tehtävää Muista merkitä vastauspaperiin oma nimesi ja tee etusivulle pisteytysruudukko Kaikkiin tehtävien ratkaisuihin välivaiheet näkyviin! A1. A-osio. Tehdään

Lisätiedot

Sivu 1/3 OPETUSHALLITUS Rahoitus-yksikkö E-mail: laskentapalvelut@oph.fi Valtionosuuden saaja: 913 Helsingin kaupunki Oppisopimus Perustiedot PERUSTIEDOT/Oppisopimus Käyttökustannusten valtionosuuksien

Lisätiedot

3 TOISEN ASTEEN POLYNOMIFUNKTIO

3 TOISEN ASTEEN POLYNOMIFUNKTIO 3 TOISEN ASTEEN POLYNOMIFUNKTIO POHDITTAVAA 1. Kuvasta voidaan arvioida, että frisbeegolfkiekko käy noin 9 metrin korkeudella ja se lentää noin 40 metrin päähän. Vastaus: Frisbeegolfkiekko käy n. 9 m:n

Lisätiedot

Mikkelin ammattikorkeakoulun määrälliset tavoitteet ja tunnusluvut kaudelle

Mikkelin ammattikorkeakoulun määrälliset tavoitteet ja tunnusluvut kaudelle 1 Mikkelin ammattikorkeakoulun määrälliset tavoitteet ja tunnusluvut kaudelle 2013 2016 Toteutuma Keskiarvo OPM/sov. tavoite Tavoitteen tot.-% 2014 Tot. muutos-% 2013-2014 2012 2013 2014 2012-2014 2013-2016

Lisätiedot

Ylemmät ammattikorkeakoulututkinnot % 99 % 7 % 8 %

Ylemmät ammattikorkeakoulututkinnot % 99 % 7 % 8 % 1 Centria-ammattikorkeakoulu - Centria yrkeshögskola määrälliset tavoitteet ja tunnusluvut kaudelle 2013 2016 Toteutuma Keskiarvo OPM/sov. tavoite Tavoitteen tot.-% 2014 Tot. muutos-% 2013-2014 2012 2013

Lisätiedot

Kuukauden tilasto: Vieraskielisten opiskelijoiden osuus on kasvanut merkittävästi 2000-luvulta lähtien

Kuukauden tilasto: Vieraskielisten opiskelijoiden osuus on kasvanut merkittävästi 2000-luvulta lähtien Kuukauden tilasto: opiskelijoiden osuus on kasvanut merkittävästi 2000-luvulta lähtien Vuonna 2015 perusopetuksen oppilaista kuusi prosenttia oli vieraskielisiä, ts. äidinkieli oli jokin muu kuin suomi,

Lisätiedot

B sivu 1(6) AMMATTIKORKEAKOULUJEN TEKNIIKAN JA LIIKENTEEN VALINTAKOE

B sivu 1(6) AMMATTIKORKEAKOULUJEN TEKNIIKAN JA LIIKENTEEN VALINTAKOE B sivu 1(6) TEHTÄVÄOSA 7.6.2004 AMMATTIKORKEAKOULUJEN TEKNIIKAN JA LIIKENTEEN VALINTAKOE YLEISOHJEITA Tehtävien suoritusaika on 2 h 45 min. Osa 1 (Tekstin ymmärtäminen) Osassa on 12 valintatehtävää. Tämän

Lisätiedot

AMMATILLINEN ERITYISOPETUS PIRKANMAALLA LUKUJEN VALOSSA. Kevät 2018 Pirkanmaan ammatillisen erityisopetuksen koordinaatiokeskus (PAEK) Sanna Annala

AMMATILLINEN ERITYISOPETUS PIRKANMAALLA LUKUJEN VALOSSA. Kevät 2018 Pirkanmaan ammatillisen erityisopetuksen koordinaatiokeskus (PAEK) Sanna Annala AMMATILLINEN ERITYISOPETUS PIRKANMAALLA LUKUJEN VALOSSA Kevät 2018 Pirkanmaan ammatillisen erityisopetuksen koordinaatiokeskus (PAEK) Sanna Annala KYSELYN TAUSTATIEDOT Kyselyn tarkoituksena oli kartoittaa

Lisätiedot

Vieraskieliset ammatillisessa koulutuksessa Maahanmuuttajat ammatillisessa koulutuksessa -tilaisuus Marianne Portin

Vieraskieliset ammatillisessa koulutuksessa Maahanmuuttajat ammatillisessa koulutuksessa -tilaisuus Marianne Portin ammatillisessa koulutuksessa 14.3.2017 Maahanmuuttajat ammatillisessa koulutuksessa -tilaisuus Marianne Portin . 13/03/2017 Opetushallitus 2 Vieraskielisten opiskelijoiden lukumäärä ja osuus (%) kaikista

Lisätiedot

PRELIMINÄÄRIKOE PITKÄ MATEMATIIKKA 9.2.2011

PRELIMINÄÄRIKOE PITKÄ MATEMATIIKKA 9.2.2011 PRELIMINÄÄRIKOE PITKÄ MATEMATIIKKA 9..0 Kokeessa saa vastata enintään kymmeneen tehtävään.. Sievennä a) 9 x x 6x + 9, b) 5 9 009 a a, c) log 7 + lne 7. Muovailuvahasta tehty säännöllinen tetraedri muovataan

Lisätiedot

Preliminäärikoe Tehtävät A-osio Pitkä matematiikka kevät 2016 Sivu 1 / 4

Preliminäärikoe Tehtävät A-osio Pitkä matematiikka kevät 2016 Sivu 1 / 4 Preliminäärikoe Tehtävät A-osio Pitkä matematiikka kevät 06 Sivu / 4 Laske yhteensä enintään 0 tehtävää. Kaikki tehtävät arvostellaan asteikolla 0-6 pistettä. Osiossa A EI SAA käyttää laskinta. Osiossa

Lisätiedot

file:///h:/tilastot% /ophn%20lomake%201.htm

file:///h:/tilastot% /ophn%20lomake%201.htm Sivu 1/3 OPETUSHALLITUS Rahoitus-yksikkö E-mail: laskentapalvelut@oph.fi Valtionosuuden saaja: 913 Helsingin kaupunki Oppisopimus Perustiedot PERUSTIEDOT/Oppisopimus Käyttökustannusten valtionosuuksien

Lisätiedot

Kenguru 2015 Benjamin (6. ja 7. luokka)

Kenguru 2015 Benjamin (6. ja 7. luokka) sivu 1 / 8 NIMI LUOKKA Pisteet: Kenguruloikan pituus: Irrota tämä vastauslomake tehtävämonisteesta. Merkitse tehtävän numeron alle valitsemasi vastausvaihtoehto. Väärästä vastauksesta saat miinuspisteitä

Lisätiedot

Ristitulolle saadaan toinen muistisääntö determinantin avulla. Vektoreiden v ja w ristitulo saadaan laskemalla determinantti

Ristitulolle saadaan toinen muistisääntö determinantin avulla. Vektoreiden v ja w ristitulo saadaan laskemalla determinantti 14 Ristitulo Avaruuden R 3 vektoreille voidaan määritellä pistetulon lisäksi niin kutsuttu ristitulo. Pistetulosta poiketen ristitulon tulos ei ole reaaliluku vaan avaruuden R 3 vektori. Ristitulosta on

Lisätiedot

Tapa II: Piirretään voiman F vaikutussuora ja lasketaan momentti sen avulla. Kuva 3. d r. voiman F vaikutussuora

Tapa II: Piirretään voiman F vaikutussuora ja lasketaan momentti sen avulla. Kuva 3. d r. voiman F vaikutussuora VOIMAN MOMENTTI Takastellaan jäykkää kappaletta, joka pääsee kietymään akselin O ympäi. VOIMAN MOMENTTI on voiman kietovaikutusta kuvaava suue. Voiman momentti määitellään voiman F ja voiman vaen tulona:

Lisätiedot

Diplomi-insinööri- ja arkkitehtikoulutuksen yhteisvalinta 2017 Insinöörivalinnan matematiikan koe , Ratkaisut (Sarja A)

Diplomi-insinööri- ja arkkitehtikoulutuksen yhteisvalinta 2017 Insinöörivalinnan matematiikan koe , Ratkaisut (Sarja A) Diplomi-insinööri- ja arkkitehtikoulutuksen yhteisvalinta 017 Insinöörivalinnan matematiikan koe 30..017, Ratkaisut (Sarja A) 1. a) Lukujen 9, 0, 3 ja x keskiarvo on. Määritä x. (1 p.) b) Mitkä reaaliluvut

Lisätiedot

Mb8 Koe Kuopion Lyseon lukio (KK) sivu 1/3

Mb8 Koe Kuopion Lyseon lukio (KK) sivu 1/3 Mb8 Koe 4.11.015 Kuopion Lyseon lukio (KK) sivu 1/3 Kokeessa on kaksi osaa. Osa A ratkaistaan tehtäväpaperille ja osa B ratkaistaan konseptipaperille. Osa A: saat käyttää taulukkokirjaa mutta et laskinta.

Lisätiedot

Ylemmät ammattikorkeakoulututkinnot % 99 % 53 % 8 %

Ylemmät ammattikorkeakoulututkinnot % 99 % 53 % 8 % 1 Lapin ammattikorkeakoulun määrälliset tavoitteet ja tunnusluvut kaudelle 2013 2016 Toteutuma Keskiarvo OPM/sov. tavoite Tavoitteen tot.-% 2014 Tot. muutos-% 2013-2014 2012 2013 2014 2012-2014 2013-2016

Lisätiedot

määrittelemässä alueessa? Laske alueen kärkipisteiden koordinaatit. Piirrä kuvio.

määrittelemässä alueessa? Laske alueen kärkipisteiden koordinaatit. Piirrä kuvio. Yo-tehtäviä Mb06 kurssista Sarja 1 k09/12. Mikä on suurin arvo, jonka lauseke x + y saa epäyhtälöiden x 0, y 0, 2x + 3y 24, 5x + 3y 30 määrittelemässä alueessa? Laske alueen kärkipisteiden koordinaatit.

Lisätiedot

Preliminäärikoe Pitkä Matematiikka 3.2.2009

Preliminäärikoe Pitkä Matematiikka 3.2.2009 Preliminäärikoe Pitkä Matematiikka..9 x x a) Ratkaise yhtälö =. 4 b) Ratkaise epäyhtälö x > x. c) Sievennä lauseke ( a b) (a b)(a+ b).. a) Osakkeen kurssi laski aamupäivällä,4 % ja keskipäivällä 5,6 %.

Lisätiedot

Ylemmät ammattikorkeakoulututkinnot % 99 % -10 % 8 %

Ylemmät ammattikorkeakoulututkinnot % 99 % -10 % 8 % 1 Seinäjoen ammattikorkeakoulun määrälliset tavoitteet ja tunnusluvut kaudelle 2013 2016 Toteutuma Keskiarvo OPM/sov. tavoite Tavoitteen tot.-% 2014 Tot. muutos-% 2013-2014 2012 2013 2014 2012-2014 2013-2016

Lisätiedot

Ylemmät ammattikorkeakoulututkinnot % 99 % 4 % 8 % Ammatillinen opettajankoulutus % 116 % 5 % -1 %

Ylemmät ammattikorkeakoulututkinnot % 99 % 4 % 8 % Ammatillinen opettajankoulutus % 116 % 5 % -1 % 1 ammattikorkeakoulun määrälliset tavoitteet ja tunnusluvut kaudelle 2013 2016 Toteutuma Keskiarvo OPM/sov. tavoite Tavoitteen tot.-% 2014 Tot. muutos-% 2013-2014 2012 2013 2014 2012-2014 2013-2016 AMK

Lisätiedot

1. Olkoot vektorit a, b ja c seuraavasti määritelty: a) Määritä vektori. sekä laske sen pituus.

1. Olkoot vektorit a, b ja c seuraavasti määritelty: a) Määritä vektori. sekä laske sen pituus. Matematiikan kurssikoe, Maa4 Vektorit RATKAISUT Sievin lukio Keskiviikko 12.4.2017 VASTAA YHTEENSÄ VIITEEN TEHTÄVÄÄN! MAOL JA LASKIN/LAS- KINOHJELMAT OVAT SALLITTUJA! 1. Olkoot vektorit a, b ja c seuraavasti

Lisätiedot

Ylioppilastutkintolautakunta S t u d e n t e x a m e n s n ä m n d e n

Ylioppilastutkintolautakunta S t u d e n t e x a m e n s n ä m n d e n Ylioilastutkintolautakunta S t u d e n t e a m e n s n ä m n d e n MATEMATIIKAN KOE PITKÄ OPPIMÄÄRÄ 904 HYVÄN VASTAUKSEN PIIRTEITÄ Alla oleva vastausten iiteiden sisältöjen isteitysten luonnehdinta ei

Lisätiedot

Tiedoston välilehdet. sekä Mitenna-toimialaluokitus.

Tiedoston välilehdet. sekä Mitenna-toimialaluokitus. Tiedoston välilehdet 1. Toimialan työlliset maakunnittain VOSE-hankkeessa määritellyllä vähittäiskaupan alalla (poikkeaa siis hieman Tilastokeskuksen pelkästä vähittäiskauppa-luokasta, koska sisältää ajoneuvojen

Lisätiedot

AMMATTIKORKEAKOULUJEN TEKNIIKAN VALINTAKOE

AMMATTIKORKEAKOULUJEN TEKNIIKAN VALINTAKOE AMMATTIKORKEAKOULUJEN TEKNIIKAN VALINTAKOE OHJEITA Valintakokeessa on kaksi osaa: TEHTÄVÄOSA: Ongelmanratkaisu VASTAUSOSA: Ongelmanratkaisu ja Tekstikoe HUOMIOI SEURAAVAA: 1. TEHTÄVÄOSAN tehtävään 7 ja

Lisätiedot

Vastaukset. 1. kaksi. 3. Pisteet eivät ole samalla suoralla. d) x y = x e) 5. a) x y = 2x

Vastaukset. 1. kaksi. 3. Pisteet eivät ole samalla suoralla. d) x y = x e) 5. a) x y = 2x Vastaukset. kaksi. y - - x - - 3. Pisteet eivät ole samalla suoralla. d) x y = x 0 0 3 3 e) 5. a) b) x y = x 0 0 3 6 98 6. a) b) x y = x + 0 3 5 6 7 7. a) b) x y = x - 3 0-3 - 3 3 8. 99 a) y = b) y = -

Lisätiedot

Sivu /3 OPETUSHALLITUS Rahoitus-yksikkö E-mail: laskentapalvelut@oph.fi Valtionosuuden saaja: 93 Helsingin kaupunki Oppisopimus Perustiedot PERUSTIEDOT/Oppisopimus Käyttökustannusten valtionosuuksien laskenta

Lisätiedot

Opetus- ja kulttuuriministeriö 1 Asemointitilastot 2016

Opetus- ja kulttuuriministeriö 1 Asemointitilastot 2016 Opetus- ja kulttuuriministeriö 1 ammattikorkeakoulun määrälliset tavoitteet kaudelle 2017-2020 Ammattikorkeakoulututkinnot Toteutuma Keskiarvo OPM/sov. tavoite Tavoitteen tot.-% 2015 Tot. muutos-% 2014-2015

Lisätiedot

Havainnollistuksia: Merkitään w = ( 4, 3) ja v = ( 3, 2). Tällöin. w w = ( 4) 2 + ( 3) 2 = 25 = 5. v = ( 3) = 13. v = v.

Havainnollistuksia: Merkitään w = ( 4, 3) ja v = ( 3, 2). Tällöin. w w = ( 4) 2 + ( 3) 2 = 25 = 5. v = ( 3) = 13. v = v. Havainnollistuksia: Merkitään w = ( 4, 3) ja v = ( 3, 2). Tällöin w = w w = ( 4) 2 + ( 3) 2 = 25 = 5 v = v v = ( 3) 2 + 2 2 = 13. w =5 3 2 v = 13 4 3 LM1, Kesä 2014 76/102 Normin ominaisuuksia I Lause

Lisätiedot

Opetus- ja kulttuuriministeriö 1 Asemointitilastot 2016

Opetus- ja kulttuuriministeriö 1 Asemointitilastot 2016 Opetus- ja kulttuuriministeriö 1 ammattikorkeakoulun määrälliset tavoitteet kaudelle 2017-2020 Ammattikorkeakoulututkinnot Toteutuma Keskiarvo OPM/sov. tavoite Tavoitteen tot.-% 2015 Tot. muutos-% 2014-2015

Lisätiedot

matematiikka Martti Heinonen Markus Luoma Leena Mannila Kati Rautakorpi-Salmio Timo Tapiainen Tommi Tikka Timo Urpiola

matematiikka Martti Heinonen Markus Luoma Leena Mannila Kati Rautakorpi-Salmio Timo Tapiainen Tommi Tikka Timo Urpiola 9 E matematiikka Martti Heinonen Markus Luoma Leena Mannila Kati Rautakorpi-Salmio Timo Tapiainen Tommi Tikka Timo Urpiola Helsingissä Kustannusosakeyhtiö Otava Yhteenlaskumenetelmän harjoittelua Joskus

Lisätiedot

0, niin vektorit eivät ole kohtisuorassa toisiaan vastaan.

0, niin vektorit eivät ole kohtisuorassa toisiaan vastaan. Tekijä Pitkä matematiikka 4 9.1.016 168 a) Lasketaan vektorien a ja b pistetulo. a b = (3i + 5 j) (7i 3 j) = 3 7 + 5 ( 3) = 1 15 = 6 Koska pistetulo a b 0, niin vektorit eivät ole kohtisuorassa toisiaan

Lisätiedot

Ratkaisut vuosien tehtäviin

Ratkaisut vuosien tehtäviin Ratkaisut vuosien 1958 1967 tehtäviin 1958 Pyörähtäessään korkeusjanansa ympäri tasakylkinen kolmio muodostaa kartion, jonka tilavuus on A, ja pyörähtäessään kylkensä ympäri kappaleen, jonka tilavuus on

Lisätiedot

Tavoitekehitys, Varsinais-Suomi

Tavoitekehitys, Varsinais-Suomi 0 Yleissivistävä koulutus 0 0 0 0 1 Humanistinen ja kasvatusala 707 707 450 437 257 270 2 Kulttuuriala 755 859 346 288 513 571 3 Yhteiskuntat., liiketalouden ja hallinnon ala 1 528 1 819 1 332 1 500 487

Lisätiedot

Koontitehtäviä luvuista 1 9

Koontitehtäviä luvuista 1 9 11 Koontitehtäviä luvuista 1 9 1. a) 3 + ( 8) + = 3 8 + = 3 b) x x 10 = 0 a =, b = 1, c = 10 ( 1) ( 1) 4 ( 10) 1 81 1 9 x 4 4 1 9 1 9 x,5 tai x 4 4 c) (5a) (a + 1) = 5a a 1 = 4a 1. a) Pythagoraan lause:

Lisätiedot

MATEMATIIKAN KOE. AMMATIKKA top 17.11.2005. 2. asteen ammatillisen koulutuksen kaikkien alojen yhteinen matematiikka kilpailu. Oppilaitos:.

MATEMATIIKAN KOE. AMMATIKKA top 17.11.2005. 2. asteen ammatillisen koulutuksen kaikkien alojen yhteinen matematiikka kilpailu. Oppilaitos:. AMMATIKKA top 7..005 MATEMATIIKAN KOE. ateen ammatillien oulutuen aiien alojen yteinen matematiia ilpailu Nimi: Oppilaito:. Koulutuala:... Luoa:.. Sarjat: MERKITSE OMA SARJA. Teniia ja liienne:... Matailu-,raitemu-

Lisätiedot

Kaikkiin tehtäviin laskuja, kuvia tai muita perusteluja näkyviin.

Kaikkiin tehtäviin laskuja, kuvia tai muita perusteluja näkyviin. Peruskoulun matematiikkakilpailu Loppukilpailu perjantaina 1.2.2013 OSA 1 Ratkaisuaika 30 min Pistemäärä 20 Tässä osassa ei käytetä laskinta. Kaikkiin tehtäviin laskuja, kuvia tai muita perusteluja näkyviin.

Lisätiedot

Juuri 10 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty

Juuri 10 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty Juuri 0 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 9..08 Kertaus K. a) Alapaineiden pienin arvo on ja suurin arvo 74, joten vaihteluväli on [, 74]. b) Alapaineiden keskiarvo on 6676870774

Lisätiedot

AMMATILLISTEN PERUSTUTKINTOJEN JA VALMISTAVIEN JA VALMENTAVIEN KOULUTUSTEN OPETUSSUUNNITELMIEN TOIMEENPANO

AMMATILLISTEN PERUSTUTKINTOJEN JA VALMISTAVIEN JA VALMENTAVIEN KOULUTUSTEN OPETUSSUUNNITELMIEN TOIMEENPANO Ammatillinen peruskoulutus AMMATILLISTEN PERUSTUTKINTOJEN JA VALMISTAVIEN JA VALMENTAVIEN KOULUTUSTEN OPETUSSUUNNITELMIEN TOIMEENPANO 2008 10 I VASTAAJAN TIEDOT 1. Koulutuksen järjestäjän nimi - valitkaa

Lisätiedot

Preliminäärikoe Tehtävät A-osio Pitkä matematiikka kevät 2016 Sivu 1 / 4

Preliminäärikoe Tehtävät A-osio Pitkä matematiikka kevät 2016 Sivu 1 / 4 Preliminäärikoe Tehtävät A-osio Pitkä matematiikka kevät 06 Sivu / Laske yhteensä enintään 0 tehtävää. Kaikki tehtävät arvostellaan asteikolla 0-6 pistettä. Osiossa A EI SAA käyttää laskinta. Osiossa A

Lisätiedot

c) 22a 21b x + a 2 3a x 1 = a,

c) 22a 21b x + a 2 3a x 1 = a, Tehtäviä on kahdella sivulla; kuusi ensimmäistä tehtävää on monivalintatehtäviä, joissa on 0 4 oikeata vastausta. 1. Lukion A ja lukion B oppilasmäärien suhde oli a/b vuoden 2017 lopussa. Vuoden 2017 aikana

Lisätiedot

0530 Helsinki KEHITTÄMISEEN VUONNA 2009

0530 Helsinki KEHITTÄMISEEN VUONNA 2009 Vastaanottaja: Opetushallitus HAKEMUS Hakaniemenranta 6 OPPIMISYMPÄRISTÖJEN 0530 Helsinki KEHITTÄMISEEN VUONNA 2009 Hakijana toimivan koulutuksen järjestäjän/ylläpitäjän tiedot Koulutuksen järjestäjän

Lisätiedot

Luvuilla laskeminen. 1. Laske. a) 2 5 b) 6 11 c) 4 + ( 4) d) 1 ( 7) Ratkaisu. a) 2 5 = 7 b) 6 11 = 5 c) 4 + ( 4) = 4 4 = 0 d) 1 ( 7) = = 6

Luvuilla laskeminen. 1. Laske. a) 2 5 b) 6 11 c) 4 + ( 4) d) 1 ( 7) Ratkaisu. a) 2 5 = 7 b) 6 11 = 5 c) 4 + ( 4) = 4 4 = 0 d) 1 ( 7) = = 6 Luvuilla laskeminen. Laske. 6 4 + ( 4) d) ( 7) = 7 6 = 4 + ( 4) = 4 4 = 0 d) ( 7) = + 7 = 6. Laske. ( 9) 7 ( 8) 8 : ( ) d) 4 : 6 ( 9) = 7 7 ( 8) = 6 8 : ( ) = 9 d) 4 : 6 = 7. Muunna 8 sekaluvuksi 6 sekaluvuksi

Lisätiedot

Opetus- ja kulttuuriministeriö 1 Asemointitilastot 2016

Opetus- ja kulttuuriministeriö 1 Asemointitilastot 2016 Opetus- ja kulttuuriministeriö 1 ammattikorkeakoulun määrälliset tavoitteet kaudelle 2017-2020 Ammattikorkeakoulututkinnot Toteutuma Keskiarvo OPM/sov. tavoite Tavoitteen tot.-% 2015 Tot. muutos-% 2014-2015

Lisätiedot

TKK, TTY, LTY, OY, ÅA, TY ja VY insinööriosastojen valintakuulustelujen fysiikan koe 31.5.2006, malliratkaisut ja arvostelu.

TKK, TTY, LTY, OY, ÅA, TY ja VY insinööriosastojen valintakuulustelujen fysiikan koe 31.5.2006, malliratkaisut ja arvostelu. 1 Linja-autoon on suunniteltu vauhtipyörä, johon osa linja-auton liike-energiasta siirtyy jarrutuksen aikana Tätä energiaa käytetään hyväksi kun linja-autoa taas kiihdytetään Linja-auto, jonka nopeus on

Lisätiedot

Merkitse yhtä puuta kirjaimella x ja kirjoita yhtälöksi. Mikä tulee vastaukseksi? 3x + 2x = 5x + =

Merkitse yhtä puuta kirjaimella x ja kirjoita yhtälöksi. Mikä tulee vastaukseksi? 3x + 2x = 5x + = Mikä X? Esimerkki: Merkitse yhtä puuta kirjaimella ja kirjoita yhtälöksi. Mikä tulee vastaukseksi? 3 + 2 = 5 + = 5 + = 1. Merkitse yhtä päärynää kirjaimella ja kirjoita yhtälöksi? Mikä tulee vastaukseksi?

Lisätiedot

TEHTÄVIEN RATKAISUT. Tehtäväsarja A. 2. a) a + b = = 1 b) (a + b) = ( 1) = 1 c) a + ( b) = 13 + ( 12) = = 1.

TEHTÄVIEN RATKAISUT. Tehtäväsarja A. 2. a) a + b = = 1 b) (a + b) = ( 1) = 1 c) a + ( b) = 13 + ( 12) = = 1. TEHTÄVIEN RATKAISUT Tehtäväsarja A.. a) a b b) (a b) ( ) c) a ( b) ( ) ). a) 4 4 5 6 6 6 6 6 b) Pienin arvo: ) 4 4 4 6 6 6 6 6 6 6 Suurin arvo: ) 4) 4 8 7 7 4 6 6 6 6 4. @ tekijät ja Sanoma Pro Oy 06 5.

Lisätiedot

Tehtävien ratkaisut

Tehtävien ratkaisut Tehtävien 1948 1957 ratkaisut 1948 Kun juna matkaa AB kulkiessaan pysähtyy väliasemilla, kuluu matkaan 10 % enemmän aikaa kuin jos se kulkisi pysähtymättä. Kuinka monta % olisi nopeutta lisättävä, jotta

Lisätiedot

1. Kymmenjärjestelmä ja desimaalilukujen yhteen- ja vähennyslaskua

1. Kymmenjärjestelmä ja desimaalilukujen yhteen- ja vähennyslaskua . Kymmenjärjestelmä ja desimaalilukujen yhteen- ja vähennyslaskua. Jatka. + 00 000 0 0 0 0 0 0 0 000 + 0 000 0 0 0 0 0 0 0 + 0,0,,,,,,0 0,,,,,,, + 0,,,0,,0,,00. Merkitse laskutapa ja laske. a), +, + 0,,

Lisätiedot

KYSELY AMMATILLISTEN PERUSTUTKINTOJEN OPISKELIJOILLE TYÖSSÄOPPIMISESTA

KYSELY AMMATILLISTEN PERUSTUTKINTOJEN OPISKELIJOILLE TYÖSSÄOPPIMISESTA KYSELY AMMATILLISTEN PERUSTUTKINTOJEN OPISKELIJOILLE TYÖSSÄOPPIMISESTA Hyvä vastaaja! Kysely on osa kartoitustyötä, jolla keräämme tietoa työssäoppimisesta toisen asteen ammatillisen perustutkinnon opiskelijoilta.

Lisätiedot

Läpäisyn tehostamisohjelman työseminaari

Läpäisyn tehostamisohjelman työseminaari Läpäisyn tehostamisohjelman työseminaari Määrällinen seuranta 2012 2013 Syksyn työseminaari, Turku 6. 7.11.2013 Mia Honkanen, OPH MÄÄRÄLLINEN SEURANTA LUKUVUONNA 2012-2013 Koulutuksen järjestäjiä 55, mikä

Lisätiedot

766323A Mekaniikka, osa 2, kl 2015 Harjoitus 4

766323A Mekaniikka, osa 2, kl 2015 Harjoitus 4 766323A Mekaniikka, osa 2, kl 2015 Harjoitus 4 0. MUISTA: Tenttitehtävä tulevassa päätekokeessa: Fysiikan säilymislait ja symmetria. (Tästä tehtävästä voi saada tentissä kolme ylimääräistä pistettä. Nämä

Lisätiedot

Nuorten koulutuksen maakunnalliset aloittajatarpeet sekä OKM:n ehdotus valtakunnallisiksi tavoitteiksi vuodelle 2016

Nuorten koulutuksen maakunnalliset aloittajatarpeet sekä OKM:n ehdotus valtakunnallisiksi tavoitteiksi vuodelle 2016 Nuorten koulutuksen maakunnalliset aloittajatarpeet sekä OKM:n ehdotus valtakunnallisiksi tavoitteiksi Tavoitekehitys 1 Humanistinen ja kasvatusala 868 861 617-244 -28,3 5 770 5 774 5 830 56 1,0 2 Kulttuuriala

Lisätiedot

1. Mikä on lukujen 10, 9, 8,..., 9, 10 summa? 2. Mikä on lukujen 10, 9, 8,..., 9, 10 tulo? =?

1. Mikä on lukujen 10, 9, 8,..., 9, 10 summa? 2. Mikä on lukujen 10, 9, 8,..., 9, 10 tulo? =? Tehtävät 1 1. Mikä on lukujen 10, 9, 8,..., 9, 10 summa? 2. Mikä on lukujen 10, 9, 8,..., 9, 10 tulo? 3. 16 125 250 =? 4. Kirjoita lausekkeeseen sulut siten, että tulos on nolla. 2 + 2 2 2 : 2 + 2 2 2

Lisätiedot

MAB3 - Harjoitustehtävien ratkaisut:

MAB3 - Harjoitustehtävien ratkaisut: MAB - Harjoitustehtävien ratkaisut: Funktio. Piirretään koordinaatistoakselit ja sijoitetaan pisteet:. a) Funktioiden nollakohdat löydetään etsimällä kuvaajien ja - akselin leikkauspisteitä. Funktiolla

Lisätiedot

Kenguru 2013 Cadet (8. ja 9. luokka)

Kenguru 2013 Cadet (8. ja 9. luokka) sivu 1 / 7 NIMI LUOKKA Pisteet: Kenguruloikan pituus: Irrota tämä vastauslomake tehtävämonisteesta. Merkitse tehtävän numeron alle valitsemasi vastausvaihtoehto. Väärästä vastauksesta saat miinuspisteitä

Lisätiedot

Viite: Opetusministeriön päätökset 25.6.2002 ja 27.9.2002 (36/400/2002) Asia: Opetushallinnon koulutusluokituksen muuttaminen

Viite: Opetusministeriön päätökset 25.6.2002 ja 27.9.2002 (36/400/2002) Asia: Opetushallinnon koulutusluokituksen muuttaminen Dnro 19/400/2004 Pvm 25.3.2004 Jakelussa mainituille Viite: Opetusministeriön päätökset 25.6.2002 ja 27.9.2002 (36/400/2002) Asia: Opetushallinnon koulutusluokituksen muuttaminen Opetusministeriö on päättänyt

Lisätiedot

Sähkökentät ja niiden laskeminen I

Sähkökentät ja niiden laskeminen I ähkökentät ja niiden laskeminen I IÄLTÖ: 1.1. Gaussin lain integaalimuoto ähkökentän vuo uljetun pinnan sisään jäävän kokonaisvaauksen laskeminen Vinkkejä Gaussin lain käyttöön laskettaessa sähkökenttiä

Lisätiedot

Ylioppilastutkintolautakunta S t u d e n t e x a m e n s n ä m n d e n

Ylioppilastutkintolautakunta S t u d e n t e x a m e n s n ä m n d e n Ylioilastutkintolautakunta S t u d e n t e x a m e n s n ä m n d e n MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ 904 HYVÄN VASTAUKSEN PIIRTEITÄ Alla oleva vastausten iiteiden, sisältöjen ja isteitysten luonnehdinta

Lisätiedot

PRELIMINÄÄRIKOE. Lyhyt Matematiikka 3.2.2015

PRELIMINÄÄRIKOE. Lyhyt Matematiikka 3.2.2015 PRELIMINÄÄRIKOE Lyhyt Matematiikka..015 Vastaa enintään kymmeneen tehtävään. Kaikki tehtävät arvostellaan asteikolla 0-6 pistettä. 1. a) Sievennä x( x ) ( x x). b) Ratkaise yhtälö 5( x 4) 5 ( x 4). 1 c)

Lisätiedot

Juuri 12 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty

Juuri 12 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty Juuri Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 7.5.08 Kertaus K. a) Polynomi P() = + 8 on jaollinen polynomilla Q() =, jos = on polynomin P nollakohta, eli P() = 0. P() = + 8 = 54 08 +

Lisätiedot

Juuri 7 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty c) sin 50 = sin ( ) = sin 130 = 0,77

Juuri 7 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty c) sin 50 = sin ( ) = sin 130 = 0,77 Juuri 7 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty.5.07 Kertaus K. a) sin 0 = 0,77 b) cos ( 0 ) = cos 0 = 0,6 c) sin 50 = sin (80 50 ) = sin 0 = 0,77 d) tan 0 = tan (0 80 ) = tan 0 =,9 e)

Lisätiedot

DEE Sähkötekniikan perusteet Tasasähköpiirien lisätehtäviä

DEE Sähkötekniikan perusteet Tasasähköpiirien lisätehtäviä DEE-0 Sähkötekniikan peusteet Tasasähköpiiien lisätehtäviä Laske oheisen piiin vita E = V, R = 05, R =, R 3 = 05, R 4 = 05, R 5 = 05 Ykköstehtävän atkaisuehdotus: Kun kytkentä on oheisen kuvan mukainen,

Lisätiedot

ÄLÄ KÄÄNNÄ SIVUA ENNEN KUIN VALVOJA ANTAA LUVAN!

ÄLÄ KÄÄNNÄ SIVUA ENNEN KUIN VALVOJA ANTAA LUVAN! B 1 (6) AMMATTIKORKEAKOULUJEN TEKNIIKAN JA LIIKENTEEN VALINTAKOE 28.5.2015 OSION 2 TEHTÄVÄT Osio 2 (Matematiikka + looginen päättely + fysiikka/kemia) LUE VASTAUSOHJEET C-OSAN (VASTAUSLOMAKKEEN) KANNESTA

Lisätiedot

Ylemmät ammattikorkeakoulututkinnot % 99 % -31 % 8 %

Ylemmät ammattikorkeakoulututkinnot % 99 % -31 % 8 % 1 Saimaan ammattikorkeakoulun määrälliset tavoitteet ja tunnusluvut kaudelle 2013 2016 Toteutuma Keskiarvo OPM/sov. tavoite Tavoitteen tot.-% 2014 Tot. muutos-% 2013-2014 2012 2013 2014 2012-2014 2013-2016

Lisätiedot

MAA1 päässälaskut. Laske ilman laskinta tälle paperille. Kirjaa myös välivaihe(et).

MAA1 päässälaskut. Laske ilman laskinta tälle paperille. Kirjaa myös välivaihe(et). MAA1 päässälaskut Nimi: Laske ilman laskinta tälle paperille. Kirjaa myös välivaihe(et). 1. 4 (-5) + (-3) (-6) 2. 1 3 2 5 3 2 3. 5 8 6 7 4. 3 2 3 2 : 3 3 5. 1 0 1 1 1 2 1 3 2 2 2 6. 2 3 3 7. 2 1203 8 400

Lisätiedot

1. a) Laske lukujen 1, 1 ja keskiarvo. arvo. b) Laske lausekkeen. c) Laske integraalin ( x xdx ) arvo. MATEMATIIKAN MALLIKOE PITKÄ OPPIMÄÄRÄ

1. a) Laske lukujen 1, 1 ja keskiarvo. arvo. b) Laske lausekkeen. c) Laske integraalin ( x xdx ) arvo. MATEMATIIKAN MALLIKOE PITKÄ OPPIMÄÄRÄ 1 YLIOPPILASTUTKINTO- LAUTAKUNTA 13..015 MATEMATIIKAN MALLIKOE PITKÄ OPPIMÄÄRÄ A-osa Ratkaise kaikki tämän osan tehtävät 1 4. Tehtävät arvostellaan pistein 0 6. Kunkin tehtävän ratkaisu kirjoitetaan tehtävän

Lisätiedot

Kertausosa. 5. Merkitään sädettä kirjaimella r. Kaaren pituus on tällöin r a) sin = 0, , c) tan = 0,

Kertausosa. 5. Merkitään sädettä kirjaimella r. Kaaren pituus on tällöin r a) sin = 0, , c) tan = 0, Kertausosa. a),6 60 576 Peruuttaessa pyörähdyssuunta on vastapäivään. Kulma on siis,4 60 864 a) 576 864 0,88m. a) α b 0,6769... 0,68 (rad) r,m 8cm β,90...,9 (rad) 4cm a) α 0,68 (rad) β,9 (rad). a) 5,0

Lisätiedot

AMIS-tutkimuksen tuloksia nivelvaiheiden näkökulmasta

AMIS-tutkimuksen tuloksia nivelvaiheiden näkökulmasta AMIS-tutkimuksen tuloksia nivelvaiheiden näkökulmasta M/S Mariella 4.5.2017 Suomen Opiskelija-Allianssi - OSKU ry Maiju Korhonen #AMIS2016 Mikä on AMIS-tutkimus? Miten aineistonkeruu toteutettiin? Mitkä

Lisätiedot

Opetus- ja kulttuuriministeriö 1 Asemointitilastot 2016 Laurea-ammattikorkeakoulun määrälliset tavoitteet kaudelle

Opetus- ja kulttuuriministeriö 1 Asemointitilastot 2016 Laurea-ammattikorkeakoulun määrälliset tavoitteet kaudelle Opetus- ja kulttuuriministeriö 1 -ammattikorkeakoulun määrälliset tavoitteet kaudelle 2017-2020 Ammattikorkeakoulututkinnot Toteutuma Keskiarvo OPM/sov. tavoite Tavoitteen tot.-% 2015 Tot. muutos-% 2014-2015

Lisätiedot

Ratkaisut vuosien tehtäviin

Ratkaisut vuosien tehtäviin Ratkaisut vuosien 1978 1987 tehtäviin Kaikki tehtävät ovat pitkän matematiikan kokeista. Eräissä tehtävissä on kaksi alakohtaa; ne olivat kokelaalle vaihtoehtoisia. 1978 Osoita, ettei mikään käyrän y 2

Lisätiedot

SAVON KOULUTUSKUNTAYHTYMÄ

SAVON KOULUTUSKUNTAYHTYMÄ SAVON KOULUTUSKUNTAYHTYMÄ Yksi Suomen suurimmista ammatillisen perus-, jatko- ja täydennyskoulutuksen järjestäjistä n. 8000 opiskelijaa Henkilöstöä n. 850 Koulutamme ammattilaisia neljällä eri paikkakunnalla

Lisätiedot

Kertaus. x x x. K1. a) b) x 5 x 6 = x 5 6 = x 1 = 1 x, x 0. K2. a) a a a a, a > 0

Kertaus. x x x. K1. a) b) x 5 x 6 = x 5 6 = x 1 = 1 x, x 0. K2. a) a a a a, a > 0 Juuri 8 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 8.9.07 Kertaus K. a) 6 4 64 0, 0 0 0 0 b) 5 6 = 5 6 = =, 0 c) d) K. a) b) c) d) 4 4 4 7 4 ( ) 7 7 7 7 87 56 7 7 7 6 6 a a a, a > 0 6 6 a

Lisätiedot

Lataa ilmaiseksi mafyvalmennus.fi/mafynetti. Valmistaudu pitkän- tai lyhyen matematiikan kirjoituksiin ilmaiseksi Mafynetti-ohjelmalla!

Lataa ilmaiseksi mafyvalmennus.fi/mafynetti. Valmistaudu pitkän- tai lyhyen matematiikan kirjoituksiin ilmaiseksi Mafynetti-ohjelmalla! Miten opit parhaiten? Valmistaudu pitkän- tai lyhyen matematiikan kirjoituksiin ilmaiseksi Mafynetti-ohjelmalla! n Harjoittelu tehdään aktiivisesti tehtäviä ratkomalla. Tehtävät kattavat kaikki yo-kokeessa

Lisätiedot