Kenguru 2015 Student Ratkaisut

Koko: px
Aloita esitys sivulta:

Download "Kenguru 2015 Student Ratkaisut"

Transkriptio

1 sivu 1 / 16 3 pistettä 1. Mistä kuviosta on väritetty puolet? (A) (B) (C) (D) (E) 2. Mikä seuraavista luvuista on lähinnä lukua 20,15 51,02? (A) 10 (B) 100 (C) (D) (E) Ratkaisu: 20,15 51, = Don teki kaksi tornia liimaamalla palikat yhteen. Sitten hän liimasi tornit yhteen. Mikä lopputulos on mahdoton? (A) (B) (C) (D) (E) Ratkaisu: Rakennelmassa B on kaksi palikkaa päällekkäin, joiden täytyy olla liimattu toisiinsa kiinni. Kaksi reunimmaista palikkaa eivät siis voineet olla alun perin yhdessä.

2 sivu 2 / Diana piirsi oheisen pylväsdiagrammin neljän puulajin lukumääristä biologian kenttäkurssilla. Jasper haluaisi esittää saman aineiston sektori diagrammina käyttäen samoja värejä. Miltä sektoridiagrammi näyttäisi? (A) (B) (C) (D) (E) Ratkaisu: Mustaa on vähiten, tumman harmaata toisiksi vähiten, vaaleaa harmaata eniten. 5. Kuvan saari on hyvin mutkainen. Kuinka moni sammakoista on kuivalla maalla? (A) 5 (B) 6 (C) 7 (D) 8 (E) 9 Ratkaisu: Värittämällä ja laskemalla saadaan 6 sammakkoa.

3 sivu 3 / Andrea syntyi vuonna 1997 ja hänen sisarensa Charlotte vuonna Heidän ikäeronsa on siis varmasti (A) alle 4 vuotta (C) tasan 4 vuotta (E) vähintään 3 vuotta (B) ainakin 4 vuotta (D) yli 4 vuotta Ratkaisu: Ikäero voi olla kuinka lähellä hyvänsä kolmea vuotta, ei välttämättä edes neljää. Toisaalta ikäero voi olla myös yli 4 vuotta, joten myös A on väärin. 7. Jack rakensi kuution 27 pienestä kuutiosta kuvan mukaisesti. Mustilla ja valkoisilla kuutioilla ei ole yhteisiä tahkoja. Kuinka monta valkoista kuutiota Jack tarvitsi? (A) 10 (B) 12 (C) 13 (D) 14 (E) 15 Ratkaisu: Ylä- ja alakerroksessa on 4 valkoista ja keskikerroksessa 5, yhteensä = 13 valkoista. 8. Kaikki 31 kokonaislukua luvusta 2001 alkaen lukuun 2031 asti lasketaan yhteen ja summa jaetaan luvulla 31. Mitä saadaan tulokseksi? (A) 2012 (B) 2013 (C) 2015 (D) 2016 (E) 2496 Ratkaisu: Kyseessä on lukujen 2001,, 2031 keskiarvo. Koska luvut ovat tasavälein, tämä on sama kuin lukujen 2001 ja 2031 keskiarvo, joka on 2016.

4 sivu 4 / Kun pieni orava on maassa, se ei mene viittä metriä kauemmas kotipuustaan eikä viittä metriä lähemmäs koirankoppia. Mikä tummennetuista alueista vastaa parhaiten aluetta, jolla pikku orava liikkuu? (A) (B) (C) (D) (E) Ratkaisu: Koska orava ei mene viittä metriä kauemmaksi puustaan, se liikkuu vain ympyrässä, jonka keskipisteessä puu kasvaa. Koska orava pysyy vähintään viiden metrin päässä koirankopista, se ei liiku ympyrässä, jonka keskipisteessä on koirankoppi. Kun poistetaan edellisestä ympyrästä se alue, joka kuuluu jälkimmäiseen ympyrään, saadaan alue, jolla orava liikkuu. Vaihtoehto C on siis oikein. 10. Juomalasi on katkaistun kartion muotoinen. Lasin ulkopinta päällystetään värillisellä paperilla. Minkä muotoinen paperi tarvitaan? (A) suorakulmio (B) puolisuunnikas (C) ympyräsektori (D) tasakorkuinen nauha (E) osa sektoria Ratkaisu: Kartion vaippa on auki levitettynä ympyräsektori. Katkaistun kartion vaippa muodostuu siis sektorista, josta on poistettu pienempi sektori.

5 sivu 5 / 16 4 pistettä 11. Neliön muotoinen paperi taitellaan katkoviivoja pitkin pieneksi neliöksi missä järjestyksessä hyvänsä. Pienen neliön yksi kulma leikataan pois, ja paperi taitellaan taas auki. Kuinka monta reikää siinä on? (A) 0 (B) 1 (C) 2 (D) 4 (E) 9 Ratkaisu: Riippumatta taittelutavoista keskimmäinen pikkuneliö menettää leikkauksessa yhden kulmansa ja pitää muut. Reikiä tulee siis vain yksi. Paperin reunasta lähtee myös paloja, mutta reikää ei voi syntyä reunaan. 12. Kuinka moni seuraavista neljästä kuvioista voidaan piirtää nostamatta kynää paperista ja piirtämättä samaa viivaa kahdesti? (A) 0 (B) 1 (C) 2 (D) 3 (E) 4 Ratkaisu: Kaikki muut paitsi toisen kuvion voi piirtää:

6 sivu 6 / (a b) 3 + (b a) 3 = (A) 0 (B) 2(a b) 3 (C) 2a 3 2b 3 (D) 2a 3 + 2b 3 (E) 2a 3 + 6a 2 b + 6ab 2 + 2b 3 Ratkaisu: Luvut a b ja b a ovat vastalukuja, joten myös niiden kolmannet potenssin ovat. Summa on siis 0. (a b) 3 + (b a) 3 = (a b) 3 + [ (a b)] 3 = (a b) 3 (a b) 3 = Ella haluaa täydentää kuvan ketjun siten, että jokaisen ympyrän luku on kahden viereisen luvun summa. Mikä numero kuuluu kysymysmerkin paikalle? (A) -5 (B) -16 (C) -8 (D) -3 (E) Ella ei voi onnistua. Ratkaisu: Lukujen 3 ja 5 välissä pitää olla 8. Tästä eteenpäin voidaan päätellä lukuja kuvan mukaisesti. Kysymysmerkin täytyisi olla sekä -16, -5 että -3, jotta ehto toteutuisi jokaisen ympyrän kohdalla. Ellan projekti on siis tuhoon tuomittu. 15. Kuinka moneen osaan koordinaattiakselit sekä funktioiden f(x) = 2 x 2 ja g(x) = x 2 1 kuvaajat jakavat xy-tason? (A) 10 osaan (B) 11 osaan (C) 12 osaan (D) 13 osaan (E) 14 osaan

7 sivu 7 / 16 Ratkaisu: 16. Petralla on kolme erilaista sanakirjaa ja kaksi eri romaania kirjahyllyllään. Kuinka monella tavalla Petra voi järjestää kirjat, jos hän pitää sanakirjat vierekkäin ja romaanit vierekkäin? (A) 12 (B) 24 (C) 30 (D) 60 (E) 120 Ratkaisu: Kolme vierekkäistä sanakirjaa voidaan järjestää = 6 tavalla ja romaanit 2 tavalla. Sanakirjat voivat olla romaanien oikealla tai vasemmalla puolella, joten vaihtoehtoja on = ( ) + ( ) + ( ) + ( ) = (A) 2015 (B) 2015 (C) 2016 (D) 2017 (E) 4030 Ratkaisu: Neliöjuuren alle ilmestyy muistikaava a 2 + 2a + 1 = (a + 1) 2. ( ) + ( ) + ( ) + ( ) = = ( ) 2 = 2016.

8 sivu 8 / Kun nämä väitteet luetaan vasemmalta oikealle, mikä on ensimmäinen tosi väite? (A) kohta C on totta. (B) kohta A on totta (C) kohta E on epätosi (D) kohta B on epätosi (E) = 2 Ratkaisu: Väite C on väärä, koska se väittää kohtaa E epätodeksi. Siksi myös A on väärä, koska se väittää kohtaa C todeksi. B on epätosi, koska se väittää kohtaa A todeksi. Ensimmäinen tosi väite on siis D, joka sanoo todenmukaisesti kohdan B olevan epätosi. 19. Kun lukuja on n kappaletta, niiden geometrinen keskiarvo on lukujen tulon n. juuri. Erään kolmen luvun geometrinen keskiarvo on 3, ja kolmen muun luvun geometrinen keskiarvo on 12. Mikä on näiden kaikkien kuuden luvun geometrinen keskiarvo? (A) 4 (B) 6 (C) 15 2 (D) 15 6 (E) 36 Ratkaisu: Olkoot luvut a, b, c ja d, e, f. Tehtävänannon mukaan pätee seuraavaa: 3 abc 3 = 3, def Lukujen geometrinen keskiarvo on siis 6 abcdef = 12 abcdef = = = 36 3 = = Winger-planeetan jokaisella asukkaalla on ainakin kaksi korvaa. Kolme planeetan asukasta, Imi, Dimi ja Trimi, tapaavat kraaterin luona. Imi sanoo: Näen 8 korvaa. Dimi sanoo: Näen 7 korvaa. Trimi sanoo: Outoa, minä näen vain 5 korvaa. Kukaan ei näe omia korviaan. Montako korvaa Trimillä on? (A) 4 (B) 5 (C) 6 (D) 7 (E) 12 Ratkaisu: Olkoon Imin korvien määrä x. Koska Dimi näkee yhden korvan vähemmän kuin Imi, hänellä on yksi korva enemmän itsellään eli x + 1. Trimi näkee 5 korvaa, eli 5 = x + x + 1, eli Imillä on x = 2 korvaa. Dimin näkemästä 7 korvasta 2 on siis Imin ja loput 5 Trimin.

9 sivu 9 / 16 5 pistettä 21. Ruukussa on 2015 marmorikuulaa, joihin on maalattu luvut , yksi kuhunkin. Kukin kuula on väritetty sen mukaan, mikä sen luvun numeroiden summa on. Saman numerosumman kuulat on väritetty samalla värillä, eri numerosumman kuulat eri väreillä. Kuinka montaa eri väriä marmorikuulia ruukussa on? (A) 10 (B) 27 (C) 28 (D) 29 (E) 2015 Ratkaisu: Välin suurin numerosumma on luvulla 1999, nimittäin = 28, ja pienin luvulla 1, nimittäin 1. Myös kaikki summat tältä väliltä onnistuvat, eli värejä on 28 erilaista. 22. Kuvassa on kolme samankeskistä ympyrää ja niiden kaksi toisiaan vastaan kohtisuoraa halkaisijaa. Tummennettujen alueiden alat ovat yhtä suuret ja pienimmän ympyrän säde on 1. Mikä on kaikkien kolmen säteen tulo? (A) 6 (B) 3 (C) (D) 2 2 (E) 6 Ratkaisu: Olkoot säteet r 1 = 1, r 2 ja r 3. Sisin tummennettu alue on neljännesympyrä, ja sen ala on A 1 = 1 4 π 12 = π 4. Seuraavaksi sisimmän harmaan alueen ala saadaan kahden neljännesympyrän alojen erotuksena: Koska A 2 = A 1, täytyy olla r = 1 eli r 2 2 = 2. Vastaavasti kolmas ala on A 2 = π 4 r 2 2 π 4 = π 4 (r 2 2 1) A 3 = π 4 r 3 2 π 4 r 2 2 = π 4 (r 3 2 r 2 2 ) Koska A 3 = A 1, saadaan r 3 2 r 2 2 = 1, eli r 3 2 = 1 + r 2 2 = = 3. Kysytty tulo on siis r 1 r 2 r 3 = = 6.

10 sivu 10 / Kuvan vaakoihin asetetaan painot a, b, c ja d. Niistä kahden paikat vaihdetaan keskenään, jolloin jokainen kolmesta vaa asta kääntyy kuvan mukaisesti. Mitkä kaksi painoa vaihdettiin? (A) a ja b (B) b ja d (C) b ja c (D) a ja d (E) a ja c Ratkaisu: Vaakojen asennosta nähdään, että painoille pätee a > b ja c > d. Kaikista neljästä painosta raskain on siis joko a tai c. Raskain paino ei kuitenkaan voi olla c, vaikka vasemmanpuoleinen vaakakuva olisikin silloin mahdollinen (esimerkiksi a = 6, b = 4, c = 8, d = 1). Jos nimittäin c on raskain, sen siirtäminen ei kääntäisi isoa vaakaa toiseen asentoon. Jos c taas jää paikoilleen, mikään vaihto ei saa oikeanpuoleista pikkuvaakaa vaihtamaan asentoa. Koska c ei voi olla raskain, a on. Ainoa tapa kääntää sekä vasemmanpuoleinen pikkuvaaka että iso vaaka on siirtää a oikeanpuoleiseen pikkuvaakaan. Sen asennosta voidaan päätellä, että a vaihdettiin painon d kanssa. Tämä on mahdollista esimerkiksi painoilla a = 10, b = 3, c = 2, d = Kuvan suorakulmiossa ABCD on M 1 janan DC keskipiste, M 2 janan AM 1 keskipiste, M 3 janan BM 2 keskipiste ja M 4 janan CM 3 keskipiste. Mikä on nelikulmioiden M 1 M 2 M 3 M 4 ja ABCD alojen suhde? (A) 7 16 (B) 3 16 (C) 7 32 (D) 9 32 (E) 1 5

11 sivu 11 / 16 Ratkaisu: Lasketaan ensin neljän kolmion alat. Merkitään AB = a ja BC = b. Kolmion ADM 1 pinta-ala on 1 2 b a 2 = 1 4 ab. Kolmion ABM 2 korkeus on 1 2 b, joten sen ala on 1 2 a b 2 = 1 4 ab. Kolmion BCM 3 ala on hieman monimutkaisempi laskea. Pisteen M 2 etäisyys janasta BC (merkitty punaisella) on 3 4 a (koska M 2 puolittaa janan AM 1 ). Kolmion BCM 3 sinisellä merkitty korkeusjana on tästä puolet, eli a = 3 8 a. Kolmion BCM 3 ala on siis ab = 3 16 ab. Vastaavalla päättelyllä saadaan kolmion CM 4 M 1 sinisellä merkityksi korkeusjanaksi 3 b ja kolmion 8 alaksi b 1 2 a = 3 32 ab. Neljän kolmion yhteenlaskettu ala on siis ( ) ab = ( ) ab = ab. Nelikulmion M 1 M 2 M 3 M 4 alaksi jää 7 32 ab; siis kysytty suhde on Taululle on piirretty sinisiä ja punaisia suorakulmioita. Suorakulmioista tasan 7 on neliöitä. Punaisia suorakulmioita on 3 enemmän kuin sinisiä neliöitä. Punaisia neliöitä on 2 enemmän kuin sinisiä suorakulmioita. Kuinka monta sinistä suorakulmiota taululla on? (A) 1 (B) 3 (C) 5 (D) 6 (E) 10 Ratkaisu 1: Olkoon sinisiä neliöitä b kpl ja muita sinisiä suorakulmiota a kpl. Punaisia neliöitä on kaksi enemmän kuin sinisiä suorakulmioita, joten niitä on a + b + 2. Jos punaisia ei-neliöitä on x kpl, saa ehto punaisia suorakulmioita on 3 enemmän kuin sinisiä neliöitä muodon b + 3 = a + b x, josta ratkaistuna x = 1 a. Koska x ei voi olla negatiivinen, täytyy olla a = 1 tai a = 0.

12 sivu 12 / 16 Neliöitä on seitsemän, eli b + a + b + 2 = 7, eli 2b + a = 5. Tästä nähdään, että a ei voi olla nolla, joten a = 1 ja b = 2. Sinisiä suorakulmioita on siis a + b = 3 kappaletta. Ratkaisu 2: Taulukoidaan: neliö ei-neliö sininen x z punainen 7 - x y Ehdot kuuluvat nyt: (7 x) + y = x + 3, eli y = 2x 4. Jotta y ei olisi negatiivinen, täytyy olla x 2. ja 7 x = x + z + 2, eli z = 5 2x. Jotta z ei olisi negatiivinen, täytyy olla x 2 1, eli x = 2. 2 Siis z = 1 ja y = 0.

13 sivu 13 / Suorakulmaisen kolmion terävän kulman puolittaja jakaa kolmion kateetin osiin, joiden pituus on 1 ja 2. Kuinka pitkä kulmanpuolittaja on? (A) 2 (B) 3 (C) 4 (D) 5 (E) 6 Ratkaisu: Olkoon tuntematon kateetti a ja hypotenuusa c. Helpoin ratkaisu perustuu kulmanpuolittajalauseeseen: kulmanpuolittaja jakaa puolitetun kulman vastaisen sivun kulman kylkien suhteessa, eli 2 = c, siis c = 2a. (Kulmanpuolittajalause myös 1 a takaa, että lyhyempi osista on nimenomaan kateetin vieressä.) Pythagoraan lauseella saadaan a 2 = (2a) 2, eli a 2 = 3. Kulmanpuolittajan pituudeksi saadaan taas Pythagoraan lauseella x 2 = a 2 = = 4, eli x = 4 = Laskemiskerhon 96 jäsentä seisoo piirissä. He ryhtyvät laskemaan 1, 2, 3, 4, siten, että jokainen sanoo yhden luvun. Parillisen luvun sanojat astuvat ulos piiristä ja loput jatkavat, niin että toisella kierroksella ensimmäinen sanottu luku on 97 ja niin edelleen. Lopulta vain yksi laskija on jäljellä. Mikä luvun hän sanoi ensimmäisellä kierroksella? (A) 1 (B) 17 (C) 33 (D) 65 (E) 95

14 sivu 14 / 16 Ratkaisu: Ensimmäisellä kierroksella laskijoita on parillinen määrä, eli luvun 1 sanonut aloittaa toisen kierroksen sanomalla parittoman luvun 97. Niin kauan kun mukana olevien määrä on parillinen, luvun 1 sanonut ei putoa pois. Lasketaan: Kierros Laskijat kierroksen alussa Jäljellä olevien etäisyys toisistaan alkuperäisessä piirissä Kuudennen kierroksen alussa jäljellä ovat laskijat, jotka sanoivat ensimmäisellä kierroksella luvut 1, 1+32 = 33 ja 33+32=65. Näistä 1 sanoo parittoman luvun, 33 parillisen ja putoaa pois, 65 parittoman ja lopulta 1 parillisen ja putoaa pois. Luvun 65 alussa sanonut jää jäljelle. 28. Alla on yhtälön (x 2 + y 2 2x) 2 = 2(x 2 + y 2 ) ratkaisujoukon kuvaaja. Mikä suorista a, b, c, d on y-akseli? (A) a (B) b (C) c (D) d (E) jokin muu suorien a, b, c, d leikkauspisteen kautta kulkeva suora. Ratkaisu: Yhtälössä muuttuja y esiintyy vain toisena potenssina, joten jos jokin y:n arvo on ratkaisu, myös sen vastaluku on. Kuvaajan täytyy siis olla x-akselin suhteen symmetrinen. Kuvion ainoa symmetria-akseli on c, joten se on x-akseli ja a puolestaan y-akseli.

15 sivu 15 / Oyla-muurahainen lähtee liikkeelle kuution kärjestä. Oyla haluaa kävellä särmiä pitkin, kulkea jokaisen särmän kokonaan ja palata lopuksi lähtöpisteeseensä. Kuinka pitkä tällainen reitti vähintään on? Kuution särmän pituus on 1. (A) 12 (B) 14 (C) 15 (D) 16 (E) 20 Ratkaisu: 16 on mahdollista monella tavalla, esimerkiksi näin: Oyla lähtee liikkeelle kärjestä A. Se kulkee ensin sinisen lenkin, aloittaa sitten vihreää ja käy sen aikana välissä kulkemassa pystysärmät ylös ja alas. Vähemmän kuin 16 ei ole mahdollista, sillä kuutiossa on 8 kärkeä, joissa jokaisessa kohtaa 3 särmää. Jotta kaikki kolme särmää saataisiin kuljettua, kärjessä täytyy vierailla kahdesti. Siksi jokin kolmesta särmästä täytyy kävellä kahdesti. Kahdesti käveltäviä särmiä on siis vähintään yksi jokaista kärkeä kohti (koska myös lähtöpisteeseen pitää palata), mutta joka särmä on kiinni kahdessa kärjessä. Kahdesti käveltävien särmien määrä on siis vähintään 8 = 4. Koska kuutiossa on 2 12 särmää, minimi on = 16.

16 sivu 16 / Paperille kirjoitetaan kymmenen eri lukua. Jos jokin luvuista on yhtä suuri kuin yhdeksän muun luvun tulo, se ympyröidään. Kuinka monta lukua korkeintaan ympyröidään? (A) 1 (B) 2 (C) 3 (D) 9 (E) 10 Ratkaisu: Korkeintaan kaksi lukua voidaan ympäröidä. Olkoot x ja y kaksi ympyröitävää lukua, ja muiden kahdeksan luvun tulo a. Oletetaan, että mikään luvuista ei ole 0 (silloin ympäröitäviä lukuja ei olisi lainkaan.) Täytyy olla x = ya { y = xa eli x = ya = xa a = xa 2, joten a 2 = 1 a = ±1. Näistä +1 ei käy, koska x y. Siis a = 1 ja x = y. Jos jotkin kaksi lukua siis ympyröidään, ne ovat toistensa vastalukuja. Jokaisen ympäröidyn luvun täytyy siis olla kaikkien muiden ympyröityjen lukujen vastaluku. Koska joka luvulla on vain yksi vastaluku, ympyröityjä lukuja voi olla korkeintaan kaksi. Kaksi onnistuu, esimerkiksi luvut 7, 7, ja 2, 1, 3, 1, 4, 1, 5, toteuttavat ehdot. Kahdeksan jälkimmäisen luvun tulo on -1 ja kaikki toimii.

Kenguru Student (lukion 2. ja 3. vuosi) sivu 1 / 6

Kenguru Student (lukion 2. ja 3. vuosi) sivu 1 / 6 Kenguru Student (lukion 2. ja 3. vuosi) sivu 1 / 6 NIMI LUOKKA/RYHMÄ Pisteet: Kenguruloikan pituus: Irrota tämä vastauslomake tehtävämonisteesta. Merkitse tehtävän numeron alle valitsemasi vastausvaihtoehto.

Lisätiedot

Kenguru 2015 Mini-Ecolier (2. ja 3. luokka) RATKAISUT

Kenguru 2015 Mini-Ecolier (2. ja 3. luokka) RATKAISUT sivu 1 / 10 3 pistettä 1. Kuinka monta pilkkua kuvan leppäkertuilla on yhteensä? (A) 17 (B) 18 (C) 19 (D) 20 (E) 21 Ratkaisu: Pilkkuja on 1 + 1 + 1 + 2 + 2 + 1 + 3 + 2 + 3 + 3 = 19. 2. Miltä kuvan pyöreä

Lisätiedot

Kenguru 2016 Student lukiosarja

Kenguru 2016 Student lukiosarja sivu 1 / 9 NIMI LUOKKA Pisteet: Kenguruloikan pituus: Irrota tämä vastauslomake tehtävämonisteesta. Merkitse tehtävän numeron alle valitsemasi vastausvaihtoehto. Väärästä vastauksesta saat miinuspisteitä

Lisätiedot

Kenguru 2011 Cadet (8. ja 9. luokka)

Kenguru 2011 Cadet (8. ja 9. luokka) sivu 1 / 7 NIMI LUOKKA/RYHMÄ Pisteet: Kenguruloikan pituus: Irrota tämä vastauslomake tehtävämonisteesta. Merkitse tehtävän numeron alle valitsemasi vastausvaihtoehto. Jätä ruutu tyhjäksi, jos et halua

Lisätiedot

Kenguru 2013 Student sivu 1 / 7 (lukion 2. ja 3. vuosi)

Kenguru 2013 Student sivu 1 / 7 (lukion 2. ja 3. vuosi) Kenguru 2013 Student sivu 1 / 7 NIMI RYHMÄ Pisteet: Kenguruloikan pituus: Irrota tämä vastauslomake tehtävämonisteesta. Merkitse tehtävän numeron alle valitsemasi vastausvaihtoehto. Väärästä vastauksesta

Lisätiedot

= = = 1 3.

= = = 1 3. 9. 10. 2008!"$#&%(')'*,#.-/* P1. lkuperäisen punaisen kuution pinta koostuu kuudesta 3 3-neliöstä, joten sen ala on 6 3 2 = 54. Koska 3 3 =, kuutio jakautuu leikatessa yksikkökuutioksi, joiden kokonaispinta-ala

Lisätiedot

Juuri 3 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty

Juuri 3 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty Kokoavia tehtäviä ILMAN TEKNISIÄ APUVÄLINEITÄ. A III, B II, C ei mikään, D I. a) Kolmion kulmien summa on 80. Kolmannen kulman suuruus on 80 85 0 85. Kolmiossa on kaksi 85 :n kulmaa, joten se on tasakylkinen.

Lisätiedot

Kenguru 2013 Cadet (8. ja 9. luokka)

Kenguru 2013 Cadet (8. ja 9. luokka) sivu 1 / 7 NIMI LUOKKA Pisteet: Kenguruloikan pituus: Irrota tämä vastauslomake tehtävämonisteesta. Merkitse tehtävän numeron alle valitsemasi vastausvaihtoehto. Väärästä vastauksesta saat miinuspisteitä

Lisätiedot

a b c d

a b c d 1. 11. 011!"$#&%(')'+*(#-,.*/103/465$*784 /(9:*;9."$ *;5> *@9 a b c d 1. + +. 3. 4. 5. 6. + + + + + + + + + + P1. 5 140 8 47 = 5 140 ( 3 ) 47 = 5 140 3 47 = 5 140 141 = (5 ) 140 = 10 140, jossa on

Lisätiedot

Kenguru 2016 Student lukiosarjan ratkaisut

Kenguru 2016 Student lukiosarjan ratkaisut sivu 1 / 22 Ratkaisut TEHTÄVÄ 1 2 3 4 5 6 7 8 9 10 VASTAUS A C E C A A B A D A TEHTÄVÄ 11 12 13 14 15 16 17 18 19 20 VASTAUS A C B C B C D B E B TEHTÄVÄ 21 22 23 24 25 26 27 28 29 30 VASTAUS D C C E E

Lisätiedot

Lieriö ja särmiö Tarkastellaan pintaa, joka syntyy, kun tasoa T leikkaava suora s liikkuu suuntansa

Lieriö ja särmiö Tarkastellaan pintaa, joka syntyy, kun tasoa T leikkaava suora s liikkuu suuntansa Lieriö ja särmiö Tarkastellaan pintaa, joka syntyy, kun tasoa T leikkaava suora s liikkuu suuntansa säilyttäen pitkin tason T suljettua käyrää (käyrä ei leikkaa itseään). Tällöin suora s piirtää avaruuteen

Lisätiedot

Kenguru 2012 Junior sivu 1 / 8 (lukion 1. vuosi)

Kenguru 2012 Junior sivu 1 / 8 (lukion 1. vuosi) Kenguru 2012 Junior sivu 1 / 8 Nimi Ryhmä Pisteet: Kenguruloikan pituus: Irrota tämä vastauslomake tehtävämonisteesta. Merkitse tehtävän numeron alle valitsemasi vastausvaihtoehto. Väärästä vastauksesta

Lisätiedot

{ 2v + 2h + m = 8 v + 3h + m = 7,5 2v + 3m = 7, mistä laskemmalla yhtälöt puolittain yhteen saadaan 5v + 5h + 5m = 22,5 v +

{ 2v + 2h + m = 8 v + 3h + m = 7,5 2v + 3m = 7, mistä laskemmalla yhtälöt puolittain yhteen saadaan 5v + 5h + 5m = 22,5 v + 9. 0. ÄÙ ÓÒ Ñ Ø Ñ Ø ÐÔ ÐÙÒ Ð Ù ÐÔ ÐÙÒ Ö Ø ÙØ 009 È ÖÙ Ö P. Olkoon vadelmien hinta v e, herukoiden h e ja mustikoiden m e rasialta. Oletukset voidaan tällöin kirjoittaa yhtälöryhmäksi v + h + m = 8 v +

Lisätiedot

Kenguru 2014 Student sivu 1 / 8 (lukion 2. ja 3. vuosi)

Kenguru 2014 Student sivu 1 / 8 (lukion 2. ja 3. vuosi) Kenguru 2014 Student sivu 1 / 8 Nimi Ryhmä Pisteet: Kenguruloikan pituus: Irrota tämä vastauslomake tehtävämonisteesta. Merkitse tehtävän numeron alle valitsemasi vastausvaihtoehto. Väärästä vastauksesta

Lisätiedot

1 2 x2 + 1 dx. (2p) x + 2dx. Kummankin integraalin laskeminen oikein (vastaukset 12 ja 20 ) antaa erikseen (2p) (integraalifunktiot

1 2 x2 + 1 dx. (2p) x + 2dx. Kummankin integraalin laskeminen oikein (vastaukset 12 ja 20 ) antaa erikseen (2p) (integraalifunktiot Helsingin yliopisto, Itä-Suomen yliopisto, Jyväskylän yliopisto, Oulun yliopisto, Tampereen yliopisto ja Turun yliopisto Matematiikan valintakoe (Ratkaisut ja pisteytys) 500 Kustakin tehtävästä saa maksimissaan

Lisätiedot

yleisessä muodossa x y ax by c 0. 6p

yleisessä muodossa x y ax by c 0. 6p MAA..0 Muista kirjoittaa jokaiseen paperiin nimesi! Tee vastauspaperin yläreunaan pisteytysruudukko! Valitse kuusi tehtävää! Perustele vastauksesi välivaiheilla! Jussi Tyni Ratkaise: a) x x b) xy x 6y

Lisätiedot

Kenguru Cadet, ratkaisut (1 / 6) luokka

Kenguru Cadet, ratkaisut (1 / 6) luokka Kenguru Cadet, ratkaisut (1 / 6) 3 pisteen tehtävät 1. Mikä luvuista on parillinen? (A) 2009 (B) 2 + 0 + 0 + 9 (C) 200 9 (D) 200 9 (E) 200 + 9 Ainoa parillinen on 200 9 = 1800. 2. Kuvan tähti koostuu 12

Lisätiedot

Kenguru 2013 Junior sivu 1 / 9 (lukion 1. vuosikurssi)

Kenguru 2013 Junior sivu 1 / 9 (lukion 1. vuosikurssi) Kenguru 2013 Junior sivu 1 / 9 Nimi Ryhmä Pisteet: Kenguruloikan pituus: Irrota tämä vastauslomake tehtävämonisteesta. Merkitse tehtävän numeron alle valitsemasi vastausvaihtoehto. Väärästä vastauksesta

Lisätiedot

Kenguru 2013 Cadet (8. ja 9. luokka)

Kenguru 2013 Cadet (8. ja 9. luokka) sivu 1 / 12 3 pistettä 1. Annalla on neliöistä koostuva ruutupaperiarkki. Hän leikkaa paperista ruutujen viivoja pitkin mahdollisimman monta oikeanpuoleisessa kuvassa näkyvää kuviota. Kuinka monta ruutua

Lisätiedot

Kenguru 2013 Ecolier sivu 1 / 8 (4. ja 5. luokka)

Kenguru 2013 Ecolier sivu 1 / 8 (4. ja 5. luokka) Kenguru 2013 Ecolier sivu 1 / 8 3 pistettä 1. Missä kuviossa mustia kenguruita on enemmän kuin valkoisia kenguruita? Kuvassa D on 5 mustaa kengurua ja 4 valkoista. 2. Nelli haluaa rakentaa samanlaisen

Lisätiedot

Koontitehtäviä luvuista 1 9

Koontitehtäviä luvuista 1 9 11 Koontitehtäviä luvuista 1 9 1. a) 3 + ( 8) + = 3 8 + = 3 b) x x 10 = 0 a =, b = 1, c = 10 ( 1) ( 1) 4 ( 10) 1 81 1 9 x 4 4 1 9 1 9 x,5 tai x 4 4 c) (5a) (a + 1) = 5a a 1 = 4a 1. a) Pythagoraan lause:

Lisätiedot

MAB3 - Harjoitustehtävien ratkaisut:

MAB3 - Harjoitustehtävien ratkaisut: MAB - Harjoitustehtävien ratkaisut: Funktio. Piirretään koordinaatistoakselit ja sijoitetaan pisteet:. a) Funktioiden nollakohdat löydetään etsimällä kuvaajien ja - akselin leikkauspisteitä. Funktiolla

Lisätiedot

Kenguru 2012 Cadet (8. ja 9. luokka) Ratkaisut.

Kenguru 2012 Cadet (8. ja 9. luokka) Ratkaisut. sivu 1 / 16 3 pistettä 1. Kello laitetaan pöydälle viisaripuoli ylöspäin juuri silloin, kun minuuttiviisari osoittaa etelään. Kuinka monen minuutin kuluttua minuuttiviisari seuraavan kerran osoittaa itään?

Lisätiedot

Kenguru 2015 Cadet Ratkaisut

Kenguru 2015 Cadet Ratkaisut sivu 1 / 16 NIMI LUOKKA Pisteet: Kenguruloikan pituus: Irrota tämä vastauslomake tehtävämonisteesta. Merkitse tehtävän numeron alle valitsemasi vastausvaihtoehto. Väärästä vastauksesta saat miinuspisteitä

Lisätiedot

Kenguru 2012 Cadet (8. ja 9. luokka)

Kenguru 2012 Cadet (8. ja 9. luokka) sivu 1 / 7 NIMI LUOKKA Pisteet: Kenguruloikan pituus: Irrota tämä vastauslomake tehtävämonisteesta. Merkitse tehtävän numeron alle valitsemasi vastausvaihtoehto. Väärästä vastauksesta saat miinuspisteitä

Lisätiedot

M 1 ~M 2, jos monikulmioiden vastinkulmat ovat yhtä suuret ja vastinsivujen pituuksien suhteet ovat yhtä suuret eli vastinsivut ovat verrannolliset

M 1 ~M 2, jos monikulmioiden vastinkulmat ovat yhtä suuret ja vastinsivujen pituuksien suhteet ovat yhtä suuret eli vastinsivut ovat verrannolliset Yhdenmuotoisuus ja mittakaava Tasokuvioiden yhdenmuotoisuus tarkoittaa havainnollisesti sitä, että kuviot ovat samanmuotoiset mutta eivät välttämättä samankokoiset. Kahdella yhdenmuotoisella kuviolla täytyy

Lisätiedot

Preliminäärikoe Pitkä Matematiikka 3.2.2009

Preliminäärikoe Pitkä Matematiikka 3.2.2009 Preliminäärikoe Pitkä Matematiikka..9 x x a) Ratkaise yhtälö =. 4 b) Ratkaise epäyhtälö x > x. c) Sievennä lauseke ( a b) (a b)(a+ b).. a) Osakkeen kurssi laski aamupäivällä,4 % ja keskipäivällä 5,6 %.

Lisätiedot

a b c d

a b c d .. ÄÙ ÓÒ Ñ Ø Ñ Ø ÐÔ ÐÙÒ Ð Ù ÐÔ ÐÙÒ Ö Ø ÙØ 202 È ÖÙ Ö Ò ÑÓÒ Ú Ð ÒØ Ø ØĐ ÚĐ Ø a b c d. + + 2.. 4. 5. 6. + + + + + + + + + + P. Koska massojen suhteet (alkuperäinen timantti mukaan lukien) ovat : 4 : 7, niin

Lisätiedot

Tee konseptiin pisteytysruudukko! Muista kirjata nimesi ja ryhmäsi. Lue ohjeet huolellisesti!

Tee konseptiin pisteytysruudukko! Muista kirjata nimesi ja ryhmäsi. Lue ohjeet huolellisesti! MAA3 Koe 1.4.2014 Jussi Tyni Tee konseptiin pisteytysruudukko! Muista kirjata nimesi ja ryhmäsi. Lue ohjeet huolellisesti! A-Osio: Ei saa käyttää laskinta. MAOL saa olla alusta asti käytössä. Maksimissaan

Lisätiedot

a b c d + + + + + + + + +

a b c d + + + + + + + + + 28. 10. 2010!"$#&%(')'+*(#-,.*/1032/465$*784 /(9:*;9."$ *;5> *@9 a b c d 1. + + + 2. 3. 4. 5. 6. + + + + + + + + + + P1. Valitaan kannaksi sivu, jonka pituus on 4. Koska toinen jäljelle jäävistä sivuista

Lisätiedot

x 5 15 x 25 10x 40 11x x y 36 y sijoitus jompaankumpaan yhtälöön : b)

x 5 15 x 25 10x 40 11x x y 36 y sijoitus jompaankumpaan yhtälöön : b) MAA4 ratkaisut. 5 a) Itseisarvon vastauksen pitää olla aina positiivinen, joten määritelty kun 5 0 5 5 tai ( ) 5 5 5 5 0 5 5 5 5 0 5 5 0 0 9 5 9 40 5 5 5 5 0 40 5 Jälkimmäinen vastaus ei toimi määrittelyjoukon

Lisätiedot

1. a. Ratkaise yhtälö 8 x 5 4 x + 2 x+2 = 0 b. Määrää joku toisen asteen epäyhtälö, jonka ratkaisu on 2 x 1.

1. a. Ratkaise yhtälö 8 x 5 4 x + 2 x+2 = 0 b. Määrää joku toisen asteen epäyhtälö, jonka ratkaisu on 2 x 1. ABIKertaus.. a. Ratkaise yhtälö 8 5 4 + + 0 b. Määrää joku toisen asteen epäyhtälö, jonka ratkaisu on. 4. Jaa polynomi 8 0 5 ensimmäisen asteen tekijöihin ja ratkaise tämän avulla 4 epäyhtälö 8 0 5 0.

Lisätiedot

Kenguru 2006 sivu 1 Cadet-ratkaisut

Kenguru 2006 sivu 1 Cadet-ratkaisut Kenguru 2006 sivu 1 3 pistettä 1. Kenguru astuu sisään sokkeloon. Se saa käydä vain kolmion muotoisissa huoneissa. Mistä se pääsee ulos? A) a B) b C) c D) d E) e 2. Kengurukilpailu on pidetty Euroopassa

Lisätiedot

A Lausekkeen 1,1 3 arvo on 1,13 3,3 1,331 B Tilavuus 0,5 m 3 on sama kuin 50 l 500 l l C Luvuista 2 3, 6 7

A Lausekkeen 1,1 3 arvo on 1,13 3,3 1,331 B Tilavuus 0,5 m 3 on sama kuin 50 l 500 l l C Luvuista 2 3, 6 7 1 Tuotteen hinta nousee ensin 10 % ja laskee sitten 10 %, joten lopullinen hinta on... alkuperäisestä hinnasta. alkuperäisestä hinnasta. YLIOPPILASTUTKINTO- LAUTAKUNTA 23.3.2016 MATEMATIIKAN KOE PITKÄ

Lisätiedot

Kenguru Benjamin, ratkaisut (1 / 6) luokka

Kenguru Benjamin, ratkaisut (1 / 6) luokka Kenguru Benjamin, ratkaisut (1 / 6) 3 pisteen tehtävät 1. Kuinka monta kokonaislukua on lukujen 19,03 ja,009 välissä? (A) 14 (B) 15 (C) 16 (D) 17 (E) enemmän kuin 17 Luvut 3, 4, 5, 6, 7, 8, 9, 10, 11,

Lisätiedot

Kenguru 2011 Junior (lukion 1. vuosi)

Kenguru 2011 Junior (lukion 1. vuosi) sivu 1 / 8 NIMI LUOKKA/RYHMÄ Pisteet: Kenguruloikan pituus: Irrota tämä vastauslomake tehtävämonisteesta. Merkitse tehtävän numeron alle valitsemasi vastausvaihtoehto. Jätä ruutu tyhjäksi, jos et halua

Lisätiedot

Lukion matematiikkakilpailun alkukilpailu 2015

Lukion matematiikkakilpailun alkukilpailu 2015 Lukion matematiikkakilpailun alkukilpailu 015 Avoimen sarjan tehtävät ja niiden ratkaisuja 1. Olkoot a ja b peräkkäisiä kokonaislukuja, c = ab ja d = a + b + c. a) Osoita, että d on kokonaisluku. b) Mitä

Lisätiedot

Pyramidi 3 Geometria tehtävien ratkaisut sivu a)

Pyramidi 3 Geometria tehtävien ratkaisut sivu a) Pyramidi 3 Geometria tehtävien ratkaisut sivu 8 501 a) Kolmiossa C kaksi yhtä pitkää sivua kuin kolmiossa DEF ja näiden sivujen väliset kulmat ovat yhtä suuret, joten kolmiot ovat yhtenevät yhtenevyyslauseen

Lisätiedot

Vastaukset 1. A = (-4,3) B = (6,1) C = (4,8) D = (-7,-1) E = (-1,0) F = (3,-3) G = (7,-9) 3. tämä on ihan helppoa

Vastaukset 1. A = (-4,3) B = (6,1) C = (4,8) D = (-7,-1) E = (-1,0) F = (3,-3) G = (7,-9) 3. tämä on ihan helppoa Vastaukset 1. A = (4,3) B = (6,1) C = (4,8) D = (7,1) E = (1,0) F = (3,3) G = (7,9) 2. 3. tämä on ihan helppoa 4. 5. a) (0, 0) b) Kolmannessa c) Ensimmäisessä d) toisessa ja neljännessä 117 6. 7. 8. esimerkiksi

Lisätiedot

LAHDEN AMMATTIKORKEAKOULU TEKNIIKAN ALA MATEMATIIKAN PREPPAUSTEHTÄVIÄ Kesä 2015

LAHDEN AMMATTIKORKEAKOULU TEKNIIKAN ALA MATEMATIIKAN PREPPAUSTEHTÄVIÄ Kesä 2015 PREPPAUSTA 05.nb LAHDEN AMMATTIKORKEAKOULU TEKNIIKAN ALA MATEMATIIKAN PREPPAUSTEHTÄVIÄ Kesä 05 MURTOLUVUT. Laske murtolukujen 3 ja 5 6 summa, tulo ja osamäärä. Summa 3 5 6 4 3 5 6 8 6 5 6 3 6 6. Laske

Lisätiedot

Derivaatan sovellukset (ääriarvotehtävät ym.)

Derivaatan sovellukset (ääriarvotehtävät ym.) Derivaatan sovellukset (ääriarvotehtävät ym.) Tehtävät: 1. Tutki derivaatan avulla funktion f kulkua. a) f(x) = x 4x b) f(x) = x + 6x + 11 c) f(x) = x4 4 x3 + 4 d) f(x) = x 3 6x + 1x + 3. Määritä rationaalifunktion

Lisätiedot

Valitse vain kuusi tehtävää! Tee etusivun yläreunaan pisteytysruudukko! Kaikkiin tehtäviin tarvittavat välivaiheet esille!

Valitse vain kuusi tehtävää! Tee etusivun yläreunaan pisteytysruudukko! Kaikkiin tehtäviin tarvittavat välivaiheet esille! 5.4.013 Jussi Tyni 1. Selitä ja piirrä seuraavat lyhyesti: a) Kehäkulma ja keskikulma b) Todista, että kolmion kulmien summa on 180 astetta. Selitä päätelmiesi perustelut.. a) Suorakulmaisen kolmion kateetit

Lisätiedot

3 Yleinen toisen asteen yhtälö ja epäyhtälö

3 Yleinen toisen asteen yhtälö ja epäyhtälö Juuri Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 5.8.016 3 Yleinen toisen asteen yhtälö ja epäyhtälö ENNAKKOTEHTÄVÄT 1. a) x + x + 1 = 4 (x + 1) = 4 Luvun x + 1 tulee olla tai, jotta sen

Lisätiedot

[MATEMATIIKKA, KURSSI 8]

[MATEMATIIKKA, KURSSI 8] 2015 Puustinen, Sinn PYK [MATEMATIIKKA, KURSSI 8] Trigometrian ja avaruusgeometrian teoriaa, tehtäviä ja linkkejä peruskoululaisille Sisällysluettelo 8.1 PYTHAGORAAN LAUSE... 3 8.1.1 JOHDANTOTEHTÄVÄT 1-6...

Lisätiedot

Yhtälön oikealla puolella on säteen neliö, joten r. = 5 eli r = ± 5. Koska säde on positiivinen, niin r = 5.

Yhtälön oikealla puolella on säteen neliö, joten r. = 5 eli r = ± 5. Koska säde on positiivinen, niin r = 5. Tekijä Pitkä matematiikka 5 7..017 31 Kirjoitetaan yhtälö keskipistemuotoon ( x x ) + ( y y ) = r. 0 0 a) ( x 4) + ( y 1) = 49 Yhtälön vasemmalta puolelta nähdään, että x 0 = 4 ja y 0 = 1, joten ympyrän

Lisätiedot

MAA4 Abittikokeen vastaukset ja perusteluja 1. Määritä kuvassa olevien suorien s ja t yhtälöt. Suoran s yhtälö on = ja suoran t yhtälö on = + 2. Onko väittämä oikein vai väärin? 2.1 Suorat =5 +2 ja =5

Lisätiedot

Kenguru 2016 Ecolier (4. ja 5. luokka)

Kenguru 2016 Ecolier (4. ja 5. luokka) sivu 1 / 13 NIMI LUOKKA Pisteet: Kenguruloikan pituus: Irrota tämä vastauslomake tehtävämonisteesta. Merkitse tehtävän numeron alle valitsemasi vastausvaihtoehto. Väärästä vastauksesta saat miinuspisteitä

Lisätiedot

Kenguru Écolier (4. ja 5. luokka) ratkaisut sivu 1/5

Kenguru Écolier (4. ja 5. luokka) ratkaisut sivu 1/5 Kenguru Écolier (4. ja 5. luokka) ratkaisut sivu 1/5 3 pisteen tehtävät 1) Miettisen perhe syö 3 ateriaa päivässä. Kuinka monta ateriaa he syövät viikon aikana? A) 7 B) 18 C) 21 D) 28 E) 37 2) Aikuisten

Lisätiedot

1. a) b) Nollakohdat: 20 = c) a b a b = + ( a b)( a + b) Derivaatan kuvaajan numero. 1 f x x x g x x x x. 3. a)

1. a) b) Nollakohdat: 20 = c) a b a b = + ( a b)( a + b) Derivaatan kuvaajan numero. 1 f x x x g x x x x. 3. a) Pitkä matematiikka YO-koe 9..04. a) b) 7( x ) + = x ( x ) x(5 8 x) > 0 7x + = x x + 8x + 5x > 0 7x = 0 Nollakohdat: 0 8x + 5x = 0 x = 7 x(8x 5) = 0 5 5 x = 0 tai x = Vastaus: 0 < x < 8 8 c) a+ b) a b)

Lisätiedot

Kun pallojen keskipisteet yhdistetään, muodostuu neliöpohjainen, suora pyramidi (kuva 3), jonka sivusärmien pituudet ovat 2 pallon säde eli 2 1 = 2.

Kun pallojen keskipisteet yhdistetään, muodostuu neliöpohjainen, suora pyramidi (kuva 3), jonka sivusärmien pituudet ovat 2 pallon säde eli 2 1 = 2. Hyvän ratkaisun piirteitä: a) Neliöpohjainen rakennelma Kun pallojen keskipisteet yhdistetään, muodostuu neliöpohjainen, suora pyramidi (kuva ), jonka sivusärmien pituudet ovat 2 pallon säde eli 2 1 =

Lisätiedot

Tehtävä 1 2 3 4 5 6 7 Vastaus

Tehtävä 1 2 3 4 5 6 7 Vastaus Kenguru Benjamin, vastauslomake Nimi Luokka/Ryhmä Pisteet Kenguruloikka Irrota tämä vastauslomake tehtävämonisteesta. Merkitse tehtävän numeron alle valitsemasi vastausvaihtoehto. Jätä ruutu tyhjäksi,

Lisätiedot

Cadets Sivu 1

Cadets Sivu 1 Cadets 2004 - Sivu 1 3 pistettä 1/ Laske 2004 4 200 A 400800 B 400000 C 1204 1200 E 2804 2/ Tasasivuista kolmiota AC kierretään vastapäivään pisteen A ympäri. Kuinka monta astetta sitä on kierrettävä kunnes

Lisätiedot

Kenguru Ecolier, ratkaisut (1 / 5) 4. - 5. luokka

Kenguru Ecolier, ratkaisut (1 / 5) 4. - 5. luokka 3 pisteen tehtävät Kenguru Ecolier, ratkaisut (1 / 5) 1. Missä kenguru on? (A) Ympyrässä ja kolmiossa, mutta ei neliössä. (B) Ympyrässä ja neliössä, mutta ei kolmiossa. (C) Kolmiossa ja neliössä, mutta

Lisätiedot

Avainsanat: geometria, kolmio, ympyrä, pallo, trigonometria, kulma

Avainsanat: geometria, kolmio, ympyrä, pallo, trigonometria, kulma OuLUMA - Jussi Tyni OuLUMA, sivu 1 Ihastellaan muotoja Avainsanat: geometria, kolmio, ympyrä, pallo, trigonometria, kulma Luokkataso: lukio Välineet: kynä, paperia, laskin Tavoitteet: Tarkoitus on arkielämään

Lisätiedot

Kenguru Student (lukion 2. ja 3.), ratkaisut sivu 1 / 13

Kenguru Student (lukion 2. ja 3.), ratkaisut sivu 1 / 13 Kenguru Student (lukion ja ), ratkaisut sivu / pistettä Kuvasta huomataan, että + + 5 + 7 = 44 Kuinka paljon tämän mukaan on + + 5 + 7 + 9 + + + 5 + 7? A) 44 B) 99 C) 444 D) 66 E) 49 Ratkaisu: Kuvan havainnollistuksen

Lisätiedot

Hilbertin aksioomat ja tarvittavat määritelmät Tiivistelmä Geometria-luentomonisteesta Heikki Pitkänen

Hilbertin aksioomat ja tarvittavat määritelmät Tiivistelmä Geometria-luentomonisteesta Heikki Pitkänen Hilbertin aksioomat ja tarvittavat määritelmät Tiivistelmä Geometria-luentomonisteesta Heikki Pitkänen 1. Hilbertin aksioomat 1-3 Oletetaan tunnetuiksi peruskäsitteet: piste, suora ja suora kulkee pisteen

Lisätiedot

Tässä osassa ei käytetä laskinta. Kaikkiin tehtäviin laskuja tai perusteluja näkyviin, ellei muuta ole mainittu.

Tässä osassa ei käytetä laskinta. Kaikkiin tehtäviin laskuja tai perusteluja näkyviin, ellei muuta ole mainittu. Peruskoulun matematiikkakilpailu Loppukilpailu perjantaina 6..009 OSA Ratkaisuaika 30 min Pistemäärä 0 Tässä osassa ei käytetä laskinta. Kaikkiin tehtäviin laskuja tai perusteluja näkyviin, ellei muuta

Lisätiedot

2.1 Yhtenevyyden ja yhdenmuotoisuuden käsite

2.1 Yhtenevyyden ja yhdenmuotoisuuden käsite 2.1 Yhtenevyyden ja yhdenmuotoisuuden käsite Tämän päivän lukiogeometrian sisältöjä on melkoisesti supistettu siitä, mitä ne olivat joku vuosikymmen sitten. Sisällöistä ei enää kasata sellaista rakennelmaa,

Lisätiedot

4.3 Kehäkulma. Keskuskulma

4.3 Kehäkulma. Keskuskulma 4.3 Kehäkulma. Keskuskulma Sellaista kulmaa, jonka kärki on ympyrän kehällä ja kumpikin kylki leikkaa (rajatapauksessa sivuaa) ympyrän kehää, sanotaan kehäkulmaksi, ja sitä vastaavan keskuskulman kyljet

Lisätiedot

Pyramidi 9 Trigonometriset funktiot ja lukujonot 15.4.2011 HK1-1. Dsin3 x. 3cos3x. Dsinx. u( x) sinx ja u ( x) cosx. Dsin. Dsin

Pyramidi 9 Trigonometriset funktiot ja lukujonot 15.4.2011 HK1-1. Dsin3 x. 3cos3x. Dsinx. u( x) sinx ja u ( x) cosx. Dsin. Dsin Pyramidi 9 Trigonometriset funktiot ja lukujonot 5.4.0 HK- a) Dsin3 us ( ) cos3 3 us( ) s( ) 3cos3 s( ) 3 ja s( ) 3 u( ) sin ja u( ) cos b) Dsin 3 3 Dsin us ( ) s( ) sin ja s( ) cos 3 u( ) ja u( ) 3 3sin

Lisätiedot

Ympyrä 1/6 Sisältö ESITIEDOT: käyrä, kulma, piste, suora

Ympyrä 1/6 Sisältö ESITIEDOT: käyrä, kulma, piste, suora Ympyrä 1/6 Sisältö Ympyrä ja sen yhtälö Tason pisteet, jotka ovat vakioetäisyydellä kiinteästä pisteestä, muodostavat ympyrän eli ympyräviivan. Kiinteä piste on ympyrän keskipiste ja vakioetäisyys sen

Lisätiedot

Kenguru 2013 Ecolier sivu 1 / 6 (4. ja 5. luokka) yhteistyössä Pakilan ala-asteen kanssa

Kenguru 2013 Ecolier sivu 1 / 6 (4. ja 5. luokka) yhteistyössä Pakilan ala-asteen kanssa Kenguru 2013 Ecolier sivu 1 / 6 NIMI LUOKKA Pisteet: Kenguruloikan pituus: Irrota tämä vastauslomake tehtävämonisteesta. Merkitse tehtävän numeron alle valitsemasi vastausvaihtoehto. Väärästä vastauksesta

Lisätiedot

Kenguru 2012 Student sivu 1 / 14 (lukion 2. ja 3. vuosi) Ratkaisut.

Kenguru 2012 Student sivu 1 / 14 (lukion 2. ja 3. vuosi) Ratkaisut. Kenguru 2012 Student sivu 1 / 14 Ratkaisut on kirjoitettu kunkin tehtävän perään; oikea vaihtoehto on alleviivattu. Useimmat tehtävät voi ratkaista monella tavalla. Tässä on pyritty esittämään tyylikkäitä

Lisätiedot

Pythagoraan polku 16.4.2011

Pythagoraan polku 16.4.2011 Pythagoraan polku 6.4.20. Todista väittämä: Jos tasakylkisen kolmion toista kylkeä jatketaan omalla pituudellaan huipun toiselle puolelle ja jatkeen päätepiste yhdistetään kannan toisen päätepisteen kanssa,

Lisätiedot

A-osio. Ilman laskinta. MAOL-taulukkokirja saa olla käytössä. Maksimissaan tunti aikaa. Laske kaikki tehtävät:

A-osio. Ilman laskinta. MAOL-taulukkokirja saa olla käytössä. Maksimissaan tunti aikaa. Laske kaikki tehtävät: MAA3 Geometria Koe 5.2.2016 Jussi Tyni Lue ohjeet ja tee tehtävät huolellisesti! Tee tarvittavat välivaiheet, vaikka laskimesta voikin ottaa tuloksia. Välivaiheet perustelevat vastauksesi. Tee pisteytysruudukko

Lisätiedot

3. Piirrä kaksi tasoa siten, että ne jakavat avaruuden neljään osaan.

3. Piirrä kaksi tasoa siten, että ne jakavat avaruuden neljään osaan. KOKEIT KURSSI 2 Matematiikan koe Kurssi 2 () 1. Nimeä kulmat ja mittaa niiden suuruudet. a) c) 2. Mitkä kuvion kulmista ovat a) suoria teräviä c) kuperia? 3. Piirrä kaksi tasoa siten, että ne jakavat avaruuden

Lisätiedot

y=-3x+2 y=2x-3 y=3x+2 x = = 6

y=-3x+2 y=2x-3 y=3x+2 x = = 6 MAA Koe, Arto Hekkanen ja Jussi Tyni 5.5.015 Loppukoe LASKE ILMAN LASKINTA. 1. Yhdistä kuvaaja ja sen yhtälö a) 3 b) 1 c) 5 d) Suoran yhtälö 1) y=3x ) 3x+y =0 3) x y 3=0 ) y= 3x 3 5) y= 3x 6) 3x y+=0 y=-3x+

Lisätiedot

MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ (1 piste/kohta)

MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ (1 piste/kohta) MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ 3.3.06. ( piste/kohta) Sivu / 8 Kohta Vaihtoehdon numero A B C D E F 3. a) Ainakin yhdet sulut kerrottu oikein auki 6x 4x x( 3x) Ratkaistu nollakohdat sieventämisen lisäksi

Lisätiedot

5.3 Suoran ja toisen asteen käyrän yhteiset pisteet

5.3 Suoran ja toisen asteen käyrän yhteiset pisteet .3 Suoran ja toisen asteen käyrän yhteiset pisteet Tämän asian taustana on ratkaista sellainen yhtälöpari, missä yhtälöistä toinen on ensiasteinen ja toinen toista astetta. Tällainen pari ratkeaa aina

Lisätiedot

MAA3 TEHTÄVIEN RATKAISUJA

MAA3 TEHTÄVIEN RATKAISUJA MAA3 TEHTÄVIEN RATKAISUJA 1. Piirretään kulman kärki keskipisteenä R-säteinen ympyränkaari, joka leikkaa kulman kyljet pisteissä A ja B. Nämä keskipisteenä piirretään samansäteiset ympyräviivat säde niin

Lisätiedot

Juuri 3 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty Julkaiseminen sallittu vain koulun suljetussa verkossa.

Juuri 3 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty Julkaiseminen sallittu vain koulun suljetussa verkossa. Trigonometria Ennakkotehtävät. a) Mäessä korkeus kasvaa metriä jokaista vaakasuunnassa edettyä 0 metriä kohden eli jyrkkyys prosentteina on : 0 = 0, = 0 %. b) Hahmotellaan tilannetta kuvan avulla. Kun

Lisätiedot

Pitkä matematiikka Suullinen kuulustelu (ma00s001.doc) Tehtävät, jotka on merkitty (V), ovat vaativia.

Pitkä matematiikka Suullinen kuulustelu (ma00s001.doc) Tehtävät, jotka on merkitty (V), ovat vaativia. Pitkä matematiikka Suullinen kuulustelu (ma00s00doc) Tehtävät, jotka on merkitty (V), ovat vaativia Yleistä Ratkaise yhtälöt n n n n n 5 a) 5 + 5 + 5 + 5 + 5 = 5 b) ( ) ( ) > 0 + = + c) ( ) Suureet ja

Lisätiedot

Maksimit ja minimit 1/5 Sisältö ESITIEDOT: reaalifunktiot, derivaatta

Maksimit ja minimit 1/5 Sisältö ESITIEDOT: reaalifunktiot, derivaatta Maksimit ja minimit 1/5 Sisältö Funktion kasvavuus ja vähenevyys; paikalliset ääriarvot Jos derivoituvan reaalifunktion f derivaatta tietyssä pisteessä on positiivinen, f (x 0 ) > 0, niin funktion tangentti

Lisätiedot

3. Kuvio taitetaan kuutioksi. Mikä on suurin samaa kärkeä ympäröivillä kolmella sivutahkolla olevien lukujen tulo?

3. Kuvio taitetaan kuutioksi. Mikä on suurin samaa kärkeä ympäröivillä kolmella sivutahkolla olevien lukujen tulo? Peruskoulun matematiikkakilpailu Loppukilpailu perjantaina 4.2.2011 OSA 1 Ratkaisuaika 30 min Pistemäärä 20 Tässä osassa ei käytetä laskinta. Esitä myös lasku, kuvio, päätelmä tai muu lyhyt perustelu.

Lisätiedot

( ) ( ) ( ) ( ( ) Pyramidi 4 Analyyttinen geometria tehtävien ratkaisut sivu 271 Päivitetty 19.2.2006. 701 a) = keskipistemuoto.

( ) ( ) ( ) ( ( ) Pyramidi 4 Analyyttinen geometria tehtävien ratkaisut sivu 271 Päivitetty 19.2.2006. 701 a) = keskipistemuoto. Pyramidi Analyyttinen geometria tehtävien ratkaisut sivu 7 Päivitetty 9..6 7 a) + y = 7 + y = 7 keskipistemuoto + y 7 = normaalimuoto Vastaus a) + y = ( 7 ) + y 7= b) + y+ 5 = 6 y y + + = b) c) ( ) + y

Lisätiedot

Kenguru 2013 Junior sivu 1 / 19 (lukion 1. vuosikurssi) Ratkaisut

Kenguru 2013 Junior sivu 1 / 19 (lukion 1. vuosikurssi) Ratkaisut Kenguru 2013 Junior sivu 1 / 19 3 pistettä 1. Sannalla oli neliön muotoisia paperiarkkeja, joille hän piirsi kuvioita. Kuinka monella näistä kuvioista on yhtä suuri piiri kuin paperiarkilla? (A) 2 (B)

Lisätiedot

Matematiikan olympiavalmennus

Matematiikan olympiavalmennus Matematiikan olympiavalmennus Toukokuun 2012 helpommat valmennustehtävät ratkaisuja 1 Määritä sellaisen kolmion ala, jonka kaksi kulmaa ovat 60 ja 45 ja jonka pisimmän sivun pituus on 1 Ratkaisu Olkoon

Lisätiedot

PERUSKOULUN MATEMATIIKKAKILPAILU LOPPUKILPAILU PERJANTAINA

PERUSKOULUN MATEMATIIKKAKILPAILU LOPPUKILPAILU PERJANTAINA PERUSKOULUN MATEMATIIKKAKILPAILU LOPPUKILPAILU PERJANTAINA 4..005 OSA 1 Laskuaika 30 min Pistemäärä 0 pistettä 1. Mikä on lukujonon seuraava jäsen? Minkä säännön mukaan lukujono muodostuu? 1 4 5 1 1 1

Lisätiedot

Kenguru 2016 Benjamin (6. ja 7. luokka)

Kenguru 2016 Benjamin (6. ja 7. luokka) sivu 1 / 13 NIMI LUOKKA Pisteet: Kenguruloikan pituus: Irrota tämä vastauslomake tehtävämonisteesta. Merkitse tehtävän numeron alle valitsemasi vastausvaihtoehto. Väärästä vastauksesta saat miinuspisteitä

Lisätiedot

Kenguru 2016 Benjamin (6. ja 7. luokka)

Kenguru 2016 Benjamin (6. ja 7. luokka) sivu 1 / 8 NIMI LUOKKA Pisteet: Kenguruloikan pituus: Irrota tämä vastauslomake tehtävämonisteesta. Merkitse tehtävän numeron alle valitsemasi vastausvaihtoehto. Väärästä vastauksesta saat miinuspisteitä

Lisätiedot

Harjoitustehtävät, syys lokakuu 2010. Helpommat

Harjoitustehtävät, syys lokakuu 2010. Helpommat Harjoitustehtävät, syys lokakuu 010. Helpommat Ratkaisuja 1. Kellon minuutti- ja tuntiosoittimet ovat tasan suorassa kulmassa kello 9.00. Milloin ne ovat seuraavan kerran tasan suorassa kulmassa? Ratkaisu.

Lisätiedot

MATEMATIIKKA JA TAIDE II

MATEMATIIKKA JA TAIDE II 1 MATEMATIIKKA JA TAIDE II Aihepiirejä: Hienomotoriikkaa harjoittavia kaksi- ja kolmiulotteisia väritys-, piirtämis- ja askartelutehtäviä, myös sellaisia, joissa kuvio jatkuu loputtomasti, ja sellaisia,

Lisätiedot

Vanhoja koetehtäviä. Analyyttinen geometria 2016

Vanhoja koetehtäviä. Analyyttinen geometria 2016 Vanhoja koetehtäviä Analyyttinen geometria 016 1. Määritä luvun a arvo, kun piste (,3) on käyrällä a(3x + a) = (y - 1). Suora L kulkee pisteen (5,1) kautta ja on kohtisuorassa suoraa 6x + 7y - 19 = 0 vastaan.

Lisätiedot

Juuri 4 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty Kertaus. b) B = (3, 0, 5) K2. 8 ( 1)

Juuri 4 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty Kertaus. b) B = (3, 0, 5) K2. 8 ( 1) Kertaus K1. a) OA i k b) B = (, 0, 5) K. K. a) AB (6 ( )) i () ( ( 7)) k 8i 4k AB 8 ( 1) 4 64116 819 b) 1 1 AB( ( 1)) i 1 i 4 AB ( ) ( 4) 416 0 45 5 K4. a) AB AO OB OA OB ( i ) i i i 5i b) Pisteen A paikkavektori

Lisätiedot

PRELIMINÄÄRIKOE. Pitkä Matematiikka 3.2.2015

PRELIMINÄÄRIKOE. Pitkä Matematiikka 3.2.2015 PRELIMINÄÄRIKOE Pitkä Matematiikka..5 Vastaa enintään kymmeneen tehtävään. Tähdellä merkittyjen (*) tehtävien maksimipistemäärä on 9, muiden tehtävien maksimipistemäärä on 6.. a) Ratkaise epäyhtälö >.

Lisätiedot

keskenään isomorfiset? (Perustele!) Ratkaisu. Ovat. Tämän näkee indeksoimalla kärjet kuvan osoittamalla tavalla: a 1 b 3 a 5

keskenään isomorfiset? (Perustele!) Ratkaisu. Ovat. Tämän näkee indeksoimalla kärjet kuvan osoittamalla tavalla: a 1 b 3 a 5 Johdatus diskreettiin matematiikkaan Harjoitus 6, 21.10.2015 1. Ovatko verkot keskenään isomorfiset? (Perustele!) Ratkaisu. Ovat. Tämän näkee indeksoimalla kärjet kuvan osoittamalla tavalla: a 2 b 4 a

Lisätiedot

Kenguru 2011 Cadet RATKAISUT (8. ja 9. luokka)

Kenguru 2011 Cadet RATKAISUT (8. ja 9. luokka) sivu / 2 IKET VSTUSVIHTEHDT N LLEVIIVTTU. 3 pistettä. Minkä laskun tulos on suurin? () 20 (B) 20 (C) 20 (D) + 20 (E) : 20 20 20, 20, 20 20 20 202 ( suurin ) ja : 20 0,0005 2. Hamsteri Fridolin suuntaa

Lisätiedot

Preliminäärikoe Tehtävät A-osio Pitkä matematiikka kevät 2016 Sivu 1 / 4

Preliminäärikoe Tehtävät A-osio Pitkä matematiikka kevät 2016 Sivu 1 / 4 Preliminäärikoe Tehtävät A-osio Pitkä matematiikka kevät 06 Sivu / 4 Laske yhteensä enintään 0 tehtävää. Kaikki tehtävät arvostellaan asteikolla 0-6 pistettä. Osiossa A EI SAA käyttää laskinta. Osiossa

Lisätiedot

Kertaus. Integraalifunktio ja integrointi. 2( x 1) 1 2x. 3( x 1) 1 (3x 1) KERTAUSTEHTÄVIÄ. K1. a)

Kertaus. Integraalifunktio ja integrointi. 2( x 1) 1 2x. 3( x 1) 1 (3x 1) KERTAUSTEHTÄVIÄ. K1. a) Juuri 9 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 5.5.6 Kertaus Integraalifunktio ja integrointi KERTAUSTEHTÄVIÄ K. a) ( )d C C b) c) d e e C cosd cosd sin C K. Funktiot F ja F ovat saman

Lisätiedot

Preliminäärikoe Tehtävät Pitkä matematiikka 4.2.2014 1 / 3

Preliminäärikoe Tehtävät Pitkä matematiikka 4.2.2014 1 / 3 Preliminäärikoe Tehtävät Pitkä matematiikka / Kokeessa saa vastata enintään kymmeneen tehtävään Tähdellä (* merkittyjen tehtävien maksimipistemäärä on 9, muiden tehtävien maksimipistemäärä on 6 Jos tehtävässä

Lisätiedot

Integrointi ja sovellukset

Integrointi ja sovellukset Integrointi ja sovellukset Tehtävät:. Muodosta ja laske yläsumma funktiolle fx) x 5 välillä [, 4], kun väli on jaettu neljään yhtä suureen osaan.. Määritä integraalin x + ) dx likiarvo laskemalla alasumma,

Lisätiedot

TYÖPAJA 1: Tasogeometriaa GeoGebran piirtoalue ja työvälineet

TYÖPAJA 1: Tasogeometriaa GeoGebran piirtoalue ja työvälineet TYÖPAJA 1: Tasogeometriaa GeoGebran piirtoalue ja työvälineet Näissä harjoituksissa työskennellään näkymässä Näkymät->Geometria PIIRRÄ a) jana, jonka pituus on 3 b) kulma, jonka suuruus on 45 astetta c)

Lisätiedot

1. a) Laske lukujen 1, 1 ja keskiarvo. arvo. b) Laske lausekkeen. c) Laske integraalin ( x xdx ) arvo. MATEMATIIKAN MALLIKOE PITKÄ OPPIMÄÄRÄ

1. a) Laske lukujen 1, 1 ja keskiarvo. arvo. b) Laske lausekkeen. c) Laske integraalin ( x xdx ) arvo. MATEMATIIKAN MALLIKOE PITKÄ OPPIMÄÄRÄ 1 YLIOPPILASTUTKINTO- LAUTAKUNTA 13..015 MATEMATIIKAN MALLIKOE PITKÄ OPPIMÄÄRÄ A-osa Ratkaise kaikki tämän osan tehtävät 1 4. Tehtävät arvostellaan pistein 0 6. Kunkin tehtävän ratkaisu kirjoitetaan tehtävän

Lisätiedot

4.1 Urakäsite. Ympyräviiva. Ympyrään liittyvät nimitykset

4.1 Urakäsite. Ympyräviiva. Ympyrään liittyvät nimitykset 4.1 Urakäsite. Ympyräviiva. Ympyrään liittyvät nimitykset MÄÄRITELMÄ 6 URA Joukko pisteitä, joista jokainen täyttää määrätyn ehdon, on ura. Urakäsite sisältää siten kaksi asiaa. Pistejoukon jokainen piste

Lisätiedot

Preliminäärikoe Tehtävät A-osio Pitkä matematiikka kevät 2016 Sivu 1 / 4

Preliminäärikoe Tehtävät A-osio Pitkä matematiikka kevät 2016 Sivu 1 / 4 Preliminäärikoe Tehtävät A-osio Pitkä matematiikka kevät 06 Sivu / Laske yhteensä enintään 0 tehtävää. Kaikki tehtävät arvostellaan asteikolla 0-6 pistettä. Osiossa A EI SAA käyttää laskinta. Osiossa A

Lisätiedot

Peruskoulun matematiikkakilpailu

Peruskoulun matematiikkakilpailu Peruskoulun matematiikkakilpailu 6.11.2013 Työskentelyaika 50 minuuttia. Laskinta ei saa käyttää. Muista perustelut! Perustele tehtävät 3-8 laskulausekkeella, piirroksella tai selityksellä. Tehtävät 1-3

Lisätiedot