MATEMATIIKKAKILPAILU
|
|
- Auvo Juho-Matti Keskinen
- 9 vuotta sitten
- Katselukertoja:
Transkriptio
1 Tekniikan Opettajat TOP ry Teknologiateollisuuden Kustannusosakeyhtiö Opetushallitus 100-vuotissäätiö Otava AMMATIKKA top Toisen asteen ammattillisen koulutuksen kaikkien alojen yhteinen MATEMATIIKKAKILPAILU Nimi: Oppilaitos:. Koulutusala:... Luokka:.. Sarjat: MERKITSE OMA SARJA O O O 1. Ylioppilastutkinto 2. Kaksois-/kolmoistutkinto 3. Toisen asteen perustutkinto O 1. Tekniikka ja liikenneala O 2. Matkailu-, ravitsemus- ja talousala O 3. Yhteiskuntatieteiden, liiketalouden ja hallinnon ala sekä Luonnontieteiden ala O 4. Sosiaali-, terveys- ja liikunta-ala O 5. Kulttuuriala, Luonnonvara- ja ympäristöala sekä Humanistinen ja kasvatusala AIKAA KOKEEN TEKEMISEEN 120 MINUUTTIA MUKANA KYNÄ, KUMI, VIIVOTIN JA LASKIN
2 1. Muunna seuraavat yksiköt a. 1 mg = 0,001g b. 20 km =20 000m c. 1,6 l =1600cm 3 d. 1,25 h=75min e. 2 kg 40 g =2,040kg f. Nimeä kappale, joka muodostuu neljästä yhdenmuotoisesta kolmiosta. tetraedri 6p 2. Laske seuraavat tehtävät. a. 75% b. 20 c. 1,420 vastaus kolmella desimaalilla. d. 5 e. Mikä on seuraava luku sarjassa 199, 19, 10? 1+9+9=19 1+9=10 1+0=1 vastaus 1 f. Valtamerilaiva tulee laituriin laskuveden aikana. Kansimies heittää laidalle tikapuut, joissa on 50 puolaa ja niiden väli on 25 senttimetriä. Tikkaat ylettyvät juuri veden pintaan. Nousuvesi alkaa, jolloin veden pinta kohoaa viidentoista minuutin ajan 10 senttimetriä minuutissa. Montako puolapuuta on veden alla, kun nousuvesi on korkeimmillaan? 6p Ei yhtään, valtamerilaiva nousee veden mukana.
3 3. Matti ja Liisa Virtanen halusivat uusia omakotitalonsa keittiön. Kesällä 2006 toteutettu keittiöremontti sisälsi entisen keittiökalustuksen ja lattian purkutyöt sekä uuden parkettilattian, seinäkaakeleiden, valaisimien ja uusien keittiökalusteiden asennustyöt. Urakan toteuttamisessa käytettiin kolmea laillistettua urakoitsijayrittäjää. Urakoitsijoille Virtaset maksoivat yrittäjän esittämän laskun mukaan työ- ym. korvaukset. Laskujen pääsisältö oli seuraava: Kalusteet, laatoitus, lattia: - vanhojen kalusteiden, laatoituksen ja lattian purku, uusien kalusteiden asennus, laatoitustyö ja uuden parkettilattian asennus: kalusteet 5122, asennustyöt 1973,60. Sähkötyöt: - uusien valaisimien ja sähkökaapeleiden asennus: tarvikkeet 599,50, työt 619,15. Putkityöt: - hanan ja viemäröinnin kytkentä: matkakustannukset 48,80, työt 42,70. Vuoden 2006 verotukseen Virtaset voivat tehdä ns. kotitalousvähennyksen asunnon kunnossapito- tai perusparannustyöstä yrittäjille maksamistaan työkorvauksista. Kotitalousvähennykseen lasketaan 60 % jokaisesta maksetusta työkorvauksesta. Kotitalousvähennys myönnetään vain siltä osin kuin vähennettävä osa työkustannuksista ylittää 100 euron omavastuun. Kotitalousvähennyksen enimmäismäärässä (2300 ) voi kunnossapito- tai perusparannustyön osuus olla enintään 1150 euroa verovelvollista kohti (lähde: Verohallitus). a. Laske kuinka suuri on Virtasten kotitalousvähennys yhteensä v Paljonko on Matti Virtasen kotitalousvähennyksen määrä vuoden 2006 verotuksessa? Matti ja Liisa ovat sopineet, että Matti hakee kotitalousvähennyksen verotuksessaan. HUOM: Verovelvollisen enimmäismäärä ylittyy (max 1150 ). Matti Virtanen saa omassa verotuksessaan 1150 kotitalousvähennyksen. b. Kuinka suuri on kotitalousvähennyksen enimmäismäärän ylittävä osuus, joka voidaan ottaa huomioon Liisa Virtasen verotuksessa, jos hänkin täyttää kotitalousvähennyksen hakulomakkeet omaan verotukseensa? Paljonko Liisan kotitalousvähennyksen määrä on vuoden 2006 verotuksessa? Kotitalousvähennyksen enimmäismäärä verovelvollista kohti voi olla enimmillään 1150, joten toisen puolison verotukseen voidaan huomioida 1481, = 331,27 331, = 231,27 (vähennetään omavastuu) Liisa Virtanen saa omassa verotuksessaan 231,27 kotitalousvähennyksen.
4 4. a. Mp3-soittimen tallennustilan suuruus on 2 Gt. Mp3-musiikkitiedostojen kokojen keskiarvo on 3,5 Mt. Kuinka monta musiikkitiedostoa voidaan keskimäärin tallentaa kyseiseen Mp3-soittimeen? b. Kylpyammeen täyttäminen kestää 3 minuuttia ja tyhjentäminen 5 minuuttia. Kuinka kauan kestää ammeen täyttäminen, jos sen tulppa on jäänyt pois, jolloin vettä pääsee samanaikaisesti valumaan pois ammeesta? Lasku näkyviin. 5. a. Laske säännöllisen kuusikulmion pinta-ala. Kuusikulmion sivun pituus on 32 cm. Vastaus neliösenttimetreinä cm 2 b.tarkastellaan kuution muotoista kappaletta, jonka särmien pituus on a. Kuution yhdestä nurkasta leikataan leikkaustasolla kolmisivuinen pyramidi siten, että leikatuista kuution särmistä jää pyramidin särmiksi 0,8a. Kuution tilavuus olkoon 24,4 dm 3. Laske pyramidin kaikkien särmien pituus.
5 6.a. Ratkaise kaavasta b. Ratkaise kaavasta tai c. Ratkaise kaavasta 7. Laske seuraavat todennäköisyystehtävät. Laskutoimitukset näkyviin. a. Korttipakasta (pakassa on 52 korttia; 4 maata, jokaisessa maassa 13 korttia) vedetään yksi kortti. Millä todennäköisyydellä vedetty kortti on ruutu tai risti? P( ruutu tai risti ) = = = = 0,5 ( = 50 %) Yhteenlaskusääntö b. Jussi heittää tikkaa ja tikat osuvat tasaisesti tauluun. Tikkataulun säde on 20 cm. Taulu koostuu kymmenestä samankeskisestä yhtä leveästä renkaasta. Renkaan leveys on 2 cm. Laske millä todennäköisyydellä Jussin heittämän tikan osuma on vähintään 5? P( 5 10 ) = = = = 0,36 ( = 36 %)
6 c. Kummassa täysosuman todennäköisyys on suurempi: loton vai vikingloton. Lotossa arvotaan kolmestakymmenestäyhdeksästä seitsemän oikein ja vikinglotossa neljästäkymmenestäkahdeksasta kuusi oikein. Se kuinka monella tavalla k kohdetta voidaan valita n kohteen joukosta lasketaan kaavalla. Lotto Viking Vikinglotossa 8. Autolla ajettiin paikasta A paikkaan D paikkakuntien B ja C kautta seuraavasti: Paikasta A paikkaan B oli matkaa 30 km ja aikaa kului 20 minuuttia. Paikasta B paikkaan C oli matkaa 20 km ja aikaa kului 25 minuuttia. Paikasta C paikkaan D oli matkaa 40 km ja aikaa kului 20 minuuttia. Lisäksi paikassa C pidettiin 15 minuutin tauko. Tehtävässä auton kiihdyttämisen ja hidastamisen vaikutusta ei oteta huomioon. a. Piirrä oheiseen kuvaajaan auton matka-aikakuvaaja paikkakuntien A, B, C ja D välillä. Kuvaaja A-B-C-C-D.
7 b. Ratkaise kuvaajaa apuna käyttäen kuinka kaukana paikasta A oltiin, kun aikaa oli kulunut 1 tunti 10 minuuttia. Piirrä kuvaajalle myös sijaintipiste. Paikasta A matkaa oli 70 km, kuvaajalla piste E. c. Mikä oli keskinopeus välillä A D,kun 9. Alla oleviin tehtäviin laskutoimitus näkyviin. a. Television kuvasuhteella ilmoitetaan kuvaruudun leveyden suhde kuvaruudun korkeuteen. Digilähetysten kuvasuhde on 16:9. Vanhemmissa televisiovastaanottimissa kuvasuhde on 4:3. Kuinka monta prosenttia kuvaruudusta on mustana kuvaruudun ylä-ja alareunoihin jäävien mustien palkkien vuoksi, kun katsotaan digilähetystä kuvaruudusta, jonka kuvasuhde on 4:3? Oletetaan, että kuvan leveys on 16 yksikköä (4x4=16). Vanhassa vastaanottimessa kuvan korkeus on silloin 12 yksikköä (3x4=12) ja digilähetyksissä (yleensä) 9 yksikköä. Siis b. Soikion kaltaisen raviradan alueen pituus on 430 m. Mikä on sen leveys X yhdellä desimaalilla, kun raviradan ympärysmitta on 1000 m? Kaaret ovat puoliympyröitä.
8 10. Alla oleviin tehtäviin laskutoimitus näkyviin. a. Autoilija havaitsi keskellä tietä pysähtyneen toisen auton 100 m:n etäisyydellä. Autoilijan reaktioaika ( so. havainnon teosta jarrutuksen aloittamiseen kulunut aika ) oli 1,0 s ja auton nopeus 100 km/h. Jarrutusmatka olisi ollut 50 m, jos nopeus olisi ollut 80 km/h. Jarrutusmatka on suoraan verrannollinen nopeuden neliöön. Ehtikö kuljettaja pysähdyttää autonsa ennen yhteentörmäystä? b. Hevostila pyrkii aitaamaan mahdollisimman suuren suorakulmion muotoisen laitumen ja jakamaan sen kahteen yhtäsuureen osaan sivujen suuntaisella aidalla. Aitaa on käytettävissä 360 m. Määritä laitumen pituus ja leveys. Merkitään laitumien pituus = y ja ja leveys = x, joiden avulla aidatun alueen pinta-ala = A. ja Pyritään etsimään A:n suurin arvo: x (m) A Pinta-ala A on suurimmillaan kun x = 60 (m) Vastaus: Suorakulmion sivujen mitat ovat 60 m x 90 m tai
9 x pituus x leveys y x, max 60
MATEMATIIKKAKILPAILU
Tekniikan Opettajat TOP ry Teknologiateollisuuden Kustannusosakeyhtiö Opetushallitus 100-vuotissäätiö Otava AMMATIKKA top 15.11.2012 Toisen asteen ammattillisen koulutuksen kaikkien alojen yhteinen MATEMATIIKKAKILPAILU
MATEMATIIKKAKILPAILU
Tekniikan Opettajat TOP ry Teknologiateollisuuden Kustannusosakeyhtiö Opetushallitus 100-vuotissäätiö Otava AMMATIKKA top 11.11.2010 Toisen asteen ammattillisen koulutuksen kaikkien alojen yhteinen MATEMATIIKKAKILPAILU
AMMATIKKA top 16.11.2006
AMMATIKKA top 16.11.2006 Toisen asteen ammatillisen koulutuksen kaikkien alojen yhteinen MATEMATIIKKAKILPAILU Nimi Oppilaitos Koulutusala Luokka Sarjat: MERKITSE OMA SARJA 1. Tekniikka ja liikenne: O 2.
MATEMATIIKKAKILPAILU
Tekniikan Opettajat TOP ry Teknologiateollisuuden Kustannusosakeyhtiö Opetushallitus 100-vuotissäätiö Otava AMMATIKKA top 13.11.2008 Toisen asteen ammattillisen koulutuksen kaikkien alojen yhteinen MATEMATIIKKAKILPAILU
MATEMATIIKKAKILPAILU
Tekniikan Opettajat TOP ry Teknologiateollisuuden Kustannusosakeyhtiö Opetushallitus 100-vuotissäätiö Otava AMMATIKKA top 17.11.2011 Toisen asteen ammattillisen koulutuksen kaikkien alojen yhteinen MATEMATIIKKAKILPAILU
MATEMATIIKKAKILPAILU
Tekniikan Opettajat TOP ry Teknologiateollisuuden Kustannusosakeyhtiö Opetushallitus 100-vuotissäätiö Otava AMMATIKKA top 14.11.2013 Toisen asteen ammattillisen koulutuksen kaikkien alojen yhteinen MATEMATIIKKAKILPAILU
MATEMATIIKKAKILPAILU
Tekniikan Opettajat TOP ry Teknologiateollisuuden Kustannusosakeyhtiö Opetushallitus 100-vuotissäätiö Otava AMMATIKKA top 17.11.2011 Toisen asteen ammattillisen koulutuksen kaikkien alojen yhteinen MATEMATIIKKAKILPAILU
100-vuotissäätiö RATKAISUT. Toisen asteen ammattillisen koulutuksen kaikkien alojen yhteinen MATEMATIIKKAKILPAILU
Tekniikan Opettajat TOP ry Teknologiateollisuuden Kustannusosakeyhtiö Opetushallitus 00-vuotissäätiö Otava RATKAISUT AMMATIKKA top 5..0 Toisen asteen ammattillisen koulutuksen kaikkien alojen yhteinen
AMMATIKKA top
AMMATIKKA top 6..006 Toisen asteen ammatillisen koulutuksen kaikkien alojen yhteinen MATEMATIIKKAKILPAILU Nimi Oppilaitos Koulutusala Luokka Sarjat: MERKITSE OMA SARJA. Tekniikka ja liikenne: O. Matkailu-,
MATEMATIIKAN KOE. AMMATIKKA top 17.11.2005. 2. asteen ammatillisen koulutuksen kaikkien alojen yhteinen matematiikka kilpailu. Oppilaitos:.
AMMATIKKA top 17.11.005 MATEMATIIKAN KOE. asteen ammatillisen koulutuksen kaikkien alojen yhteinen matematiikka kilpailu Nimi: Oppilaitos:. Koulutusala:... Luokka:.. Sarjat: MERKITSE OMA SARJA 1. Tekniikka
MATEMATIIKKAKILPAILU
Tekniikan Opettajat TOP ry Teknologiateollisuuden Kustannusosakeyhtiö Opetushallitus 100-vuotissäätiö Otava AMMATIKKA top 13.11.2014 Toisen asteen ammattillisen koulutuksen kaikkien alojen yhteinen MATEMATIIKKAKILPAILU
MATEMATIIKKAKILPAILU
Tekniikan Opettajat TOP ry Teknologiateollisuuden Kustannusosakeyhtiö Opetushallitus 100-vuotissäätiö Otava AMMATIKKA top 12.11.2009 Toisen asteen ammattillisen koulutuksen kaikkien alojen yhteinen MATEMATIIKKAKILPAILU
MATEMATIIKKAKILPAILU
Tekniikan Opettajat TOP ry Teknologiateollisuuden Kustannusosakeyhtiö Opetushallitus 100-vuotissäätiö Otava AMMATIKKA top 12.11.2015 Toisen asteen ammatillisen koulutuksen kaikkien alojen yhteinen MATEMATIIKKAKILPAILU
1. Muunna seuraavat yksiköt. Ammatillisen koulutuksen kaikkien alojen yhteinen matematiikan valmiuksien kilpailu. Oppilaitos:.. Koulutusala:...
MATEMATIIKAN KOE Ammatillisen koulutuksen kaikkien alojen yhteinen matematiikan valmiuksien kilpailu Nimi: Oppilaitos:.. Koulutusala:... Luokka:.. Sarjat: LAITA MERKKI OMAAN SARJAASI. Tekniikka ja liikenne:..
Ammatillisen koulutuksen kaikkien alojen yhteinen matematiikan valmiuksien kilpailu
MATEMATIIKAN KOE Ammatillisen koulutuksen kaikkien alojen yhteinen matematiikan valmiuksien kilpailu Nimi: Oppilaitos:.. Koulutusala:... Luokka:.. AIKAA KOKEEN TEKEMISEEN 90 MINUUTTIA MUKANA KYNÄ, KUMI,
Ammatillisen koulutuksen kaikkien alojen yhteinen matematiikan valmiuksien kilpailu
MATEMATIIKAN KOE Ammatillisen koulutuksen kaikkien alojen yhteinen matematiikan valmiuksien kilpailu Nimi: Oppilaitos:.. Koulutusala:... Luokka:.. AIKAA KOKEEN TEKEMISEEN 90 MINUUTTIA MUKANA KYNÄ, KUMI,
Vastaukset. 1. kaksi. 3. Pisteet eivät ole samalla suoralla. d) x y = x e) 5. a) x y = 2x
Vastaukset. kaksi. y - - x - - 3. Pisteet eivät ole samalla suoralla. d) x y = x 0 0 3 3 e) 5. a) b) x y = x 0 0 3 6 98 6. a) b) x y = x + 0 3 5 6 7 7. a) b) x y = x - 3 0-3 - 3 3 8. 99 a) y = b) y = -
C. Montako prosenttia pinta-ala kasvaa, jos mittakaava suurenee 5%? a) 5 % b) 7 % c) 9 % d) 10 % e) 15 %
1. Monivalinta. Ympyrän halkaisija on 6. Ympyrän kehän pituus on a) 6π b) 3π c) 9π B. Pienoismallin pinta-ala on neljäsosa todellisesta pinta-alasta. Mittakaava on a) 1 : 2 b) 1:4 c) 1:8 C. Kolmioiden
C. Montako prosenttia pinta-ala kasvaa, jos mittakaava suurenee 5%? a) 5 % b) 7 % c) 9 % d) 10 % e) 15 %
1. 4Monivalinta. Ympyrän halkaisija on 6. Ympyrän kehän pituus on a) 6π b) 3π c) 9π B. Pienoismallin pinta-ala on neljäsosa todellisesta pinta-alasta. Mittakaava on a) 1 : 2 b) 1:4 c) 1:8 C. Kolmioiden
Kolmioitten harjoituksia. Säännöllisten monikulmioitten harjoituksia. Pythagoraan lauseeseen liittyviä harjoituksia
Kolmioitten harjoituksia Piirrä kolmio, jonka sivujen pituudet ovat 4cm, 5 cm ja 10 cm. Minkä yleisen kolmion sivujen pituuksia ja niitten eroja koskevan johtopäätöksen vedät? Määritä huippukulman α suuruus,
Merkitse yhtä puuta kirjaimella x ja kirjoita yhtälöksi. Mikä tulee vastaukseksi? 3x + 2x = 5x + =
Mikä X? Esimerkki: Merkitse yhtä puuta kirjaimella ja kirjoita yhtälöksi. Mikä tulee vastaukseksi? 3 + 2 = 5 + = 5 + = 1. Merkitse yhtä päärynää kirjaimella ja kirjoita yhtälöksi? Mikä tulee vastaukseksi?
MATEMATIIKKA PAOJ2 Harjoitustehtävät
MATEMATIIKKA PAOJ2 Harjoitustehtävät 6. Laske kuvan suorakulmion pinta-ala. ( T ) 1. Täytä taulukko m 12 1,45 0,805 2. Täytä taulukko mm 12345 4321 765 23,5 7. Laske kuvan suorakulmion pinta-ala.( T )
PRELIMINÄÄRIKOE PITKÄ MATEMATIIKKA 9.2.2011
PRELIMINÄÄRIKOE PITKÄ MATEMATIIKKA 9..0 Kokeessa saa vastata enintään kymmeneen tehtävään.. Sievennä a) 9 x x 6x + 9, b) 5 9 009 a a, c) log 7 + lne 7. Muovailuvahasta tehty säännöllinen tetraedri muovataan
2.1 Yhdenmuotoiset suorakulmaiset kolmiot
2.1 Yhdenmuotoiset suorakulmaiset kolmiot 2.2 Kulman tangentti 2.3 Sivun pituus tangentin avulla 2.4 Kulman sini ja kosini 2.5 Trigonometristen funktioiden käyttöä 2.7 Avaruuskappaleita 2.8 Lieriö 2.9
Ylemmät ammattikorkeakoulututkinnot 15 22 19 19 30 63 % 99 % -14 % 8 %
1 Yrkeshögskolan Novia määrälliset tavoitteet ja tunnusluvut kaudelle 2013 2016 Toteutuma Keskiarvo OPM/sov. tavoite Tavoitteen tot.-% 2014 Tot. muutos-% 2013-2014 2012 2013 2014 2012-2014 2013-2016 AMK
Kertaustehtävien ratkaisut
Kertaustehtävien ratkaisut. x y = x + 6 (x, y) 0 0 + 6 = 6 (0, 6) + 6 = (, ) + 6 = 0 (, 0) y-akselin leikkauspiste on (0, 6) ja x-akselin (, 0).. x y = x (x, y) 0 0 (0, 0) (, ) (, ) x y = x + (x, y) 0
Ratkaisuja, Tehtävät
ja, Tehtävät 988-97 988 a) Osoita, että lausekkeiden x 2 + + x 4 + 2x 2 ja x 2 + - x 4 + 2x 2 arvot ovat toistensa käänteislukuja kaikilla x:n arvoilla. b) Auton jarrutusmatka on verrannollinen nopeuden
MATEMATIIKAN KOE PITKÄ OPPIMÄÄRÄ
YLIOPPILSTUTKINTO- LUTKUNT..7 MTEMTIIKN KOE PITKÄ OPPIMÄÄRÄ -osa Ratkaise kaikki tämän osan tehtävät. Tehtävät arvostellaan pistein. Kunkin tehtävän ratkaisu kirjoitetaan tehtävän alla olevaan ruudukkoon.
[MATEMATIIKKA, KURSSI 8]
2015 Puustinen, Sinn PYK [MATEMATIIKKA, KURSSI 8] Trigometrian ja avaruusgeometrian teoriaa, tehtäviä ja linkkejä peruskoululaisille Sisällysluettelo 8.1 PYTHAGORAAN LAUSE... 3 8.1.1 JOHDANTOTEHTÄVÄT 1-6...
MATEMATIIKKAKILPAILU
Tekniikan Opettajat TOP y Teknologiateollisuuden Kustannusosakeyhtiö Opetushallitus 00-vuotissäätiö Otava AMMATIKKA top 0..06 Toisen asteen aattillisen koulutuksen kaikkien alojen yhteinen MATEMATIIKKAKILPAILU
Apua esimerkeistä Kolmio teoriakirja. nyk/matematiikka/8_luokka/yhtalot_ yksilollisesti. Osio
Aloita A:sta Ratkaise osion (A, B, C, D, jne ) yhtälö vihkoosi. Pisteytä se itse ohjeen mukaan. Merkitse pisteet sinulle jaettavaan tehtävä- ja arviointilappuun. Kun olet saanut riittävästi pisteitä (6)
MAA03.3 Geometria Annu
1 / 8 2.2.2018 klo 11.49 MAA03.3 Geometria Annu Kokeessa on kolme (3) osaa; Monivalinnat 1 ja 2 ovat pakollisia (6 p /tehtävä, yht. 12 p) B1 osa Valitse kuusi (6) mieleisintä tehtävää tehtävistä 3-10.
Valitse vain kuusi tehtävää! Tee etusivun yläreunaan pisteytysruudukko! Kaikkiin tehtäviin tarvittavat välivaiheet esille!
5.4.013 Jussi Tyni 1. Selitä ja piirrä seuraavat lyhyesti: a) Kehäkulma ja keskikulma b) Todista, että kolmion kulmien summa on 180 astetta. Selitä päätelmiesi perustelut.. a) Suorakulmaisen kolmion kateetit
B. 2 E. en tiedä C. 6. 2 ovat luonnollisia lukuja?
Nimi Koulutus Ryhmä Jokaisessa tehtävässä on vain yksi vastausvaihtoehto oikein. Laske tehtävät ilman laskinta.. Missä pisteessä suora y = 3x 6 leikkaa x-akselin? A. 3 D. B. E. en tiedä C. 6. Mitkä luvuista,,,
FYSIIKAN HARJOITUSTEHTÄVIÄ
FYSIIKAN HARJOITUSTEHTÄVIÄ MEKANIIKKA Nopeus ja keskinopeus 6. Auto kulkee 114 km matkan tunnissa ja 13 minuutissa. Mikä on auton keskinopeus: a) Yksikössä km/h 1. Jauhemaalaamon kuljettimen nopeus on
Tasogeometria. Tasogeometrian käsitteitä ja osia. olevia pisteitä. Piste P on suoran ulkopuolella.
Tasogeometria Tasogeometrian käsitteitä ja osia Suora on äärettömän pitkä. A ja B ovat suoralla olevia pisteitä. Piste P on suoran ulkopuolella. Jana on geometriassa kahden pisteen välinen suoran osuus.
Cadets Sivu 1
Cadets 2004 - Sivu 1 3 pistettä 1/ Laske 2004 4 200 A 400800 B 400000 C 1204 1200 E 2804 2/ Tasasivuista kolmiota AC kierretään vastapäivään pisteen A ympäri. Kuinka monta astetta sitä on kierrettävä kunnes
Cadets 2004 - Sivu 1 RATKAISUT
Cadets 2004 - Sivu 1 3 pistettä 1/ Laske 2004 4 200 A 400800 B 400000 C 1204 1200 E 2804 2004 4 200= 2004 800= 1204 2/ Tasasivuista kolmiota AC kierretään vastapäivään pisteen A ympäri. Kuinka monta astetta
Lue tehtävänannot huolella. Tee pisteytysruudukko 1. konseptin yläreunaan.
MAA Koe..05 Jussi Tyni Lue tehtävänannot huolella. Tee pisteytysruudukko. konseptin yläreunaan. A-osio. Ilman laskinta! MAOL:in taulukkokirja saa olla käytössä. Laske kaikki tehtävät. Vastaa tälle paperille.
Ylioppilastutkintolautakunta S tudentexamensnämnden
Ylioppilastutkintolautakunta S tudentexamensnämnden MATEMATIIKAN KOE, LYHYT OPPIMÄÄRÄ.9.013 HYVÄN VASTAUKSEN PIIRTEITÄ Alla oleva vastausten piirteiden ja sisältöjen luonnehdinta ei sido ylioppilastutkintolautakunnan
PERUSKOULUN MATEMATIIKKAKILPAILU LOPPUKILPAILU PERJANTAINA
PERUSKOULUN MATEMATIIKKAKILPAILU LOPPUKILPAILU PERJANTAINA 4..005 OSA 1 Laskuaika 30 min Pistemäärä 0 pistettä 1. Mikä on lukujonon seuraava jäsen? Minkä säännön mukaan lukujono muodostuu? 1 4 5 1 1 1
KORJAUSMATIIKKA 3, TEHTÄVÄT
1 SISÄLTÖ KORJAUSMATIIKKA, TEHTÄVÄT 1) Potenssi 2) Juuri ) Polynomit ) Ensimmäisen asteen yleinen yhtälön ratkaisu 5) Yhtälöt ongelmaratkaisuissa ja toisen asteen yhtälön ratkaisukaava TEHTÄVÄT: Käythän
Kenguru 2013 Cadet (8. ja 9. luokka)
sivu 1 / 7 NIMI LUOKKA Pisteet: Kenguruloikan pituus: Irrota tämä vastauslomake tehtävämonisteesta. Merkitse tehtävän numeron alle valitsemasi vastausvaihtoehto. Väärästä vastauksesta saat miinuspisteitä
AMMATTISTARTIN ALOITTAVAT. Syksyn 2010 valtakunnallinen kysely. Yhteenvetoraportti, N=742, Julkaistu: 9.9.2010. Vertailuryhmä: Kaikki vastaajat
AMMATTISTARTIN ALOITTAVAT. Syksyn 2010 valtakunnallinen kysely. Yhteenvetoraportti, N=742, Julkaistu: 9.9.2010 Vertailuryhmä: Kaikki vastaajat Oletko? Nainen 431 58,09% Mies 311 41,91% 742 100% Ikäsi?
A Lausekkeen 1,1 3 arvo on 1,13 3,3 1,331 B Tilavuus 0,5 m 3 on sama kuin 50 l 500 l l C Luvuista 2 3, 6 7
1 Tuotteen hinta nousee ensin 10 % ja laskee sitten 10 %, joten lopullinen hinta on... alkuperäisestä hinnasta. alkuperäisestä hinnasta. YLIOPPILASTUTKINTO- LAUTAKUNTA 23.3.2016 MATEMATIIKAN KOE PITKÄ
RATKAISUT a + b 2c = a + b 2 ab = ( a ) 2 2 ab + ( b ) 2 = ( a b ) 2 > 0, koska a b oletuksen perusteella. Väite on todistettu.
RATKAISUT 198 197 198. Olkoon suorakulmion erisuuntaisten sivujen pituudet a ja b sekä neliön sivun pituus c. Tehtävä on mielekäs vain, jos suorakulmio ei ole neliö, joten oletetaan, että a b. Suorakulmion
MAA1.1 Koe Jussi Tyni Kastellin lukio Tee pisteytysruudukko! Vastaa yhteensä 6 tehtävään. Muista kirjoittaa selkeät välivaiheet
MAA. Koe Jussi Tyni 0.9.0 Tee pisteytysruudukko! Vastaa yhteensä tehtävään. Muista kirjoittaa selkeät välivaiheet A-OSIO Vastaa tehtävistä A A kahteen ja palauta vastaukset. Tähän osioon on käytettävissä
Avautuvat työpaikat (ammattirakenteen muutos + poistumat )
KM 8.5.2007 Avautuvat työpaikat (ammattirakenteen muutos + poistumat ) Taulukko 1.1 Avautuvat työpaikat 2005-2020, henkeä vuodessa ( Tavoitekehitys, Pääammattiryhmät) Pirkan- Pääammattiryhmät maa Häme
AMMATTIKORKEAKOULUJEN LUONNONVARA- JA YMPÄRIS- TÖALAN VALINTAKOE 2008 MATEMATIIKKA
AMMATTIKORKEAKOULUJEN LUONNONVARA- JA YMPÄRIS- TÖALAN VALINTAKOE 008 MATEMATIIKKA TEHTÄVIEN RATKAISUT Tehtävä. Maljakossa on 0 keltaista ja 0 punaista tulppaania, joista puutarhuriopiskelijan on määrä
Geometrian kertausta. MAB2 Juhani Kaukoranta Raahen lukio
Geometrian kertausta MAB2 Juhani Kaukoranta Raahen lukio Ristikulmat Ristikulmat ovat yhtä suuret keskenään Vieruskulmien summa 180 Muodostavat yhdessä oikokulman 180-50 =130 50 Samankohtaiset kulmat Kun
Ylemmät ammattikorkeakoulututkinnot 131 159 163 151 130 125 % 99 % 3 % 8 %
1 Turun ammattikorkeakoulun määrälliset tavoitteet ja tunnusluvut kaudelle 2013 2016 Toteutuma Keskiarvo OPM/sov. tavoite Tavoitteen tot.-% 2014 Tot. muutos-% 2013-2014 2012 2013 2014 2012-2014 2013-2016
PRELIMINÄÄRIKOE. Lyhyt Matematiikka 3.2.2015
PRELIMINÄÄRIKOE Lyhyt Matematiikka..015 Vastaa enintään kymmeneen tehtävään. Kaikki tehtävät arvostellaan asteikolla 0-6 pistettä. 1. a) Sievennä x( x ) ( x x). b) Ratkaise yhtälö 5( x 4) 5 ( x 4). 1 c)
A-osa. Ratkaise kaikki tämän osan tehtävät. Tehtävät arvostellaan pistein 0-6. Taulukkokirjaa saa käyttää apuna, laskinta ei.
PITKÄ MATEMATIIKKA PRELIMINÄÄRIKOE 7..07 NIMI: A-osa. Ratkaise kaikki tämän osan tehtävät. Tehtävät arvostellaan pistein 0-. Taulukkokirjaa saa käyttää apuna, laskinta ei.. Valitse oikea vaihtoehto ja
AMMATTIKORKEAKOULUJEN LUONNONVARA- JA YMPÄRISTÖALAN VALINTAKOE
AMMATTIKORKEAKOULUJEN LUONNONVARA- JA YMPÄRISTÖALAN VALINTAKOE Matematiikan koe 1.6.2016 Nimi: Henkilötunnus: VASTAUSOHJEET 1. Koeaika on 2 tuntia (klo 12.00 14.00). Kokeesta saa poistua aikaisintaan klo
matematiikka Martti Heinonen Markus Luoma Leena Mannila Kati Rautakorpi-Salmio Timo Tapiainen Tommi Tikka Timo Urpiola
9 E matematiikka Martti Heinonen Markus Luoma Leena Mannila Kati Rautakorpi-Salmio Timo Tapiainen Tommi Tikka Timo Urpiola Helsingissä Kustannusosakeyhtiö Otava Yhteenlaskumenetelmän harjoittelua Joskus
A-osio. Ilman laskinta. MAOL-taulukkokirja saa olla käytössä. Maksimissaan tunti aikaa. Laske kaikki tehtävät:
MAA3 Geometria Koe 5.2.2016 Jussi Tyni Lue ohjeet ja tee tehtävät huolellisesti! Tee tarvittavat välivaiheet, vaikka laskimesta voikin ottaa tuloksia. Välivaiheet perustelevat vastauksesi. Tee pisteytysruudukko
Kenguru Student (lukion 2. ja 3. vuosi) sivu 1 / 6
Kenguru Student (lukion 2. ja 3. vuosi) sivu 1 / 6 NIMI LUOKKA/RYHMÄ Pisteet: Kenguruloikan pituus: Irrota tämä vastauslomake tehtävämonisteesta. Merkitse tehtävän numeron alle valitsemasi vastausvaihtoehto.
Kenguru 2019 Student lukio
sivu 0 / 7 NIMI LUOKKA Pisteet: Kenguruloikan pituus: Koodi (ope täyttää): Irrota tämä vastauslomake tehtävämonisteesta. Merkitse tehtävän numeron alle valitsemasi vastausvaihtoehto. Oikeasta vastauksesta
file:///h:/tilastot% /ophn%20lomake%201.htm
Sivu 1/3 OPETUSHALLITUS Rahoitus-yksikkö E-mail: laskentapalvelut@oph.fi Valtionosuuden saaja: 913 Helsingin kaupunki Oppisopimus Perustiedot PERUSTIEDOT/Oppisopimus Käyttökustannusten valtionosuuksien
3 TOISEN ASTEEN POLYNOMIFUNKTIO
3 TOISEN ASTEEN POLYNOMIFUNKTIO POHDITTAVAA 1. Kuvasta voidaan arvioida, että frisbeegolfkiekko käy noin 9 metrin korkeudella ja se lentää noin 40 metrin päähän. Vastaus: Frisbeegolfkiekko käy n. 9 m:n
Kenguru 2013 Student sivu 1 / 7 (lukion 2. ja 3. vuosi)
Kenguru 2013 Student sivu 1 / 7 NIMI RYHMÄ Pisteet: Kenguruloikan pituus: Irrota tämä vastauslomake tehtävämonisteesta. Merkitse tehtävän numeron alle valitsemasi vastausvaihtoehto. Väärästä vastauksesta
Algebran ja Geometrian laskukokoelma
Algebran ja Geometrian laskukokoelma A. Potenssien laskusäännöt Sievennä 1. (r 3 ) 4 2. (2a 3 ) 3 3. x 3 x 5 4. k11 k 5 5. 2a2 a 7 5a 3 6. (-3x 2 y 3 ) 3 7. ( 1 4 ) 3 8. (2 a2 Lisätehtäviä b 3)3 9. (a
Kaikkiin tehtäviin laskuja, kuvia tai muita perusteluja näkyviin.
Peruskoulun matematiikkakilpailu Loppukilpailu perjantaina 1.2.2013 OSA 1 Ratkaisuaika 30 min Pistemäärä 20 Tässä osassa ei käytetä laskinta. Kaikkiin tehtäviin laskuja, kuvia tai muita perusteluja näkyviin.
Pythagoraan polku 16.4.2011
Pythagoraan polku 6.4.20. Todista väittämä: Jos tasakylkisen kolmion toista kylkeä jatketaan omalla pituudellaan huipun toiselle puolelle ja jatkeen päätepiste yhdistetään kannan toisen päätepisteen kanssa,
1 Rationaalifunktio , a) Sijoitetaan nopeus 50 km/h vaihtoaikaa kuvaavan funktion lausekkeeseen.
Juuri 6 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 5.7.06 Rationaalifunktio. a) Sijoitetaan nopeus 50 km/h vaihtoaikaa kuvaavan funktion lausekkeeseen. f (50) 50 8 50 4 8 50 500 400 4 400
Sivu /3 OPETUSHALLITUS Rahoitus-yksikkö E-mail: laskentapalvelut@oph.fi Valtionosuuden saaja: 93 Helsingin kaupunki Oppisopimus Perustiedot PERUSTIEDOT/Oppisopimus Käyttökustannusten valtionosuuksien laskenta
a) Piirrä hahmotelma varjostimelle muodostuvan diffraktiokuvion maksimeista 1, 2 ja 3.
Ohjeita: Tee jokainen tehtävä siististi omalle sivulleen/sivuilleen. Merkitse jos tehtävä jatkuu seuraavalle konseptille. Kirjoita ratkaisuihin näkyviin tarvittavat välivaiheet ja perustele lyhyesti käyttämästi
Preliminäärikoe Tehtävät Pitkä matematiikka 4.2.2014 1 / 3
Preliminäärikoe Tehtävät Pitkä matematiikka / Kokeessa saa vastata enintään kymmeneen tehtävään Tähdellä (* merkittyjen tehtävien maksimipistemäärä on 9, muiden tehtävien maksimipistemäärä on 6 Jos tehtävässä
Kappaleiden tilavuus. Suorakulmainensärmiö.
Kappaleiden tilavuus Suorakulmainensärmiö. Tilavuus (volyymi) V = pohjan ala kertaa korkeus. Tankomaisista kappaleista puhuttaessa nimitetään korkeutta tangon pituudeksi. Pohjan ala A = b x h Korkeus (pituus)
Tekijät: Tarja Kokkila, Maija Salmivaara OuLUMA, sivu 1
Tekijät: Tarja Kokkila, Maija Salmivaara OuLUMA, sivu 1 Mittakaava Avainsanat: yhdenmuotoisuus, suurennos, pienennös, mittakaava, mittaaminen, pinta-ala, tilavuus, suhde Luokkataso: 3-9 Välineet: kynä,
KYSELY AMMATILLISTEN PERUSTUTKINTOJEN OPISKELIJOILLE TYÖSSÄOPPIMISESTA
KYSELY AMMATILLISTEN PERUSTUTKINTOJEN OPISKELIJOILLE TYÖSSÄOPPIMISESTA Hyvä vastaaja! Kysely on osa kartoitustyötä, jolla keräämme tietoa työssäoppimisesta toisen asteen ammatillisen perustutkinnon opiskelijoilta.
Sivu 1/3 OPETUSHALLITUS Rahoitus-yksikkö E-mail: laskentapalvelut@oph.fi Valtionosuuden saaja: 913 Helsingin kaupunki Oppisopimus Perustiedot PERUSTIEDOT/Oppisopimus Käyttökustannusten valtionosuuksien
Differentiaali- ja integraalilaskenta
Differentiaali- ja integraalilaskenta Opiskelijan nimi: DIFFERENTIAALILASKENTA 1. Raja-arvon käsite, derivaatta raja-arvona 1.1 Raja-arvo pisteessä 1.2 Derivaatan määritelmä 1.3 Derivaatta raja-arvona
1. a) Laske lukujen 1, 1 ja keskiarvo. arvo. b) Laske lausekkeen. c) Laske integraalin ( x xdx ) arvo. MATEMATIIKAN MALLIKOE PITKÄ OPPIMÄÄRÄ
1 YLIOPPILASTUTKINTO- LAUTAKUNTA 13..015 MATEMATIIKAN MALLIKOE PITKÄ OPPIMÄÄRÄ A-osa Ratkaise kaikki tämän osan tehtävät 1 4. Tehtävät arvostellaan pistein 0 6. Kunkin tehtävän ratkaisu kirjoitetaan tehtävän
AMMATILLINEN ERITYISOPETUS PIRKANMAALLA LUKUJEN VALOSSA. Kevät 2018 Pirkanmaan ammatillisen erityisopetuksen koordinaatiokeskus (PAEK) Sanna Annala
AMMATILLINEN ERITYISOPETUS PIRKANMAALLA LUKUJEN VALOSSA Kevät 2018 Pirkanmaan ammatillisen erityisopetuksen koordinaatiokeskus (PAEK) Sanna Annala KYSELYN TAUSTATIEDOT Kyselyn tarkoituksena oli kartoittaa
[MATEMATIIKKA, KURSSI 9]
2016 Puustinen, Sinn PYK [MATEMATIIKKA, KURSSI 9] Avaruusgeometrian teoriaa, tehtäviä ja linkkejä peruskoululaisille 1 SISÄLLYSLUETTELO 9. KURSSIN SISÄLTÖ... 3 9.0.1 MALLIKOE 1... 4 9.0.2 MALLIKOE 2...
Helsingin seitsemäsluokkalaisten matematiikkakilpailu 7.2.2013 Ratkaisuita
Helsingin seitsemäsluokkalaisten matematiikkakilpailu..013 Ratkaisuita 1. Eräs kirjakauppa myy pokkareita yhdeksällä eurolla kappale, ja siellä on meneillään mainoskampanja, jossa seitsemän sellaista ostettuaan
A-osio. Ei laskinta! Laske kaikki tehtävät. MAOL-taulukkokirja saa olla käytössä. Maksimissaan tunti aikaa.
MAB2 koe Jussi Tyni Lue ohjeet huolellisesti! Muista, että välivaiheet perustelevat vastauksesi. Muista kirjoittaa konseptille nimesi ja tee pisteytysruudukko konseptin yläreunaan. A-osio. Ei laskinta!
Kenguru 2016 Student lukiosarja
sivu 1 / 9 NIMI LUOKKA Pisteet: Kenguruloikan pituus: Irrota tämä vastauslomake tehtävämonisteesta. Merkitse tehtävän numeron alle valitsemasi vastausvaihtoehto. Väärästä vastauksesta saat miinuspisteitä
Avaruuslävistäjää etsimässä
Avaruuslävistäjää etsimässä Avainsanat: avaruusgeometria, mittaaminen Luokkataso: 6.-9. lk, lukio Välineet: lankaa, särmiön muotoisia kartonkisia pakkauksia(esim. maitotölkki tms.), sakset, piirtokolmio,
LÄPÄISYN TEHOSTAMISOHJELMAN SEURANTA. Laivaseminaari 6.5.2014 Salla Hurnonen
LÄPÄISYN TEHOSTAMISOHJELMAN SEURANTA Laivaseminaari 6.5.2014 Salla Hurnonen SEURANTA Seurannan kehittäminen aloitettu syksyllä 2011 Ensimmäinen julkistus 2013 Hankkeita käynnissä v. 2014 24 kpl 55 koulutuksen
Diplomi-insinööri- ja arkkitehtikoulutuksen yhteisvalinta 2018 Insinöörivalinnan matematiikan koe, , Ratkaisut (Sarja A)
Diplomi-insinööri- ja arkkitehtikoulutuksen yhteisvalinta 2018 Insinöörivalinnan matematiikan koe, 2952018, Ratkaisut (Sarja A) 1 Anna kaikissa kohdissa vastaukset tarkkoina arvoina Kohdassa d), anna kulmat
Ylemmät ammattikorkeakoulututkinnot 45 82 80 69 60 133 % 99 % -2 % 8 %
1 ammattikorkeakoulun määrälliset tavoitteet ja tunnusluvut kaudelle 2013 2016 Toteutuma Keskiarvo OPM/sov. tavoite Tavoitteen tot.-% 2014 Tot. muutos-% 2013-2014 2012 2013 2014 2012-2014 2013-2016 AMK
1.1. RATIONAALILUVUN NELIÖ
1.1. RATIONAALILUVUN NELIÖ 1. Käyttäen tietoa a = a a laske: a) 8 b) ) c) 0, d) ) 1 e) 1) f) +,) g) 7 h) ) i). Laske näiden lukujen neliöt: 17 9 1,6 1. Laske: ) a) ) b). Laske a, kun 5) 1 ) 11 11 81. j)
Avaruusgeometrian perusteita
Avaruusgeometrian perusteita Määritelmä: Kolmiulotteisen avaruuden taso on sellainen pinta, joka sisältää kokonaan jokaisen sellaisen suoran, jonka kanssa sillä on kaksi yhteistä pistettä. Ts. taso on
Enontekiö. Kittilä. Muonio. Kolari. Pello Rovaniemi. Ylitornio. Tornio. Kemi
LAPIN LUKIOT, AMMATILLISET OPPILAITOKSET JA KANSANOPISTOT, JOISSA AMMATILLISTA KOULUTUSTA LUKUVUONNA 2011-2012 Utsjoki Inari Enontekiö Lukioita 23 Kittilä Ammatillisia oppilaitoksia tai niiden sivuopetuspisteitä
a) Mitkä reaaliluvut x toteuttavat yhtälön x 2 = 7? (1 p.) b) Mitkä reaaliluvut x toteuttavat yhtälön 5 4 x
Diplomi-insinööri- ja arkkitehtikoulutuksen yhteisvalinta 01 Arkkitehtimatematiikan koe, 1..01, Ratkaisut (Sarja A) 1. Anna kohdissa a), b) ja c) vastaukset tarkkoina arvoina. a) Mitkä reaaliluvut x toteuttavat
PERUSTIEDOT/Ammatillinen peruskoulutus Käyttömenojen valtionosuuksien laskenta Opiskelijamäärä 20.9.2014
OPETUSHALLITUS Rahoitus PERUSTIEDOT/Ammatillinen perus Käyttömenojen valtionosuuksien laskenta Opiskelijamäärä 1.Yhteystiedot Koulutuksen järjestäjä Koulutuksen järjestäjän numero Yhteyshenkilön nimi Osoite
Ylemmät ammattikorkeakoulututkinnot 79 84 75 79 105 71 % 99 % -11 % 8 %
1 Lahden ammattikorkeakoulun määrälliset tavoitteet ja tunnusluvut kaudelle 2013 2016 Ammattikorkeakoulututkinnot Toteutuma Keskiarvo OPM/sov. tavoite Tavoitteen tot.-% 2014 Tot. muutos-% 2013-2014 2012
Kirjastojen kansallinen asiakaskysely 2008
Kirjastoverkkopalvelut Kirjastojen kansallinen asiakaskysely 2008 Ammattikorkeakoulukirjastot I TAUSTATIEDOT 1.3 Asema kpl % Osuus % 1 amk-opiskelija 8965 77.2 2 amk-opettaja 1312 11.3 3 muu henkilökunn.
Metallitanko, jonka pituus on 480 cm, jaetaan kahteen osaan. Toinen osista on 60 cm pitempi kuin toinen. Mitkä ovat osien pituudet?
1 Metallitanko, jonka pituus on 480 cm, jaetaan kahteen osaan. Toinen osista on 60 cm pitempi kuin toinen. Mitkä ovat osien pituudet? Tapa 1 Merkitään toista osaa x:llä, toista y:llä ja piirretään asiaa
AUTON LIIKETEHTÄVIÄ: KESKIKIIHTYVYYS ak JA HETKELLINEN KIIHTYVYYS a(t) (tangenttitulkinta) sekä matka fysikaalisena pinta-alana (t,
AUTON LIIKETEHTÄVIÄ: KESKIKIIHTYVYYS ak JA HETKELLINEN KIIHTYVYYS a(t) (tangenttitulkinta) sekä matka fysikaalisena pinta-alana (t, v)-koordinaatistossa ruutumenetelmällä. Tehtävä 4 (~YO-K97-1). Tekniikan
Juuri 3 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty
Juuri Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 17.10.016 Kokoavia tehtäviä ILMAN TEKNISIÄ APUVÄLINEITÄ 1. A III, B II, C ei mikään, D I. a) Kolmion kulmien summa on 180. Kolmannen kulman
Anna jokaisen kohdan vastaus kolmen merkitsevän numeron tarkkuudella muodossa
Preliminäärikoe Tehtävät Pitkä matematiikka / Kokeessa saa vastata enintään kymmeneen tehtävään Tähdellä (* merkittyjen tehtävien maksimipistemäärä on 9, muiden tehtävien maksimipistemäärä on 6 Jos tehtävässä
Ammattikorkeakoulujen yhteishaut 2011
Ammattikorkeakoulujen yhteishaut 2011 Nuorten suomen- ja ruotsinkielisen koulutuksen yhteishaku tilanne 27.8. Hakeneet *, ** Hyväksytyt *, ** 2010 2009 Paikan vastaanottaneet* Hakeneet *, ** Hyväksytyt
Vastaukset 1. A = (-4,3) B = (6,1) C = (4,8) D = (-7,-1) E = (-1,0) F = (3,-3) G = (7,-9) 3. tämä on ihan helppoa
Vastaukset 1. A = (4,3) B = (6,1) C = (4,8) D = (7,1) E = (1,0) F = (3,3) G = (7,9) 2. 3. tämä on ihan helppoa 4. 5. a) (0, 0) b) Kolmannessa c) Ensimmäisessä d) toisessa ja neljännessä 117 6. 7. 8. esimerkiksi
AMMATTIKORKEAKOULUJEN LUONNONVARA- JA YMPÄRISTÖALAN VALINTAKOE
AMMATTIKORKEAKOULUJEN LUONNONVARA- JA YMPÄRISTÖALAN VALINTAKOE Matematiikan koe.6.009 Nimi: Henkilötunnus: VASTAUSOHJEET: 1. Koeaika on tuntia (klo 1.00 14.00). Kokeesta saa poistua aikaisintaan klo 1.0..
1( 13) Yhteishakuun kuuluva koulutus
Opetushallitus.. Kalenterivuosi S ( ) Yht.. N Yht.. N Yht.. N Yht.. N Yhteishakuun kuuluva koulutus Automaatiotekniikan ko ammatillinen perustutkinto/kouluasteen tutkinto/... ylioppilastutkinto ja ammatillinen
Maatalous-metsätieteellinen tiedekunta Ympäristöekonomia Kansantaloustiede ja matematiikka
1. Selitä mitä tarkoittavat a) M2 b) vaihtoehtoiskustannus. Anna lisäksi esimerkki vaihtoehtoiskustannuksesta. (7 p) Vastaus: a) Lavea raha. (1 p) M1 (Yleisön hallussa olevat lailliset maksuvälineet ja