Timo Haiko Keijo salonen toni harju

Koko: px
Aloita esitys sivulta:

Download "Timo Haiko Keijo salonen toni harju"

Transkriptio

1 Timo Haiko Keijo salonen toni harju DIGITAALIelektroniikka Peruspiireistä sulautettuihin järjestelmiin Sanoma Pro Oy Helsinki s1-7.indd

2 Tiedustelut Sanoma Pro Oy, Helsinki puh sähköposti: Kustantaja: Sanoma Pro Oy 1. painos 2012 ISBN Toimitus: Suvi Hanste Ulkoasu ja kansi: Veera Alanko Taitto: Heli Haiko, Sirpa Hämäläinen Kuvat: Kuvaluettelo sivulla 7 Timo Haiko, Toni Harju, Keijo Salonen ja Sanoma Pro Oy Teos on suojattu tekijänoikeuslailla (1961/404). Kopiointi, tallentaminen, jakelu, muu jatkokäyttö sekä edelleenluovutus sallittu vain tekijän ja kustantajan etukäteen antamalla luvalla. Kopiointiluvasta vastaa aina käyttäjä. Varmista sopimuksesi voimassaolo: s1-7.indd

3 Esipuhe Elektroniikka on tekniikan ala, jota sovelletaan nykyään lähes kaikkialla. Aluksi elektroniikka oli analogista ja sittemmin se täydentyi digitaalielektroniikalla. Tämä kirja kertoo digitaalielektroniikan perusteista alkaen yksinkertaisista porttipiireistä aina mikroprosessoreihin. Elektroniikan oppiminen edellyttää moninaisia tietoja ja taitoja niin käytännön kuin teorian alueilta. Elektroniikan rakentaminen esimerkiksi rakennussarjoista tai vastaavista ohjeista on vaativa mutta palkitseva oppimistapa. Myös oman virtuaalisen elektroniikkalaboratorion perustaminen on suositeltavaa. Internetissä onkin tarjolla useita kohtuuhintaisia, jopa ilmaisia, simulaatio-ohjelmia, jotka soveltuvat niin analogisen kuin digitaalielektroniikan tutkimiseen. Myös protopiirilevyjen suunnitteluun löytyy varsin kohtuuhintainen ohjelma. Piirilevyjen suunnitteluun on olemassa useita ohjelmia, joilla voidaan tulostaa fotolakatun piirilevyn valotuksessa tarvittava työfilmi ja/tai tallentaa ohjaustiedosto piirilevyn jyrsintää varten. Kirjan sivuilla ja netistä ladattavalla oheismateriaalilla on eräitä tuotoksia, kuten piirikaavioita, simulaatioita sekä jyrsimen ohjaustiedostoja, joiden teossa on käytetty mainittuja työkaluohjelmia. Ohjelmien nimet on esitetty asiayhteydessä. Kirjan sisältö koostuu opetustekstin lisäksi tehtävistä, esimerkeistä ja projekteista, sekä runsaasta kuvituksesta, joiden avulla opiskelijalla on entistä paremmat mahdollisuudet oppia digitaalielektroniikan keskeiset asiat. Kirjan tekstissä on suomenkielisten termien lisäksi usein myös englanninkielinen vastine ja/tai sen lyhenne. Tarkoituksena on auttaa lukijaa löytämään lisätietoja internetin avulla. Oman ammattialan vieraskielinen sanasto on arvokasta pääomaa. Monet kirjan piirikaaviokuvista voidaan avata myös tietokoneella niiden lähempää ja laajempaa tarkastelua varten. Tällöin on mahdollista testata kytkentää omassa virtuaalilaboratoriossa itselle parhaimmin sopivana aikana. Simulaatio-ohjelma ja kirjassa mainitut simulaatiotiedostot sekä muu sähköinen materiaali on ladattavissa: Otamme kiitollisina vastaan palautetta, jotta voimme edelleen parantaa kirjan käytettävyyttä. Maaliskuussa 2012 Tekijät 3 s1-7.indd

4 Sisällys Esipuhe Kombinaatiopiirit Digitaalitekniikka...8 Yleistä...8 Elektroniikan historiaa...8 Analogisen elektroniikan ja digitaali - elektroniikan välinen ero... 9 Siniaaltosignaalin ja suorakaideaalto - signaalin yhteys Käytännön digitaalisignaali Digitaalisista peruspiireistä sulautettuihin järjestelmiin Portit ja puskurit...40 NOT-puskuri...41 Puskuripiiri eli bufferi...45 Portit...48 AND-portti...49 Totuustaulun laatiminen loogiselle piirille...52 OR-portti...54 NAND-portti...56 NOR-portti...60 XOR-portti...63 XNOR-portti...65 Kytkentäalgebraa Digitaalitekniikan mittalaitteet ja työkalut Sekvenssipiirit Oskilloskooppi...16 Oskilloskoopin mittapää...21 Mittauksia oskilloskoopilla...22 Sähkölaitteiden luokitusjärjestelmät...25 IP-luokitus...25 CAT-merkintä...26 Komponenttien ladontakone...26 ESD-suojaus...28 ESD-varusteita...28 tehtäviä...30 Lukujärjestelmät...32 Kymmenjärjestelmä...32 Binäärijärjestemä...33 Heksadesimaalijärjestelmä...34 Lukujärjestelmien muunnokset...35 Koodeja...38 Kellopulssioskillaattorit...76 Käytännön kellopulssioskillaattori...76 Reaaliaikakellopiirit...78 Astabiili värähtelijä...79 Astabiilin värähtelijän toteuttaminen transistoreilla Astabiilin värähtelijän toteuttaminen NAND-porttipiirillä Astabiilin värähtelijän toteuttaminen inverttereillä Astabiilin värähtelijän toteuttaminen 555-ajastinpiirillä ajastinpiirin toiminnan havainnollistaminen Astabiili värähtelijä pulssinleveysmodulaattorina Kideoskillaattori...87 Ohjaimet...88 Ledien ohjaukset...88 Lediohjain Lediohjain s1-7.indd

5 Lediohjain segmenttien (ledi) ohjaukset segmenttien (LCD) ohjaukset Kiikut ja salvat Transistoreilla toteutettu kiikku Mikropiirillä toteutettu kiikku RS-kiikku Veräjöity RS-kiikku D-kiikku Veräjöity D-kiikku D-salpa Käytännön esimerkki latch-piiristä JK-kiikku T-kiikku Pulssin jakaminen luvulla n Jakaminen luvulla n Monostabiili kiikku LM555-ajastinpiiri monostabiilina kiikkuna Peruspiirit monostabiilina kiikkuna Ylös/alas-laskuri Siirtorekisterit SISO-rekisteri SIPO-rekisteri PISO-rekisteri PIPO-rekisteri DA- ja AD-muuntimet DA-muunnin AD-muunnin Multiplekserit Muistit Schmitt-liipaisin Komparaattori tehtäviä Käytännön mikropiirit Piiriperheet TTL-piirit CMOS-piirit HCMOS-piirit Piirien käyttöjännitteet Käyttöjännitteet ja häiriöiden vaimennus Komponenttien kotelointi Lähdön kytkennät Avokollektorilähtö Toteemipaalukytkentä Kolmitilalähtö Puskurilähtö Datalehdet Digitaalikytkentöjen simulointi Ohjelman rakenne Analyysilajit Simulaatiotiedoston käyttö Simulaation kuvaajat D(1)-digitaalisignaali kytkentäpisteestä numero yksi maatasoon Stimulusgeneraattorit bittinen stimulusgeneraattori bittinen stimulusgeneraattori bittinen stimulusgeneraattori Tietokone komponenttina Tietokoneen toimintaperiaate IO-laitteet Mikroprosessori Arkkitehtuuri Väylät Muistit Käyttömuisti DIGITAALIelektroniikka 5 s1-7.indd

6 Ohjelmamuisti Datamuisti Rekisterit ALU Ohjelmointi Vuokaaviot ja sanalliset algoritmit tehtäviä Mikro-ohjaimet Yleistä Mikro-ohjainten käyttökohteet Mikro-ohjaimen rakenne ja toiminta Mikro-ohjainten muistit Ohjelmamuisti Käyttömuisti Datamuisti Digitaaliset tulo- ja lähtöportit JTAG, ohjelmointi- ja testiliityntä Ajastimet Komparaattori AD-muunnin PWM ja digitaalinen tehonsäätö Sarjaportti Sarjamuotoiset oheislaiteliitynnät SPI I2C Wire Sarjamuotoisten oheislaiteliityntöjen ominaisuuksia AVR-mikro-ohjaimet AVR-mikro-ohjainten luokittelu AVR-piirien sisäinen toiminta Kirjassa käytettyjä C-kielen ohjelmakäskyjä s1-7.indd

7 Kuvalähteet Timo Haiko: 10, 11, 17, 18, 19, 22, 23, 24, 27, 28, 29, 41, 42, 43, 44, 45 vas. yläk. ja alak., 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 76, 77 alak., 78 yläk., 79, 80, 81, 82, 83, 84, 86, 87, 89, 90 vas., 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102 yläk., 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 116, 117, 118, 119, 120, 121, 122 alak., 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 136, 137 alak., 138, 140, 141, 142, 147, 148 vas. yläk., 149, 154, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 168 vas. yläk., 168 toinen oik., 170 vas.,182 vas. Toni Harju: 13, 72, 73, 74, 139, 178, 181, 183, 188, 190, 191, 193, 194, 195, 196, 198, 200, 201, 202, 206, 207, 208, 210, 211, 212, 215, 216, 217, 219, 226, 229, 230, 232, 233. Eila Sinivuori: 9, 12, 45 yläk. vas., 77 yläk. ja kesk., 78 alak., 90 oik. alak., 91, 92 oik. yläk., 93 vas. yläk.,102 alak., 111 oik. yläk., 113 vas., 115, 116 kesk., 122 yläk., 137 yläk., 148, 152, 153, 168 alak., 169, 170 oik., 171 yläk., 172, 173, 174, 175, 176, 177, 180, 182 oik., 184, 185, 187, 192, 204, 220, 223, 225, 228, 231. Colourbox: 168 toinen vas. ja oik. yläk. DIGITAALIelektroniikka 7 s1-7.indd

8 2 Digitaalitekniikan mittalaitteet ja työkalut Digitaalitekniikassa käytetään osin erilaisia mittalaitteita ja työkaluja kuin tavallisessa analogiatekniikassa. Mittalaitteiden osalta nämä syyt ovat mitattavien signaalien yksinkertaisuus ja moninaisuus: mittaamiseen tarvitaan muun muassa monikanavaisia oskilloskooppeja ja analysaattoreita. Työkalujen ja koneiden osalta erityisiä vaatimuksia tuovat suojaukset staattiselta sähköltä, pintaliitostekniikan käyttö ja automaattinen komponenttilevyjen ladonta. Tarvitaan muun muassa ESD-työkaluja ja kalusteita, ESDsuojavaatetusta ja massatuotantoon soveltuvia koneita, kuten automaattisia ladontakoneita. Oskilloskooppi Sanastoa oskilloskooppi kannettava nelikanavainen mittapää pihtivirtamuuntaja vaimennin bench scope, scope portable four channel probe current clamp attenuator Tavallisesti oskilloskoopissa on kaksi tulokanavaa, jotka riittävät kahden signaalin samanaikaiseen tarkkailuun. Seuraavassa esitellään nelikanavainen oskilloskooppi, Fluke ScopeMeter 190 II. Se on enemmän kuin tavanomainen nelikanavainen oskilloskooppi, koska siinä on tarvittaessa 1 4 toisistaan erotettua mittaria tasa- ja vaihtojännitteen, tasa- ja vaihtovirran, taajuuden ja lämpötilan mittaamiseen. Se soveltuu rakenteensa ja korkeimman turvaluokituksensa (CAT 4) ansiosta käytettäväksi paitsi tavanomaisissa elektroniikan laboratorioissa myös vaativissa tehoelektroniikan sovelluksissa. 16 DIGITAALITEKNIIKAN MITTALAITTEET JA TYÖKALUT DE Luku 2 JN.indd

9 mittajohdot (4 kanavaa) Nelikanavainen akkukäyttöinen oskilloskooppi ja yleismittari Sanastoa Yleisiä ominaisuuksia: Kaistanleveys: Fluke : 200 MHz Fluke : 100 MHz Suurin reaaliaikainen näytteenottonopeus: Fluke : 2,5 GS/s Fluke : 1,25 GS/s Neljä sähköisesti erotettua tuloa Erilliset, kelluvat eristetyt tulot: V:iin asti tulojen, referenssien ja maan välillä Aikakanta-alue/jakoväli: 5 ns-2 min/div Tulon herkkyys/jakoväli: 2 mv-100 V/div Liipaisutyypit: Connect-and-View, Free Run, yksittäis-, reuna-, video-, valinnainen pulssinleveys- ja ulkoinen liipaisu, kaksoisliipaisu ja halutun jakson liipaisu (n-jakso) Häiriöpiikit: 8 ns Scope-mittaukset: Kursori: 7 Automaattinen: 30 banaaniliitin tekniset tiedot kaistanleveys reaaliaikainen näytteenottotaajuus giganäytettä sekunnissa kelluva eristetty tulo aika-akseli jakoväli alue banana probe specifications bandwidth real-time sample rate giga samples/s, GS/s floating isolated input time base division, div range DIGITAALIELEKTROniikka 17 DE Luku 2 JN.indd

10 Sanastoa herkkyys liipaisin vapaasti värähtelevä yksittäislaukaisu viive pulssin leveys valittavissa ulkoinen häiriöpiikki sieppaus mittaus kursori automaattinen kohinan rajoitus suurtaajuus enimmäistallennuspituus yksittäispyyhkäisy Oskilloskooppina sensitivity trigger free run single shot delay selectable pulse width external glitch capture measurement cursor automatic maximum record length noise reject high frequency, HF single shot Suurin muistin koko (ScopeRecord-toiminto): tai min/max näytettä kanavaa kohden Muisti: näyttöruudut + Asetukset 15, replay + Asetukset 2 Pölyltä ja tippuvalta vedeltä suojaava IP-51-luokitus takaa, että laite soveltuu vaativiinkin teollisuusympäristöihin Näyttö: 153 mm:n täysväri-nestekidenäyttö, jossa on nopea näytön päivitys Jälkihehku: analogisen oskilloskoopin kaltainen aaltomuodon vaimeneminen (käyttäjän valittavissa) Aaltomuotovertailu: aaltomuotoreferenssi ja automaattinen Pass/Fail-testaus Sähköturvallisuus: V CAT III/600 V CAT IV Paristojen käyttöikä: jopa 7 tuntia (Li-Ion) USB-liitäntä: muistille ja PC:n liitäntään Takuu: 3 vuotta osille ja työlle (1 vuosi lisävarusteille) Mitat ja paino: 270 mm 190 mm 70 mm, 2,2 kg Mukana toimitettavat varusteet: BC190-verkkolaite/-akkulaturi kaikille 190-sarjan mittauslaitteille VPS410-mittajohtosarjat, jännitesuhde 10:1 Rannehihna ja ripustin Käyttöopas (CD-ROM) BP291-Li-ion-akku FlukeView-esittelypaketti USB-liitäntäkaapeli tietokoneliitäntää varten Oskilloskooppina Fluke 190 näyttää samanaikaisesti neljän, toisistaan täysin erotetun, mittauskohteen signaalit. Myös tietokone liitetään tähän mittalaitteeseen liitosjohdoissa olevien optisten erottimien avulla. vaihesiirto, (tässä A- ja B- kanavien signaaleilla 45 ) pulssin pituus, (tässä 10 μs) verkko-/akkukäyttö Kuvaruudulta on luettavissa signaalin muodon lisäksi jännite- ja aikaskaalaukset, pulssin kestoaika, pulssien välinen vaihesiirto ja tahdistustapa sekä -kohde. tulokanavien A, B, C ja D jänniteskaalaukset, mv/jakoväli aika-akselin skaalaus, μs/jakoväli tahdistusmuoto ja -kohde (tässä nousevalla pulssinreunalla A-kanavaan) 18 DIGITAALITEKNIIKAN MITTALAITTEET JA TYÖKALUT DE Luku 2 JN.indd

11 Signaalin tahdistus voidaan määrittää pulssin reunan lisäksi myös erityisesti PAL-, NTSC- ja SECAM-videosignaaleille. Kohinan ja suurtaajuuksien vaimennus on myös mahdollista. Kertailmiöiden tutkiminen on mahdollista yksittäispyyhkäisytoiminnon avulla. Yleismittarina Fluke 190 voi toimia samanaikaisesti esimerkiksi jännite-, taajuus- ja lämpötilamittarina. verkko-/akkukäyttö mittapäiden vaimennukset Videosignaali-standardeja: Phase alternate line, PAL (esim. Suomessa) National television system committee, NTSC (esim. USA:ssa) Séquentiel couteur à mémoire, SECAM (esim. Ranskassa ja Venäjällä) Yleismittarina sekajännitemittari taajuusmittari mittareiden valinta vertailujännite (tässä poiskytketty) vaihtojännitemittari tasajännitemittari Jännitteitä voidaan mitata tavanomaiseen tapaan absoluuttisina arvoina tai niitä voidaan verrata mittalaitteeseen ennalta asetettuun jännitearvoon, jolloin mittaustuloksena on jännite-ero. Jännitetason suuruus voidaan ilmaista myös desibeleinä. Tällöin mittaustuloksen yksikkönä on desibelivoltti, dbv, eli mitattavan jännitteen arvoa verrataan 1 V:n vertailutasoon, osamäärästä otetaan 10-kantainen logaritmi ja tulos kerrotaan 20:llä. Vertaa jännitetaso (dbv) ja jännitevahvistus (db): U U AU(dBV) = 20 log OUT A = 1V U(dB) 20 log UIN Jännitetaso dbv ilmaisee, kuinka monta desibeliä jännite on yhden voltin ylä- tai alapuolella. 1 V = 0 dbv 2 V = 6 dbv 4 V = 12 dbv 0,5 V = 6 dbv 0,25 V = 12 dbv ESIMERKKI 1 Jännitearvo 1,58 V halutaan ilmaista dbv:ina. A = 20 log 1,58 V U(dBV) V 4 1V = 3,97 db dbv Vastaus: 1,58 V:n jännite vastaa 4 dbv:n jännitetasoa. Tämän voi helposti tarkistaa kytkemällä mittalaiteen osoittamaan dbvjännitetasoa ja mittaamalla esimerkiksi 1,5 V:n pariston jännitetason. DIGITAALIELEKTROniikka 19 DE Luku 2 JN.indd

12 Ohjaimet Sanastoa päästösuunta estosuunta pulssinleveysmodulaatio tuotettu teho häviöteho forward, F reverse, R pulse width modulation, PWM power generated, P G power dissipation, P D Ledien ohjaukset Ledi on diodi, joka muuttaa sähkövirran valoksi. Diodin tavoin on huolehdittava siitä, ettei ledin läpi kulkevan virran suuruus ylitä sille ilmoitettua virran enimmäisarvoa I F MAX. Ledi on kytkettävä sähkölähteeseen siten, ettei sen napoihin pääse estosuuntaista (vastakkaista) jännitettä, sillä useille ledeille ilmoitetaan estosuuntaiseksi jännitekestoksi I R MAX vain 5 V. On myös syytä havaita, että ledin hyötysuhde voi jäädä hyvin pieneksi, kun se liitetään esimerkiksi 12 V:n tasajännitelähteeseen, ellei sen ohjauksesta erityisesti huolehdita. Merkkivaloledi kytketään jännitelähteeseen yleensä sarjavastuksen avulla. ESIMERKKI 4 Ledin etuvastuksen mitoitus ja hyötysuhteen arviointi Oletetaan ledin sähköisiksi arvoiksi U F = 1,8 10 ma I Fmax = 20 ma. Valitaan ledin virta-arvoksi 50 % enimmäisvirta-arvosta 10 ma. Lasketaan etuvastuksen resistanssi 5 voltin käyttöjännitteelle ja valitaan sopiva käytännön arvo E12-sarjasta. RLED = U ULED ILED = 5V 1,8 V 10 ma = 3,2 V A = 3 3, V = 320 Ω 330 Ω A Simulaatiokytkennästä ilmenee, että sähkölähteestä otettu teho P G on 49 mw ja etuvastukseen lämmöksi muuttuva teho P D on 31,7 mw. Lasketaan ledille tulevan tehon suhde kulutettuun kokonaistehoon eli hyötysuhde η: PLED PG PR η = 100 % = 100 % = PG PG 49 mw 31,7 mw 49 mw 100% = 35% Tulos: 35 % Sähkönkäytön hyötysuhde ei ole kovin hyvä! 88 Sekvenssipiirit DE Luku 5.indd

13 Ledi ja sen etuvastus #Led_driver.cir ESIMERKKI 5 Ledin etuvastuksen mitoitus ja hyötysuhteen arviointi Oletetaan ledin sähköisiksi arvoiksi U F = 1,8 10 ma I Fmax = 20 ma. Valitaan ledin virta-arvoksi 50 % enimmäisvirta-arvosta 10 ma. Lasketaan etuvastuksen resistanssi 12 V:n käyttöjännitteelle ja valitaan sopiva käytännön arvo E12-sarjasta: R LED U = U I LED LED 12 V 1,8 V 10,2 V = = 10 ma A 10,2 10 = 10 Tulos: Etuvastuksen resistanssi on 1 kw ja tehonkesto 0,25 W. 3 V = 1020 Ω 1kΩ A Simulaatiokytkennästä ilmenee, että sähkölähteestä otettu teho P G on 122,8 mw ja etuvastukseen lämmöksi muuttuva teho P D 104,8 mw. Lasketaan ledille tulevan tehon suhde kulutettuun kokonaistehoon eli hyötysuhde h: PLED PG PR η = 100 % = 100 % = PG PG Tulos: 15 % 122,8 mw 104,8 mw 122,8 mw 100 % 15% Sähkönkäytön hyötysuhde on heikko. Ledi kuluttaa (merkkivalona) vähän virtaa, mutta se ei ole näin ohjattuna energiataloudellinen. E12-sarja Yllä olevan esimerkin ledi ja sen etuvastus #Led_driver.cir DIGITAALIELEKTROniikka 89 DE Luku 5.indd

14 Sanastoa jännitettä pienentävä jännitettä suurentava himmennin step down, buck step up, boost dimmer Ledilampun kytkeminen jännitelähteeseen tehdään usein erityisen ohjauspiirin, mikropiirin, avulla. Suureen hyötysuhteeseen (jopa yli 90 %) yltävä kytkentä perustuu hakkuritoimintaan (esim. 500 khz - 1 MHz kytkentätaajuus). Kyseessä voi olla jännitettä pienentävä tai sitä suurentava kytkentä. Himmennyksen toteuttamiseen käytetään pulssinleveysmodulaatiota, PWM:ää. Tällöin ledilamppuun menevää jännitettä säädetään muuttamalla suorakaideaaltomuotoisen jännitteen pulssisuhdetta (ylhäälläoloajan suhdetta alhaallaoloaikaan). Seuraavassa esitellään muutamia valaisinledien ohjainpiirejä. Kyseisen mikropiirin lisäksi tarvitaan vain muutamia komponentteja, kuten kela, nopeatoiminen diodi sekä kondensaattoreita ja vastuksia. Ledin ohjain, CAT4240 TSOT-23-kotelossa Jännitettä suurentavan hakkuriteholähteen periaatepiirros Lediohjain 1 Lediohjaimen CAT4240 ominaisuuksia: toimintatapa: jännitettä suurentava hakkuri tulojännitealue: 8 V - 16 V (ledeille) tulojännite: 5 V (ohjainpiirille) lähtöjännitealue: 38 V kuormitusvirta: 31,5 ma hyötysuhde: 94 % himmennintoiminto kytkettävissä, PWM 100 Hz - 2 khz hakkurin kytkentätaajuus: 1 MHz Sähköenergia varautuu kelaan Shottky-diodi V L 8V to 16 V C1 L1 47 µh 4.7 µf/16 V D1 C2 VOUT 1 µf/50 V Sähköenergia purkautuu kelasta Jännitettä suurentavan hakkuriteholähteen toimintaperiaate VIN 5 V C3 1 µf VIN CAT4240 SHDN GDN SW FB (300 mv) R2 1 kω R1 1 Ω 300 ma CAT4240-lediohjaimen piirikaavio ON/OFF-kytkintoiminto ledien virtarajoitus: Ω Ω 90 Sekvenssipiirit DE Luku 5.indd

15 kela, L kytkintransistori, SW diodi, D V IN C1 SW D1 VOUT 1MHz Over Voltage Ref Oscillator Protection 300 mv LED Driver Current + + PWM & Logic C2 V IN SHDN Thermal Shutdown & UVLO Current Sense + R s FB GND kuormitusvastus, RL R1 CAT4240-lediohjaimen lohkokaavio katkoviivoitetulla alueella Lisätietoja saa piirin valmistajan datalehdeltä internetistä. Ohjaimen lohkokaaviokuvassa esitetään piirin sisäisen kytkennän toiminta. Sanastoa ledin ohjain virtavahti led driver current sense Lediohjain 2 Lediohjaimen CAT4201 ominaisuuksia: toimintatapa: jännitettä pienentävä hakkuri tulojännitealue: 6,5-36 V lähtöjännitealue: 32 V kuormitusvirta: 350 ma hyötysuhde: 94 % himmennintoiminto kytkettävissä, PWM 100 Hz - 2 khz hakkurin kytkentätaajuus: 1 MHz ylijännitesuojaus alijännitesuojaus vertailu, referenssi reference, Ref lämpösuojaus kytkin over voltage protection undervoltage lockout, UVLO thermal shutdown switch, SW Seuraavalla sivulla oleva sovelluskytkentä syöttää kuutta sarjaan kytkettyä lediä mutta niiden lukumäärä voisi olla pienempikin, jopa vain yksi, sillä ledeille syötetään vakiovirtaa. DIGITAALIELEKTROniikka 91 DE Luku 5.indd

16 VBAT R3 Shottky-diodi 36V 2 Ω C1 4.7 µf R1 10 kω VBAT CAT4240 RSET CTRL GDN SW D1 C2 2.2 µf L 47 µh 300 ma Eräs CAT4201-piirin sovelluskytkentä sekä käytännön piiri R2 1 kω Yksinkertaistettu malli Virtarajoitus asetetaan vastuksen R1 avulla. Kuvan mukainen resistanssiarvo (10 kw) vastaa 300 ma:n virtarajoitusta ja 33 kw rajoittaa virran 100 ma:ksi. Kytkemällä kolme yllä olevaa kytkentää rinnakkain voidaan tarvittaessa ohjata yhtä 1 A:n lediä. Lisätietoja piirin toiminnasta ja mitoituksista saa valmistajan datalehdeltä internetistä esimerkiksi hakusanalla CAT4201 data. Ledivalaisimia ei aina ole helppo tunnistaa pelkän komponenttilevyn perusteella. Kuvassa on yllä esitetyn piirikaavion mukainen ledivalaisimen koekytkentä. Sen piirilevy on valmistettu jyrsimällä. Piirikaaviokuvasta poiketen siinä on vain yksi 1 A:n ledi. Sen jännitelähteenä on käytetty 9 V:n paristoa. Saavutettu valoteho on ollut hyvin voimakas, joten silmien suojaus on syytä muistaa. Sähköenergia varautuu kelaan Sähköenergia purkautuu kelasta Jännitettä pienentävän hakkuriteholähteen toimintaperiaate Kuvassa on edellä olevan piirikaavion mukainen protokytkentä, jossa kuuden ledin ryhmä on korvattu yhdellä teholedillä. 92 Sekvenssipiirit DE Luku 5.indd

17 Lediohjain 3 Lediohjaimen NCP5005SNT1G ominaisuuksia: toimintatapa: jännitettä suurentava hakkuri tulojännitealue: 2,7 V - 5,5 V lähtöjännitealue: 24 V kuormitusvirta: 50 ma hyötysuhde: 90 % himmennintoiminto kytkettävissä (EN), PWM kaikki liitinnastat ESD-suojattu Sanastoa sallinta takaisinkytkentä enable, EN feedback, FB Seuraava sovelluskytkentä voi syöttää 2-5 sarjaan kytkettyä lediä. Niiden virransyöttö tapahtuu vakiovirtaperiaatteella. PWM-pulssin syötön mahdollisuus V BAT 4 U1 EN V BAT 5 V BAT C1 4.7 µf GND GND R1 15 Ω L µh GND V 1 D1 3 OUT FB MBRO530 NCP5005 D6 D5 D4 D3 D2 LWT67C LWT67C LWT67C LWT67C LWT67C GND GND C2 1.0 µf Shottky-diodi, 0,5 A, 30 V NCP5005SNTIG-piirin sovelluskytkentä ja käytännön piiri 7-segmenttien (ledi) ohjaukset 7-segmenttinäytössä on seitsemän lediä (kahdeksan, jos mukana on desimaalipilkku). Niiden ohjaamiseksi tarvitaan ohjauspiiri, joka saa 7-segmentin ledit palamaan siten, että niistä muodostuu haluttu numero. Samalla ledien läpi kulkeva virta täytyy rajoittaa sopivan suuruiseksi. f e d 7-segmenttinäytön segmenttien merkitseminen a g b c DIGITAALIELEKTROniikka 93 DE Luku 5.indd

18 3,8 a b c d e f g DP segmenttinäytön piirikaavio 7-segmenttinäytön ohjauksen periaate #7-segment_driving.cir Lyhenteitä binary coded decimal decimal point BCD DP Yllä esitetyn 7-segmentin ohjaimen laajuus ei näy kokonaan piirroksessa, sillä siinä esitetään vain numeroiden 1, 2, 3 ja 4 muodostuminen. Käytännön kytkennässä, mikropiirissä, tulojen määrä on karsittu neljään. On edullisempaa käyttää nelilankaista BCD-muodossa olevaa ohjausta kuin kymmenlankaista suoraa ohjausta. Lisäksi näytettävä numero saadaan laskinketjulta (neljältä kiikulta) suoraan BCD-muodossa. 2 3 = 8 dual in line buffered DIL B 2 2 = 4 CD4511B DIL16-kotelossa 2 1 = 2 7-segmenttinäytön ohjaus binäärikoodilla #7-segment_driver.cir 2 0 = 1 CD4511B on 16-jalkainen BCD to 7-segment latch decoder driver -piiri, johon syötetty binäärikoodattu luku muuttuu desimaaliluvuksi ja ohjautuu 7-segmenttinäytölle. Piirin tuloihin ABCD syötetyn binääriluvun painoarvot esitetään piirikaaviossa, jolloin kytkinten S1-S4 muodostama binäärikoodi 0101 antaa luvun 5, sillä = = 5. LT on normaalisti ykkösessä, ja sen muuttaminen nollaan saa aikaan testin, jolloin kaikki segmentit palavat (= numero 8). LE taas on normaalisti nollassa, mikä mahdollistaa salpapiirin toiminnan. 94 Sekvenssipiirit DE Luku 5.indd

19 Projekti 3 7-segmenttien ohjauksen rakentaminen Rakennetaan koekytkentälevylle vaiheittain a) 7-segmentin ohjauskytkentä b) BCD-kooderi ja c) binääri/dekadi-muotoinen ylös/alas-laskuri. Tutustu ensin tämän projektin lopussa esitettävään valmiiseen tuotokseen ja aloita sen jälkeen koekytkentälevyn kalustaminen vaiheittain. Siirry seuraavaan vaiheeseen vasta sen jälkeen, kun olet testannut kokoamasi vaiheen ja todennut sen toimivuuden. Pinni pyöreä nelikulmainen Osa- ja tarvikeluettelo: pala koekytkentälevyä, jossa on johtimet vaakasuunnassa yksinapaisia liittimiä (pinnejä), 2 kpl mikropiirikanta, DIL16, 2 kpl mikropiiri CD4511B, DIL16-kotelo, 1 kpl mikropiiri CD4029B, DIL16-kotelo, 1 kpl vastus, R1-R12, 1 kw, 0,25 W, 12 kpl 7-segmentti, CC, SA56-11EWA, 1 kpl ledi, D1-D4, Ø 3,0 mm, punainen, 4 kpl ledi, D5, Ø 3,0 mm, vihreä, 1 kpl ledi, D6, Ø 3,0 mm, keltainen, 1 kpl muovieristeistä kytkentälankaa tekstitetyt teipit Esimerkissä käytetään SA56-11EWA-tyypin 7-segmenttiä, joka on tyypiltään yhteiskatodi (sen ledien katodit on liitetty yhteen). Kyseisen näytön piirikaavio ja kantakytkentä on esitetty alla. a) 7-segmentin ohjauskytkentä Tutkitaan aluksi 7-segmentin toimintaa yleismittarin, tasajännitelähteen ja etuvastuksen avulla. yhteiskatodi, CC 10 6 Sanastoa dekooderi ohjain lampputesti tyhjennys salvan sallinta vilkutus yhteiskatodi yhteisanodi päältä nähtynä decoder driver lamp test, LT blanking, BL latch enable, LE strobe common cathode, CC common anode, CA top view erilliset anodit 1 5 päältä nähtynä 7-segmenttinäytön piirikaavio, kantakytkentä ja pinnijärjestys DIGITAALIELEKTROniikka Sekvenssipiirit 95 DE Luku 5.indd

20 Muistisääntö 1 kw:n vastus rajoittaa virran suuruuden suunnilleen käyttöjännitteen lukuarvon mukaisiksi milliampeereiksi. 7-segmentti muodostuu ledeistä, joten sen jokaiselle ledille (segmentille) on asetettava ledin virtaa rajoittava vastus. Nyt sen segmenttien järjestys ja napaisuus (CC tai CA) voidaan tutkia tasajännitelähteen (5 V - 15 V) avulla, jolloin 1 kw:n vastus rajoittaa virran noin 5 ma - 15 ma:n suuruiseksi. I = [ ma] U R = [ V] [ 1kW] anodille 7-segmenttinäytön kantakytkennän ja napaisuuden selvittäminen katodille Edellä esitetty tutkimus voidaan tehdä ilman tasajännitelähdettä ja sarjavastuksia, kun tasajännitelähteenä (ja virranrajoitusvastuksena) käytetään yleismittaria. anodille katodille Yleismittarin käyttäminen jännitelähteenä 96 Sekvenssipiirit Ohjaimet DE Luku 5.indd

21 Yleismittarissa voi olla sellainen ohmialue (esim. dioditestaus), jonka mittausjännite on suurempi kuin mitattavan 7-segmenttinäytön ledin kynnysjännite (esim. 2 V), jolloin mittaus aiheuttaa yksittäisen segmentin palamisen. Analogista yleismittaria käytettäessä on muistettava, että sen napaisuus jännitelähteenä on mittariin merkittyyn nähden vastakkainen. Kokoa 7-segmentti ja sen tarvitsemat vastukset koekytkentälevylle. Lisää levylle jännitesyöttöliittimet ja merkkivalo etuvastuksineen. Tee piirikaaviota apuna käyttäen tarvittavat johdinkatkokset ja hyppylankaliitännät. 7-segmenttinäyttö ja sen etuvastukset +12 V merkkivalo ja sen etuvastus tilavaraus laskimelle pinni GND LochMaster-ohjelma 7-segmenttinäytön, etuvastusten ja merkkivalon kytkentä koekytkentälevyllä Testaa kokoamasi kytkennän toimivuus! b) BCD-dekooderi BCD-dekooderin tuloihin syötetään neljä binäärilukua, joista piiri muodostaa desimaaliluvun ja syöttää sen 7-segmenttinäytön segmenteille. BCD-kooderina käytetään tässä CD4511Bpiiriä. Piirin kantakytkennästä selviävät a) jännitesyöttö, jossa V DD tulee plus-napaan ja V SS miinus-napaan, b) 7-segmenttinäytön segmenteille tulevat liitännät (a, b, c, d, e, f ja g), BCDtuloliitännät (A, B, C ja D), 7-segmentin kaikkien segment tien testaus tulo (lampputesti, LT), numeron vilkutus (BL) ja salpaus (LE). Sanastoa kooderi, koodain dekooderi, koodin purkain coder decoder DIGITAALIELEKTROniikka Sekvenssipiirit 97 DE Luku 5.indd

22 B 1 16 V DD C LT f g merkki 9 BL LE D CD4511B a b c A 7 10 d CD4511B-dekooderin kantakytkentä ja käytännön piiri V SS 8 9 e Liitä DIL16-mikropiirikanta, CD4511B-piiri, ledit ja niiden etuvastukset koekytkentälevylle. Tee piirikaaviota apuna käyttäen koekytkentälevyyn tarvittavat johdinkatkokset ja hyppylankaliitännät. 7-segmenttinäytön ja sen ohjauspiirin piirikaavio #BCD-decoder.cir BCD-tulot D C B A dekooderi ja sen kanta loveus tilavaraus laskimelle 7-segmenttinäyttö ja sen ohjauspiiri binäärilukujen painoarvot 98 Sekvenssipiirit Ohjaimet DE Luku 5.indd

23 Testaa kokoamasi kytkennän toimivuus kytkemällä tulot: LE = 0, LT = 1 ja BL = 1 ja syöttämällä BCD-tuloihin binäärilukuja totuustaulun mukaisesti. LE BL LT D C B A a b c d e f g Näyttö x x 0 x x x x x 0 1 x x x x Blank Totuustaulusta esitetään tässä vain alkuosa (DCBA) 0000 BIN BIN sillä näillä yhdistelmillä voidaan tuottaa desimaaliluvut 0-9. Tulotilat 1010 BIN BIN eivät tuota näyttöön mitään (Blank). c) Binääri/dekadi-muotoinen ylös/alas-laskuri. Tämä laskinpiiri on toiminnoiltaan varsin monipuolinen. Periaatteessa sen rakenne on kuitenkin yksinkertainen: siinä on vain neljä kiikkua. Peräkkäin kytkettyinä kiikut jakavat sisään tulevan kellopulssin taajuuden kuudellatoista (2 4 = 16), jolloin laskin toimii binäärilaskurina ( ). Tämä toiminto on luettavissa laskimen lähtöön tulevista neljästä ledistä. Ulkoisella ohjauksella (binary/decade) sisäistä kytkentää voidaan muuttaa siten, että laskin toimii dekadilaskimena (0-9), mikä näkyy ledien lisäksi myös 7-segmenttinäytössä. Laskinpiirissä on up/ down-tulo, jolla sen toiminta voidaan muuttaa alhaalta ylöspäin laskennan sijaan ylhäältä alaspäin laskentaan. Jam-tulojen (J1 J4) avulla laskin voidaan asettaa nollan sijasta johonkin toiseen haluttuun alkuarvoon. Sanastoa esiaseteltava laskuri muistinumero alkuasetus presettable counter carry jam DIGITAALIELEKTROniikka Sekvenssipiirit 99 DE Luku 5.indd

24 PRESET/ENABLE 1 16 V DD merkki 9 Q CLOCK J Q J1 CARRY IN 4 5 CD4029B J3 J2 1 Q Q2 CARRY OUT 7 10 UP/DOWN CD4029B-laskinpiirin kantakytkentä ja käytännön piiri V SS 8 9 BINARY/DECADE Liitä vielä toinen DIL16-mikropiirikanta ja CD4029B-piiri koekytkentälevylle. Tee piirikaaviota apuna käyttäen koekytkentälevyyn tarvittavat johdinkatkokset ja hyppylankaliitännät. Ylös/alas-laskurin piirikaavio Ylös/alas-laskuri rakennettuna koekytkentälevylle 100 Sekvenssipiirit Ohjaimet DE Luku 5.indd

25 Oskilloskooppikuvista ilmenee, miten dekadilaskimeksi kytketyn laskinpiirin signaalien aaltomuodot poikkeavat binäärilaskimeksi kytketyn laskimen aaltomuodoista. Nelikanavaisen oskilloskoopin signaalikuvat CD4029B-dekadilaskimen pisteistä a) clk, b) Q2, c) Q3 ja d) Q4. D-kanavalla mitatun laskimen Q4-lähtösignaali on epäsymmetrinen. Sen ylhäälläoloaika vastaa kahta A-kanavan kellopulssia ja alhaallaoloaika kahdeksaa kellopulssia. Koko pulssin pituuteen mahtuu 10 kellopulssia. Nelikanavaisen oskilloskoopin signaalikuvat CD4029Bbinäärilaskimen pisteistä a) clk, b) Q2, c) Q3 ja d) Q4. D-kanavalla mitatun laskimen Q4-lähtösignaali on symmetrinen. Sen ylhäälläoloaika vastaa kahdeksaa A-kanavan kellopulssia ja alhaallaoloaika myös kahdeksaa kellopulssia. Koko pulssin pituuteen mahtuu 16 kellopulssia. Testaa kokoamasi laskurin toimivuus: 1. Laskeeko laskuri kellopulsseja alhaalta ylöspäin? 2. Laskeeko laskuri kellopulsseja ylhäältä alaspäin? 3. Täsmäävätkö ledien binääriluku ja 7-segmentin desimaaliluku? DIGITAALIELEKTROniikka Sekvenssipiirit 101 DE Luku 5.indd

26 tehtäviä 1 Mikro-ohjainten muistit s. 198 Mikro-ohjaimissa on kolmentyyppistä muistia: ohjelma-, data- ja käyttömuistia. Mitä muistitekniikoita näihin muisteihin käytetään? Mainitse ainakin yksi etu ja haitta kustakin muistitekniikasta. 6 AD-muunnin s. 207 AD-muuntimien datalehdissä on usein mainittu termit INL ja DNL. Mitä nämä termit tarkoittavat? Onko laadukkailla AD-muuntimilla suuret vai pienet INL- / DNL-arvot? Digitaaliset tulo-ja lähtöportit s. 200 PWM s Mitä eroa on tavallisella ja open-draintyyppisellä lähdöllä? Voiko tavallista mikro-ohjaimen lähtöä käyttää kuten open-drain-lähtöä? JTAG, ohjelmointi- ja testiliityntä s. 202 JTAG-kappaleessa mainittiin lyhenteet CPLD ja FPGA. Mistä nämä lyhenteet tulevat ja miten JTAG liittyy niihin? Ajastimet s. 203 Kuvaile, miten mittaisit taajuutta ajastimen avulla? Komparaattori s Monet mikro-ohjaimet pystyvät tuottamaan PWM-signaalia suoraan sisäisten oheislaitelohkojensa avulla. Miksi kuitenkin 20 MHz:n taajuudella toimivan AVR-piirin PWM-signaalin taajuus jää alle 20 khz:n, kun tuotetun signaalin resoluutio on kymmenen bittiä? Sarjaportti s. 212 Aiemmin kirjassa esiteltiin esimerkki piirin ATmega324p sarjaportin alustamiseksi asetuksin bps, 8 databittiä, 1 stop bitti, ei pariteettibittiä. Mitä esimerkissä pitäisi muuttaa, jotta sarjaportti alustuisi asetuksin 9600 bps, 7 databittiä, 1 stop bitti, Even -pariteetti? 5 Kerro lyhyesti, mikä on komparaattori. Anna esimerkki komparaattorin käyttökohteesta. 9 Sarjamuotoiset oheislaiteliitynnät s. 214 Etsi internetistä viisi esimerkkiä SPI-, I2Ctai 1-Wire-väylää käyttävistä sarjamuotoisista oheislaitteista, joita ei ole esitelty kirjassa. 234 MIKRO-OHJAIMET DE Luku 9 JN.indd

27 Kirjassa käytettyjä C-kielen ohjelmakäskyjä unsigned Muuttujatyypin eteen kirjattava lisämääre, jolla määritellään muuttuja etumerkittömäksi (esim. unsigned char). Vastaavasti avainsanalla signed muuttujatyyppi voidaan määritellä etumerkilliseksi, jolloin se voi saada myös negatiivisia arvoja. char Muuttujatyyppi, jota käytetään merkkien, kuten s, e tai A, tallentamiseen. Char -tyypin muuttuja voidaan tulkita myös kokonaislukuna, jolloin sen arvoalue on (etumerkitön) tai (etumerkillinen). if, else if ja else while for _delay_ms(...) Näiden ohjelmakäskyjen avulla ohjelmaan saadaan muodostettua ehdollisia haarautumia, joissa sama ohjelma saadaan suorittamaan eri toimintoja ehtolauseessa ilmaistun ehdon mukaisesti. Esimerkiksi käsky if(i==3) a++; kasvattaa muuttujan a arvoa yhdellä vain, jos muuttujan i arvo on 3. Jos haaraumaan halutaan useampia komentoja, ne kaikki kirjoitetaan {aaltosulkuparin} sisään. Tämän ohjelmakäskyn avulla useita kertoja peräkkäin toistettava toiminnallisuus voidaan esittää lyhyessä ja helposti luettavassa muodossa. Esimerkiksi käsky while(i<=5) toistaa sen jälkeen {aaltosulkuihin} kirjoitettua ohjelmaa niin kauan, kunnes muuttujan i arvo on suurempi kuin 5. For -käsky on while -käskyn tapaan silmukointikomento. Tässä käskyssä voidaan ehdon lisäksi antaa myös toteutusosa, joka suoritetaan jokaisella toistokerralla, ja alustusosa, joka suoritetaan vain kerran ennen ensimmäistä toistoa. Esimerkiksi lause for(i=0;i<=5;i++) alustaa ensin muuttujan i arvoon 0, toistaa käskyn jälkeen {aaltosulkuihin} kirjattua ohjelmaa, kunnes muuttujan i arvo on suurempi kuin 5 ja kasvattaa jokaisen toiston aikana muuttujan i arvoa yhdellä. Tämä on esimerkki funktiokutsusta, jolla kutsutaan joko käyttäjän määrittelemää tai kirjastosta ladattavaa funktiota. Funktiolle annettavat argumentit kirjataan heti funktion nimen perässä olevien sulkujen sisään. main() #include Main() on käyttäjän määrittelemä funktio. Muista funktioista poiketen sitä ei kuitenkaan kutsuta mistään, vaan mikro-ohjaimen ohjelman suoritus lähtee tavallisesti main - funktiosta. Tyypillisesti mikro-ohjaimen ohjelman main -funktiosta löytyy myös loputtomiin suoritettava silmukka, jossa toteutetaan suurin osa ohjelman toiminnoista. Ohjelmoinnissa käytetään usein hyödyksi aiemmin ohjelmoituja valmiita funktioita, jotka on tavallisesti sisällytetty erityisiin kirjastoihin. Näiden kirjastojen sisällyttäminen osaksi ohjelmaa tapahtuu include -käskyn avulla. asm(...) Toisinaan C-kielisestä ohjelmasta halutaan kutsua myös assembly-kielen käskyjä. Tämä käytäntö vaihtelee hieman eri kääntäjien välillä. Tämän kirjan ohjelmaesimerkeissä käytetyssä kääntäjässä (WinAVR) nämä kutsut tapahtuvat asm -funktion avulla. ISR(...) Tämän kirjan ohjelmaesimerkeissä käytetty kääntäjä (WinAVR) käyttää tätä funktiota keskeytysrutiinien määrittämiseen. Funktion argumentilla määritellään, mikä keskeytysrutiini on kyseessä. DIGITAALIELEKTRONIIKKA 235 DE Luku 9 JN.indd

S-108.3020 Elektroniikan häiriökysymykset. Laboratoriotyö, kevät 2010

S-108.3020 Elektroniikan häiriökysymykset. Laboratoriotyö, kevät 2010 1/7 S-108.3020 Elektroniikan häiriökysymykset Laboratoriotyö, kevät 2010 Häiriöiden kytkeytyminen yhteisen impedanssin kautta lämpötilasäätimessä Viimeksi päivitetty 25.2.2010 / MO 2/7 Johdanto Sähköisiä

Lisätiedot

Operaatiovahvistimen vahvistus voidaan säätää halutun suuruiseksi käyttämällä takaisinkytkentävastusta.

Operaatiovahvistimen vahvistus voidaan säätää halutun suuruiseksi käyttämällä takaisinkytkentävastusta. TYÖ 11. Operaatiovahvistin Operaatiovahvistin on mikropiiri ( koostuu useista transistoreista, vastuksista ja kondensaattoreista juotettuna pienelle piipalaselle ), jota voidaan käyttää useisiin eri kytkentöihin.

Lisätiedot

Esipuhe. Simulaatio-ohjelma ja kirjassa mainitut simulaatiotiedostot sekä muu sähköinen materiaali on ladattavissa: www.timohaiko.fi.

Esipuhe. Simulaatio-ohjelma ja kirjassa mainitut simulaatiotiedostot sekä muu sähköinen materiaali on ladattavissa: www.timohaiko.fi. Esipuhe Elektroniikka on tekniikan ala, jota sovelletaan nykyään lähes kaikkialla. Aluksi elektroniikka oli analogista ja sittemmin se täydentyi digitaalielektroniikalla. Tämä kirja kertoo digitaalielektroniikan

Lisätiedot

LOPPURAPORTTI 19.11.2007. Lämpötilahälytin. 0278116 Hans Baumgartner xxxxxxx nimi nimi

LOPPURAPORTTI 19.11.2007. Lämpötilahälytin. 0278116 Hans Baumgartner xxxxxxx nimi nimi LOPPURAPORTTI 19.11.2007 Lämpötilahälytin 0278116 Hans Baumgartner xxxxxxx nimi nimi KÄYTETYT MERKINNÄT JA LYHENTEET... 3 JOHDANTO... 4 1. ESISELOSTUS... 5 1.1 Diodi anturina... 5 1.2 Lämpötilan ilmaisu...

Lisätiedot

EVTEK/ Antti Piironen & Pekka Valtonen 1/6 TM01S/ Elektroniikan komponentit ja järjestelmät Laboraatiot, Syksy 2003

EVTEK/ Antti Piironen & Pekka Valtonen 1/6 TM01S/ Elektroniikan komponentit ja järjestelmät Laboraatiot, Syksy 2003 EVTEK/ Antti Piironen & Pekka Valtonen 1/6 TM01S/ Elektroniikan komponentit ja järjestelmät Laboraatiot, Syksy 2003 LABORATORIOTÖIDEN OHJEET (Mukaillen työkirjaa "Teknillisten oppilaitosten Elektroniikka";

Lisätiedot

A. SMD-kytkennän kokoaminen ja mittaaminen

A. SMD-kytkennän kokoaminen ja mittaaminen A. SMD-kytkennän kokoaminen ja mittaaminen Avaa tarvikepussi ja tarkista komponenttien lukumäärä sekä nimellisarvot pakkauksessa olevan osaluettelon avulla. Ilmoita mahdollisista puutteista tai virheistä

Lisätiedot

1. Mittausjohdon valmistaminen 10 p

1. Mittausjohdon valmistaminen 10 p 1 1. Mittausjohdon valmistaminen 10 p Valmista kuvan mukainen BNC-hauenleuka x2 -liitosjohto. Johtimien on oltava yhtä pitkät sekä mittojen mukaiset. 60 100 mm 1 000 mm Puukko ja BNC-puristustyökalu ovat

Lisätiedot

Elektroniikan perusteet, Radioamatööritutkintokoulutus

Elektroniikan perusteet, Radioamatööritutkintokoulutus Elektroniikan perusteet, Radioamatööritutkintokoulutus Antti Karjalainen, PRK 30.10.2014 Komponenttien esittelytaktiikka Toiminta, (Teoria), Käyttö jännite, virta, teho, taajuus, impedanssi ja näiden yksiköt:

Lisätiedot

6. Analogisen signaalin liittäminen mikroprosessoriin 2 6.1 Näytteenotto analogisesta signaalista 2 6.2. DA-muuntimet 4

6. Analogisen signaalin liittäminen mikroprosessoriin 2 6.1 Näytteenotto analogisesta signaalista 2 6.2. DA-muuntimet 4 Datamuuntimet 1 Pekka antala 19.11.2012 Datamuuntimet 6. Analogisen signaalin liittäminen mikroprosessoriin 2 6.1 Näytteenotto analogisesta signaalista 2 6.2. DA-muuntimet 4 7. AD-muuntimet 5 7.1 Analoginen

Lisätiedot

Taitaja2004/Elektroniikka Semifinaali 19.11.2003

Taitaja2004/Elektroniikka Semifinaali 19.11.2003 Taitaja2004/Elektroniikka Semifinaali 19.11.2003 Teoriatehtävät Nimi: Oppilaitos: Ohje: Tehtävät ovat suurimmaksi osaksi vaihtoehtotehtäviä, mutta tarkoitus on, että lasket tehtävät ja valitset sitten

Lisätiedot

LABORAATIO 1, YLEISMITTARI JA PERUSMITTAUKSET

LABORAATIO 1, YLEISMITTARI JA PERUSMITTAUKSET KAJAANIN AMMATTIKORKEAKOULU Tekniikan ja liikenteen ala VAHVAVIRTATEKNIIKAN LABORAATIOT H.Honkanen LABORAATIO 1, YLEISMITTARI JA PERUSMITTAUKSET YLEISTÄ YLEISMITTARIN OMINAISUUKSISTA: Tässä laboratoriotyössä

Lisätiedot

Taitaja2005/Elektroniikka. 1) Resistanssien sarjakytkentä kuormittaa a) enemmän b) vähemmän c) yhtä paljon sähkölähdettä kuin niiden rinnankytkentä

Taitaja2005/Elektroniikka. 1) Resistanssien sarjakytkentä kuormittaa a) enemmän b) vähemmän c) yhtä paljon sähkölähdettä kuin niiden rinnankytkentä 1) Resistanssien sarjakytkentä kuormittaa a) enemmän b) vähemmän c) yhtä paljon sähkölähdettä kuin niiden rinnankytkentä 2) Kahdesta rinnankytketystä sähkölähteestä a) kuormittuu enemmän se, kummalla on

Lisätiedot

Signaalien datamuunnokset. Näytteenotto ja pito -piirit

Signaalien datamuunnokset. Näytteenotto ja pito -piirit Signaalien datamuunnokset Muunnoskomponentit Näytteenotto ja pitopiirit Multiplekserit A/D-muuntimet Jännitereferenssit D/A-muuntimet Petri Kärhä 26/02/2008 Signaalien datamuunnokset 1 Näytteenotto ja

Lisätiedot

KÄYTTÖOPAS. DIGITAALINEN KYNÄYLEISMITTARI E42 034 51, tuotenro. 42.6592

KÄYTTÖOPAS. DIGITAALINEN KYNÄYLEISMITTARI E42 034 51, tuotenro. 42.6592 KÄYTTÖOPAS DIGITAALINEN KYNÄYLEISMITTARI E42 034 51, tuotenro. 42.6592 SISÄLTÖ 1. Johdanto a. Yleistä... 3 b. Erityisominaisuuksia... 3 c. Pakkauksesta poistaminen ja tarkastus... 3 2. Tekniset tiedot

Lisätiedot

Oikeanlaisten virtapihtien valinta Aloita vastaamalla seuraaviin kysymyksiin löytääksesi oikeantyyppiset virtapihdit haluamaasi käyttökohteeseen.

Oikeanlaisten virtapihtien valinta Aloita vastaamalla seuraaviin kysymyksiin löytääksesi oikeantyyppiset virtapihdit haluamaasi käyttökohteeseen. Oikeanlaisten virtapihtien valinta Aloita vastaamalla seuraaviin kysymyksiin löytääksesi oikeantyyppiset virtapihdit haluamaasi käyttökohteeseen. 1. Tuletko mittaamaan AC tai DC -virtaa? (DC -pihdit luokitellaan

Lisätiedot

FYSP105/2 VAIHTOVIRTAKOMPONENTIT. 1 Johdanto

FYSP105/2 VAIHTOVIRTAKOMPONENTIT. 1 Johdanto FYSP105/2 VAIHTOVIRTAKOMPONENTIT Työn tavoitteet o Havainnollistaa vaihtovirtapiirien toimintaa o Syventää ymmärtämystä aiheeseen liittyvästä fysiikasta 1 Johdanto Tasavirta oli 1900 luvun alussa kilpaileva

Lisätiedot

Supply jännite: Ei kuormaa Tuuletin Vastus Molemmat DC AC Taajuus/taajuudet

Supply jännite: Ei kuormaa Tuuletin Vastus Molemmat DC AC Taajuus/taajuudet S-108.3020 Elektroniikan häiriökysymykset 1/5 Ryhmän nro: Nimet/op.nro: Tarvittavat mittalaitteet: - Oskilloskooppi - Yleismittari, 2 kpl - Ohjaus- ja etäyksiköt Huom. Arvot mitataan pääasiassa lämmityksen

Lisätiedot

1 Muutokset piirilevylle

1 Muutokset piirilevylle 1 Muutokset piirilevylle Seuraavat muutokset täytyvät olla piirilevylle tehtynä, jotta tätä käyttöohjetta voidaan käyttää. Jumppereiden JP5, JP6, JP7, sekä JP8 ja C201 väliltä puuttuvat signaalivedot on

Lisätiedot

DC-moottorin pyörimisnopeuden mittaaminen back-emf-menetelmällä

DC-moottorin pyörimisnopeuden mittaaminen back-emf-menetelmällä 1 DC-moottorin pyörimisnopeuden mittaaminen back-emf-menetelmällä JK 23.10.2007 Johdanto Harrasteroboteissa käytetään useimmiten voimanlähteenä DC-moottoria. Tämä moottorityyppi on monessa suhteessa kätevä

Lisätiedot

FYSP105/2 VAIHTOVIRTAKOMPONENTIT. 1 Johdanto. 2 Teoreettista taustaa

FYSP105/2 VAIHTOVIRTAKOMPONENTIT. 1 Johdanto. 2 Teoreettista taustaa FYSP105/2 VAIHTOVIRTAKOMPONENTIT Työn tavoitteita o Havainnollistaa vaihtovirtapiirien toimintaa o Syventää ymmärtämystä aiheeseen liittyvästä fysiikasta 1 Johdanto Tasavirta oli 1900 luvun alussa kilpaileva

Lisätiedot

PIIRIANALYYSI. Harjoitustyö nro 7. Kipinänsammutuspiirien mitoitus. Mika Lemström

PIIRIANALYYSI. Harjoitustyö nro 7. Kipinänsammutuspiirien mitoitus. Mika Lemström PIIRIANAYYSI Harjoitustyö nro 7 Kipinänsammutuspiirien mitoitus Mika emström Sisältö 1 Johdanto 3 2 RC-suojauspiiri 4 3 Diodi suojauspiiri 5 4 Johtopäätos 6 sivu 2 [6] Piirianalyysi Kipinänsammutuspiirien

Lisätiedot

FYSP105 / K3 RC-SUODATTIMET

FYSP105 / K3 RC-SUODATTIMET FYSP105 / K3 R-SODATTIMET Työn tavoitteita tutustua R-suodattimien toimintaan oppia mitoittamaan tutkittava kytkentä laiterajoitusten mukaisesti kerrata oskilloskoopin käyttöä vaihtosähkömittauksissa Työssä

Lisätiedot

Kondensaattorin läpi kulkeva virta saadaan derivoimalla yhtälöä (2), jolloin saadaan

Kondensaattorin läpi kulkeva virta saadaan derivoimalla yhtälöä (2), jolloin saadaan VAIHTOVIRTAPIIRI 1 Johdanto Vaihtovirtapiirien käsittely perustuu kolmen peruskomponentin, vastuksen (resistanssi R), kelan (induktanssi L) ja kondensaattorin (kapasitanssi C) toimintaan. Tarkastellaan

Lisätiedot

TAITAJA 2007 ELEKTRONIIKKAFINAALI 31.01-02.02.07 KILPAILIJAN TEHTÄVÄT. Kilpailijan nimi / Nro:

TAITAJA 2007 ELEKTRONIIKKAFINAALI 31.01-02.02.07 KILPAILIJAN TEHTÄVÄT. Kilpailijan nimi / Nro: KILPAILIJAN TEHTÄVÄT Kilpailijan nimi / Nro: Tehtävän laatinut: Hannu Laurikainen, Deltabit Oy Kilpailutehtävä Kilpailijalle annetaan tehtävässä tarvittavat ohjelmakoodit. Tämä ohjelma on tehty laitteen

Lisätiedot

Tehtävä 8. Jännitelähteenä käytetään yksipuolista 12 voltin tasajännitelähdettä.

Tehtävä 8. Jännitelähteenä käytetään yksipuolista 12 voltin tasajännitelähdettä. Tehtävä 8 1. Suunnittele Micro-Cap-simulaatio-ohjelman avulla kaistanpäästösuodin, jonka -alarajataajuus f A = 100 Hz @-3 db -ylärajataajuus f Y = 20 khz @-3 db -jännitevahvistus A U = 2 Jännitelähteenä

Lisätiedot

Elektroniikan perusteet, Radioamatööritutkintokoulutus

Elektroniikan perusteet, Radioamatööritutkintokoulutus Elektroniikan perusteet, Radioamatööritutkintokoulutus Antti Karjalainen, PRK 14.11.2013 Komponenttien esittelytaktiikka Toiminta, (Teoria), Käyttö jännite, virta, teho, taajuus, impedanssi ja näiden yksiköt:

Lisätiedot

Harjoitustyö - Mikroprosessorit Liikennevalot

Harjoitustyö - Mikroprosessorit Liikennevalot Saku Chydenius tammikuu 2004 Asko Ikävalko Harjoitustyö - Mikroprosessorit Liikennevalot Työn valvoja: Kimmo Saurén RAPORTTI 1(8) 1. Alkuperäinen tehtävänanto 2. Määritelmä valojen vaihtumiselle Muodosta

Lisätiedot

Taitaja2008, Elektroniikkalajin semifinaali 24.1.2008

Taitaja2008, Elektroniikkalajin semifinaali 24.1.2008 Taitaja2008, Elektroniikkalajin semifinaali 24.1.2008 Kilpailijan nimi: 1) Oheisen kytkennän kokonaisresistanssi on n. 33 Ohm 150 Ohm a) 70 Ohmia b) 100 Ohmia c) 120 Ohmia 120 Ohm 2) Oheisen kytkennän

Lisätiedot

DIODIN OMINAISKÄYRÄ TRANSISTORIN OMINAISKÄYRÄSTÖ

DIODIN OMINAISKÄYRÄ TRANSISTORIN OMINAISKÄYRÄSTÖ 1 IOIN OMINAISKÄYRÄ JA TRANSISTORIN OMINAISKÄYRÄSTÖ MOTIVOINTI Työ opettaa mittaamaan erityyppisten diodien ominaiskäyrät käyttämällä oskilloskooppia XYpiirturina Työssä opetellaan mittaamaan transistorin

Lisätiedot

Laitteita - Yleismittari

Laitteita - Yleismittari Laitteita - Yleismittari Yleistyökalu mittauksissa Yleensä digitaalisia Mittaustoimintoja Jännite (AC ja DC) Virta (AC ja DC) Vastus Diodi Lämpötila Transistori Kapasitanssi Induktanssi Taajuus 1 Yleismittarin

Lisätiedot

4B. Tasasuuntauksen tutkiminen oskilloskoopilla.

4B. Tasasuuntauksen tutkiminen oskilloskoopilla. TURUN AMMATTIKORKEAKOULU TYÖOHJE 1 4B. Tasasuuntauksen tutkiminen oskilloskoopilla. Teoriaa oskilloskoopista Oskilloskooppi on laite, joka muuttaa sähköisen signaalin näkyvään muotoon. Useimmiten sillä

Lisätiedot

Koottu lause; { ja } -merkkien väliin kirjoitetut lauseet muodostavat lohkon, jonka sisällä lauseet suoritetaan peräkkäin.

Koottu lause; { ja } -merkkien väliin kirjoitetut lauseet muodostavat lohkon, jonka sisällä lauseet suoritetaan peräkkäin. 2. Ohjausrakenteet Ohjausrakenteiden avulla ohjataan ohjelman suoritusta. peräkkäisyys valinta toisto Koottu lause; { ja } -merkkien väliin kirjoitetut lauseet muodostavat lohkon, jonka sisällä lauseet

Lisätiedot

Käytännön radiotekniikkaa: Epälineaarinen komponentti ja signaalien siirtely taajuusalueessa (+ laboratoriotyön 2 esittely)

Käytännön radiotekniikkaa: Epälineaarinen komponentti ja signaalien siirtely taajuusalueessa (+ laboratoriotyön 2 esittely) Käytännön radiotekniikkaa: Epälineaarinen komponentti ja signaalien siirtely taajuusalueessa (+ laboratoriotyön 2 esittely) ELEC-C5070 Elektroniikkapaja, 21.9.2015 Huom: Kurssissa on myöhemmin erikseen

Lisätiedot

Mittalaitetekniikka. NYMTES13 Vaihtosähköpiirit Jussi Hurri syksy 2014

Mittalaitetekniikka. NYMTES13 Vaihtosähköpiirit Jussi Hurri syksy 2014 Mittalaitetekniikka NYMTES13 Vaihtosähköpiirit Jussi Hurri syksy 2014 1 1. VAIHTOSÄHKÖ, PERUSKÄSITTEITÄ AC = Alternating current Jatkossa puhutaan vaihtojännitteestä. Yhtä hyvin voitaisiin tarkastella

Lisätiedot

Multivibraattorit. Bistabiili multivibraattori:

Multivibraattorit. Bistabiili multivibraattori: Multivibraattorit Elektroniikan piiri jota käytetään erilaisissa kahden tason systeemeissä kuten oskillaattorit, ajastimet tai kiikkut. Multivibraattorissa on vahvistava elementtti ja ristiinkytketyt rvastukset

Lisätiedot

S-108.3020. Elektroniikan häiriökysymykset. Laboratoriotyö 1

S-108.3020. Elektroniikan häiriökysymykset. Laboratoriotyö 1 1/8 S-108.3020 Elektroniikan häiriökysymykset Laboratoriotyö 1 Häiriöiden kytkeytyminen yhteisen impedanssin kautta lämpötilasäätimessä 13.9.2007 TJ 2/8 3/8 Johdanto Sähköisiä häiriöitä on kaikkialla ja

Lisätiedot

ELEC-C5070 Elektroniikkapaja (5 op)

ELEC-C5070 Elektroniikkapaja (5 op) (5 op) Luento 5 A/D- ja D/A-muunnokset ja niiden vaikutus signaaleihin Signaalin A/D-muunnos Analogia-digitaalimuunnin (A/D-muunnin) muuttaa analogisen signaalin digitaaliseen muotoon, joka voidaan lukea

Lisätiedot

Pinces AC-virtapihti ampèremetriques pour courant AC

Pinces AC-virtapihti ampèremetriques pour courant AC Pinces AC-virtapihti ampèremetriques pour courant AC MN-sarja Serie MN-SARJA Nämä ergonomiset mini-pihdit ovat sunniteltu matalien ja keskisuurien virtojen mittaamiseen välillä 0,01 A ja 240 A AC. Leukojen

Lisätiedot

Perusmittalaitteet 2. Yleismittari Taajuuslaskuri

Perusmittalaitteet 2. Yleismittari Taajuuslaskuri Mittaustekniikan perusteet / luento 4 Perusmittalaitteet 2 Digitaalinen yleismittari Yleisimmin sähkötekniikassa käytetty mittalaite. Yleismittari aajuuslaskuri Huomaa mittareiden toisistaan poikkeaat

Lisätiedot

Fysiikan laboratoriotyöt 1, työ nro: 3, Vastuksen ja diodin virta-jänniteominaiskäyrät

Fysiikan laboratoriotyöt 1, työ nro: 3, Vastuksen ja diodin virta-jänniteominaiskäyrät Fysiikan laboratoriotyöt 1, työ nro: 3, Vastuksen ja diodin virta-jänniteominaiskäyrät Tekijä: Mikko Laine Tekijän sähköpostiosoite: miklaine@student.oulu.fi Koulutusohjelma: Fysiikka Mittausten suorituspäivä:

Lisätiedot

Elektroniikkalajin semifinaalitehtävien kuvaukset

Elektroniikkalajin semifinaalitehtävien kuvaukset Elektroniikkalajin semifinaalitehtävien kuvaukset Kilpailija rakentaa ja testaa mikrokontrollerilla ohjattavaa jännitereferenssiä hyödyntävän sovelluksen. Toteutus koostuu useasta elektroniikkamoduulista.

Lisätiedot

OPERAATIOVAHVISTIN. Oulun seudun ammattikorkeakoulu Tekniikan yksikkö. Elektroniikan laboratoriotyö. Työryhmä Selostuksen kirjoitti 11.11.

OPERAATIOVAHVISTIN. Oulun seudun ammattikorkeakoulu Tekniikan yksikkö. Elektroniikan laboratoriotyö. Työryhmä Selostuksen kirjoitti 11.11. Oulun seudun ammattikorkeakoulu Tekniikan yksikkö Elektroniikan laboratoriotyö OPERAATIOVAHVISTIN Työryhmä Selostuksen kirjoitti 11.11.008 Kivelä Ari Tauriainen Tommi Tauriainen Tommi 1 TEHTÄVÄ Tutustuimme

Lisätiedot

ELEC-C3240 Elektroniikka 2

ELEC-C3240 Elektroniikka 2 ELEC-C324 Elektroniikka 2 Marko Kosunen Marko.kosunen@aalto.fi Digitaalielektroniikka Tilakoneet Materiaali perustuu kurssiins-88. Digitaalitekniikan perusteet, laatinut Antti Ojapelto Luennon oppimistavoite

Lisätiedot

Kaikki kytkennät tehdään kytkentäalustalle (bimboard) ellei muuta mainita.

Kaikki kytkennät tehdään kytkentäalustalle (bimboard) ellei muuta mainita. FYSE300 Elektroniikka 1 (FYSE301 FYSE302) Elektroniikka 1:n (FYSE300) laboratorioharjoitukset sisältävät kaksi työtä, joista ensimmäinen sisältyy A-osaan (FYSE301) ja toinen B-osaan (FYSE302). Pelkän A-osan

Lisätiedot

AKKREDITOITU KALIBROINTILABORATORIO ACCREDITED CALIBRATION LABORATORY SGS FIMKO OY

AKKREDITOITU KALIBROINTILABORATORIO ACCREDITED CALIBRATION LABORATORY SGS FIMKO OY K001/M12/2015 Liite 1 / Appendix 1 Sivu / Page 1(17) AKKREDITOITU KALIBROINTILABORATORIO ACCREDITED CALIBRATION LABORATORY SGS FIMKO OY Tunnus Code Laboratorio Laboratory Osoite Address Puh./fax/e-mail/www

Lisätiedot

Sähkötekniikan perusteet

Sähkötekniikan perusteet Sähkötekniikan perusteet 1) Resistanssien rinnankytkentä kuormittaa a) enemmän b) vähemmän c) yhtä paljon sähkölähdettä kuin niiden sarjakytkentä 2) Jännitelähteiden sarjakytkentä a) suurentaa kytkennästä

Lisätiedot

Energianhallinta. Energiamittari. Malli EM10 DIN. Tuotekuvaus. Tilausohje EM10 DIN AV8 1 X O1 PF. Mallit

Energianhallinta. Energiamittari. Malli EM10 DIN. Tuotekuvaus. Tilausohje EM10 DIN AV8 1 X O1 PF. Mallit Energianhallinta Energiamittari Malli EM10 DIN Luokka 1 (kwh) EN62053-21 mukaan Luokka B (kwh) EN50470-3 mukaan Energiamittari Energia: 6 numeroa Energian mittaukset: kokonais kwh TRMS mittaukset vääristyneelle

Lisätiedot

Tekniikka ja liikenne (5) Tietoliikennetekniikan laboratorio

Tekniikka ja liikenne (5) Tietoliikennetekniikan laboratorio Tekniikka ja liikenne 4.4.2011 1 (5) Tietoliikennetekniikan laboratorio Työ 1 PCM-työ Työn tarkoitus Työssä tutustutaan pulssikoodimodulaation tekniseen toteutustapaan. Samalla nähdään, miten A/Dmuunnin

Lisätiedot

LABORAATIOSELOSTUSTEN OHJE H. Honkanen

LABORAATIOSELOSTUSTEN OHJE H. Honkanen LABORAATIOSELOSTUSTEN OHJE H. Honkanen Tämä ohje täydentää ja täsmentää osaltaan selostuskäytäntöä laboraatioiden osalta. Yleinen ohje työselostuksista löytyy intranetista, ohjeen on laatinut Eero Soininen

Lisätiedot

Anturit ja Arduino. ELEC-A4010 Sähköpaja Tomi Pulli Signaalinkäsittelyn ja akustiikan laitos Mittaustekniikka

Anturit ja Arduino. ELEC-A4010 Sähköpaja Tomi Pulli Signaalinkäsittelyn ja akustiikan laitos Mittaustekniikka Anturit ja Arduino Tomi Pulli Signaalinkäsittelyn ja akustiikan laitos Mittaustekniikka Anturit ja Arduino Luennon sisältö 1. Taustaa 2. Antureiden ominaisuudet 3. AD-muunnos 4. Antureiden lukeminen Arduinolla

Lisätiedot

Signaalien datamuunnokset

Signaalien datamuunnokset Signaalien datamuunnokset Muunnoskomponentit Näytteenotto ja pitopiirit Multiplekserit A/D-muuntimet Jännitereferenssit D/A-muuntimet Petri Kärhä 17/02/2005 Luento 4b: Signaalien datamuunnokset 1 Näytteenotto

Lisätiedot

10. Kytkentäohje huonetermostaateille

10. Kytkentäohje huonetermostaateille . Kytkentäohje huonetermostaateille TERMOSTAATTIE JA TOIMILAITTEIDE KYTKETÄ JA KYT KE TÄ KO TE LOI HI 2 1 2 2 1 WehoFloor-termostaatti 3222 soveltuvaa kaapelia 3 1, mm 2. joh timet keskusyk sikköön käsikirjassa

Lisätiedot

Fluke 279 FC -yleismittari/lämpökamera

Fluke 279 FC -yleismittari/lämpökamera TEKNISET TIEDOT Fluke 279 FC -yleismittari/lämpökamera Etsi. Korjaa. Tarkasta. Raportoi. 279 FC, digitaalisen yleismittarin ja lämpökameran yhdistelmä, lisää mittausten tuottavuutta ja luotettavuutta.

Lisätiedot

AUTO3030 Digitaalitekniikan jatkokurssi, harjoitus 2, ratkaisuja

AUTO3030 Digitaalitekniikan jatkokurssi, harjoitus 2, ratkaisuja AUTO3030 Digitaalitekniikan jatkokurssi, harjoitus 2, ratkaisuja s2009 1. D-kiikku Toteuta DE2:lla synkroninen laskukone, jossa lasketaan kaksi nelibittistä lukua yhteen. Tulos esitetään ledeillä vasta,

Lisätiedot

Sähkötekniikan perusteet

Sähkötekniikan perusteet Sähkötekniikan perusteet 1) Resistanssien rinnankytkentä kuormittaa a) enemmän b) vähemmän c) yhtä paljon sähkölähdettä kuin niiden sarjakytkentä 2) Jännitelähteiden sarjakytkentä a) suurentaa kytkennästä

Lisätiedot

Taitaja2007/Elektroniikka

Taitaja2007/Elektroniikka 1. Jännitelähteiden sarjakytkentä a) suurentaa kytkennästä saatavaa virtaa b) rikkoo jännitelähteet c) pienentää kytkennästä saatavaa virtaa d) ei vaikuta jännitelähteistä saatavan virran suuruuteen 2.

Lisätiedot

Stratomaster Smart Single TC-1

Stratomaster Smart Single TC-1 Stratomaster Smart Single TC-1 Yhdestä neljään kanavainen lämpöpari lämpömittari Käyttöohjekirja & asennusopas Tämä ohje on käännetty 2002-12 luodusta tehtaan tekemästä ohjeesta. Epäselvissä kohdissa katso

Lisätiedot

MITTAUSTEKNIIKAN LABORATORIOTYÖOHJE TYÖ 4. LÄMPÖTILA ja PAINELÄHETTIMEN KALIBROINTI FLUKE 702 PROSESSIKALIBRAATTORILLA

MITTAUSTEKNIIKAN LABORATORIOTYÖOHJE TYÖ 4. LÄMPÖTILA ja PAINELÄHETTIMEN KALIBROINTI FLUKE 702 PROSESSIKALIBRAATTORILLA OAMK / Tekniikan yksikkö MITTAUSTEKNIIKAN LABORATORIOTYÖOHJE TYÖ 4 LÄMPÖTILA ja PAINELÄHETTIMEN KALIBROINTI FLUKE 702 PROSESSIKALIBRAATTORILLA Tero Hietanen ja Heikki Kurki TEHTÄVÄN MÄÄRITTELY Työn tehtävänä

Lisätiedot

HÄIRIÖSUOJAUS KAKSISUUNTAINEN PROSESSI SISÄISET JA ULKOISET HÄIRIÖT

HÄIRIÖSUOJAUS KAKSISUUNTAINEN PROSESSI SISÄISET JA ULKOISET HÄIRIÖT LUENTO 4 HÄIRIÖSUOJAUS KAKSISUUNTAINEN PROSESSI SISÄISET JA ULKOISET HÄIRIÖT HAVAINTOJA ELÄVÄSTÄ ELÄMÄSTÄ HYVÄ HÄIRIÖSUOJAUS ON HARVOIN HALPA JÄRJESTELMÄSSÄ ON PAREMPI ESTÄÄ HÄIRIÖIDEN SYNTYMINEN KUIN

Lisätiedot

Arduino. Kimmo Silvonen (X)

Arduino. Kimmo Silvonen (X) Arduino Kimmo Silvonen (X) Arduino, toimiva oma versio (osat Pajalla) ATmega 328P IC DIL-kotelossa (DIP) päältä katsottuna, Arduinon pinnit +5 V TX RX DTR FT232 10k 22p 22p Reset 1 RX D0 TX D1 D2 PWM D3

Lisätiedot

A/D-muuntimia. Flash ADC

A/D-muuntimia. Flash ADC A/D-muuntimia A/D-muuntimen valintakriteerit: - bittien lukumäärä instrumentointi 6 16 audio/video/kommunikointi/ym. 16 18 erikoissovellukset 20 22 - Tarvittava nopeus hidas > 100 μs (

Lisätiedot

ELEKTRONIIKAN PERUSTEET T700504

ELEKTRONIIKAN PERUSTEET T700504 ELEKTRONIIKAN PERUSTEET T700504 syksyllä 2014 OSA 2 Veijo Korhonen 4. Bipolaaritransistorit Toiminta Pienellä kantavirralla voidaan ohjata suurempaa kollektorivirtaa (kerroin β), toimii vahvistimena -

Lisätiedot

Tämä symboli ilmaisee, että laite on suojattu kokonaan kaksoiseristyksellä tai vahvistetulla eristyksellä.

Tämä symboli ilmaisee, että laite on suojattu kokonaan kaksoiseristyksellä tai vahvistetulla eristyksellä. 123 Turvallisuus Tämä symboli toisen symbolin, liittimen tai käyttölaitteen vieressä ilmaisee, että käyttäjän on katsottava oppaasta lisätietoja välttääkseen loukkaantumisen tai mittarin vaurioitumisen.

Lisätiedot

Digitaalitekniikka (piirit), kertaustehtäviä: Vastaukset

Digitaalitekniikka (piirit), kertaustehtäviä: Vastaukset Digitaalitekniikka (piirit), kertaustehtäviä: Vastaukset Metropolia/AK. Mealyn koneessa on kolme tulosignaalia, joista yksi vaikuttaa pelkästään lähtösignaaleihin, yksi pelkästään koneen tilaan ja yksi

Lisätiedot

ELEC-C6001 Sähköenergiatekniikka, laskuharjoitukset oppikirjan lukuun 10 liittyen.

ELEC-C6001 Sähköenergiatekniikka, laskuharjoitukset oppikirjan lukuun 10 liittyen. ELEC-C6001 Sähköenergiatekniikka, laskuharjoitukset oppikirjan lukuun 10 liittyen. X.X.2015 Tehtävä 1 Bipolaaritransistoria käytetään alla olevan kuvan mukaisessa kytkennässä, jossa V CC = 40 V ja kuormavastus

Lisätiedot

20 Kollektorivirta kun V 1 = 15V 10. 21 Transistorin virtavahvistus 10. 22 Transistorin ominaiskayrasto 10. 23 Toimintasuora ja -piste 10

20 Kollektorivirta kun V 1 = 15V 10. 21 Transistorin virtavahvistus 10. 22 Transistorin ominaiskayrasto 10. 23 Toimintasuora ja -piste 10 Sisältö 1 Johda kytkennälle Theveninin ekvivalentti 2 2 Simuloinnin ja laskennan vertailu 4 3 V CE ja V BE simulointituloksista 4 4 DC Sweep kuva 4 5 R 2 arvon etsintä 5 6 Simuloitu V C arvo 5 7 Toimintapiste

Lisätiedot

Helppo tiedonkeruu: kuva ja lukemat välittömästi

Helppo tiedonkeruu: kuva ja lukemat välittömästi Syksy talvi 2015 Helppo tiedonkeruu: kuva ja lukemat välittömästi Esittelyssä uudet Flukelämpökamerat ERIKOISTARJOUS Fluke T5600/ 1000FLT paketti Fluke. Keeping your world up and running. Helppo tiedonkeruu:

Lisätiedot

Pinces AC-virtapihdit ampèremetriques pour courant AC

Pinces AC-virtapihdit ampèremetriques pour courant AC Pinces AC-virtapihdit ampèremetriques pour courant AC MINI-SARJA Pienikokoinen, kompakti sekä erittäin kestävä minipihtisarja on suunniteltu mittaamaan virtoja muutamasta milliampeerista jopa 150 A AC

Lisätiedot

ELEC-A4010 Sähköpaja Arduinon ohjelmointi. Jukka Helle

ELEC-A4010 Sähköpaja Arduinon ohjelmointi. Jukka Helle ELEC-A4010 Sähköpaja Arduinon ohjelmointi Jukka Helle Arduino UNO R3 6-20VDC 5VDC muunnin 16 MHz kideoskillaattori USB-sarjamuunnin (ATmega16U2) ATmega328 -mikro-ohjain 14 digitaalista I/O väylää 6 kpl

Lisätiedot

Taitaja semifinaali 2010, Iisalmi Jääkaapin ovihälytin

Taitaja semifinaali 2010, Iisalmi Jääkaapin ovihälytin Taitaja semifinaali 2010, Iisalmi Jääkaapin ovihälytin Ohjelmointitehtävänä on laatia ohjelma jääkaapin ovihälyttimelle. Hälytin toimii 3 V litium paristolla ja se sijoitetaan jääkaapin sisälle. Hälyttimen

Lisätiedot

Successive approximation AD-muunnin

Successive approximation AD-muunnin AD-muunnin Koostuu neljästä osasta: näytteenotto- ja pitopiiristä, (sample and hold S/H) komparaattorista, digitaali-analogiamuuntimesta (DAC) ja siirtorekisteristä. (successive approximation register

Lisätiedot

SÄHKÖSTATIIKKA JA MAGNETISMI. NTIETS12 Tasasähköpiirit Jussi Hurri syksy 2013

SÄHKÖSTATIIKKA JA MAGNETISMI. NTIETS12 Tasasähköpiirit Jussi Hurri syksy 2013 SÄHKÖSTATIIKKA JA MAGNETISMI NTIETS12 Tasasähköpiirit Jussi Hurri syksy 2013 1. RESISTANSSI Resistanssi kuvaa komponentin tms. kykyä vastustaa sähkövirran kulkua Johtimen tai komponentin jännite on verrannollinen

Lisätiedot

OPERAATIOVAHVISTIMET 2. Operaatiovahvistimen ominaisuuksia

OPERAATIOVAHVISTIMET 2. Operaatiovahvistimen ominaisuuksia KAJAANIN AMMATTIKORKEAKOULU Tekniikan ja liikenteen ala TYÖ 11 ELEKTRONIIKAN LABORAATIOT H.Honkanen OPERAATIOVAHVISTIMET 2. Operaatiovahvistimen ominaisuuksia TYÖN TAVOITE Tutustua operaatiovahvistinkytkentään

Lisätiedot

Pinces AC/DC-virtapihti ampèremetriques pour courant AC

Pinces AC/DC-virtapihti ampèremetriques pour courant AC MH-SARJA MH60-virtapihti on suunniteltu mittaamaan DC ja AC-virtoja jopa 1 MHz:n kaistanleveydellä, käyttäen kaksoislineaarista Hall-ilmiötä/ Muuntajateknologiaa. Pihti sisältää ladattavan NiMh-akun, jonka

Lisätiedot

OMNIA OPINNÄYTETYÖ AMMATTIOPISTO. Diginoppa ICTP09SLG OMNIAN AMMATTIOPISTO

OMNIA OPINNÄYTETYÖ AMMATTIOPISTO. Diginoppa ICTP09SLG OMNIAN AMMATTIOPISTO OMNIA AMMATTIOPISTO OPINNÄYTETYÖ Diginoppa ICTP09SLG - 2012 OMNIAN AMMATTIOPISTO KOULUTUSALA Tieto- ja tietoliikennetekniikka OPISKELIJA Hannu Junno OHJAAJA Jari Laurila VUOSI 2012 2 TIIVISTELMÄ Opinnäytetyöni

Lisätiedot

Sähköiset koestimet 22

Sähköiset koestimet 22 22 Sähköiset koestimet SÄHKÖISET KOESTIMET TALO- JA SÄHKÖTEKNIIKKA Oikea sähköinen koestin joka käyttöön Johdanto tarjoaa yleiskuvan sähköisistä koestintyypeistä ja niiden käyttöalueista. Käyttöalueet

Lisätiedot

Käyttöohje HT32 L A T I T H t h g ir y p o C A I 0 2 0 5 e R e l e s a E 1 N. 1 0-0 3 0 / 2 / 6 0 0 5

Käyttöohje HT32 L A T I T H t h g ir y p o C A I 0 2 0 5 e R e l e s a E 1 N. 1 0-0 3 0 / 2 / 6 0 0 5 Käyttöohje HT32 Copyright HT ITALIA 2005 Release EN 1.01-03/06/2005 Sisältö: 1. TURVAOHJEITA...2 1.1. Ennen käyttöä...2 1.2. Mittauksen aikana...2 1.3. Mittauksen jälkeen...3 1.4. Ylijänniteluokat...4

Lisätiedot

Arduino. Kimmo Silvonen (X)

Arduino. Kimmo Silvonen (X) Arduino Kimmo Silvonen (X) Arduinon ohjelmointiympäristön installointi Teensyn (2.0) installointi Arduino IDE:n alle IDE = Integrated Development Environment Arduino UNO, ym.: https://www.arduino.cc/en/guide/windows

Lisätiedot

Sähkötekniikka ja elektroniikka

Sähkötekniikka ja elektroniikka Sähkötekniikka ja elektroniikka Kimmo Silvonen (X) Kokeet, harjoitustehtävät, palaute 2. välikoe ja tentti ma 7.12. klo 10.15-13, S1 Valitset kokeen aikana, suoritatko tentin Ilmoittaudu joka tapauksessa

Lisätiedot

TASA- JA VAIHTOVIRTAPIIRIEN LABORAATIOTYÖ 5 SUODATINPIIRIT

TASA- JA VAIHTOVIRTAPIIRIEN LABORAATIOTYÖ 5 SUODATINPIIRIT TASA- JA VAIHTOVIRTAPIIRIEN LABORAATIOTYÖ 5 SUODATINPIIRIT Työselostuksen laatija: Tommi Tauriainen Luokka: TTE7SN1 Ohjaaja: Jaakko Kaski Työn tekopvm: 02.12.2008 Selostuksen luovutuspvm: 16.12.2008 Tekniikan

Lisätiedot

Käyttöopas Versio 1.1 heinäkuu 2003 SUOMI Tervetuloa BEHRINGER-perheeseen! Kiitos FOOT CONTROLLER FCV100-jalkapainikkeen ostamalla meitä kohtaan osoittamastanne luottamuksesta. FCV100 on arvokas ja monipuolinen

Lisätiedot

ELEKTRONISET JÄRJESTELMÄT, LABORAATIO 1: Oskilloskoopin käyttö vaihtojännitteiden mittaamisessa ja Theveninin lähteen määritys yleismittarilla

ELEKTRONISET JÄRJESTELMÄT, LABORAATIO 1: Oskilloskoopin käyttö vaihtojännitteiden mittaamisessa ja Theveninin lähteen määritys yleismittarilla Chydenius Saku 8.9.2003 Ikävalko Asko ELEKTRONISET JÄRJESTELMÄT, LABORAATIO 1: Oskilloskoopin käyttö vaihtojännitteiden mittaamisessa ja Theveninin lähteen määritys yleismittarilla Työn valvoja: Pekka

Lisätiedot

Tee itse. Tehokas vakiovirtalähde ledeille

Tee itse. Tehokas vakiovirtalähde ledeille Tee itse Tehokas vakiovirtalähde ledeille Jukka Hietala 2008 Teholedin käyttäminen suurella teholla vaatii vakiovirtalähteen, joka nimensä mukaisesti pitää ledin virran samansuuruisena riippumatta käyttöjännitteen,

Lisätiedot

MONIKANAVAISET OHJELMOITAVAT VAHVISTIMET

MONIKANAVAISET OHJELMOITAVAT VAHVISTIMET DIGITAALIAJAN RATKAISUT DVB-T - Tuotteet PROFILER-SARJA MONIKANAVAISET OHJELMOITAVAT VAHVISTIMET Selektiivisesti vahvistetut kanavaniput digitaalisille ja analogisille signaaleille. Helposti ohjelmointipyörällä

Lisätiedot

Energian hallinta. Energiamittari. Malli EM23 DIN. Tuotekuvaus. Tilausohje EM23 DIN AV9 3 X O1 PF. Mallit. Tarkkuus ±0.5 RDG (virta/jännite)

Energian hallinta. Energiamittari. Malli EM23 DIN. Tuotekuvaus. Tilausohje EM23 DIN AV9 3 X O1 PF. Mallit. Tarkkuus ±0.5 RDG (virta/jännite) Energian hallinta Energiamittari Malli EM23 DIN Tuotekuvaus Tarkkuus ±0.5 RDG (virta/jännite) Energiamittari Hetkellissuureiden näyttö: 3 numeroa Energiamittaukset: 7 numeroa 3-vaihesuureet: W, var, vaihejärjestys

Lisätiedot

KOHINA LÄMPÖKOHINA VIRTAKOHINA. N = Noise ( Kohina )

KOHINA LÄMPÖKOHINA VIRTAKOHINA. N = Noise ( Kohina ) KOHINA H. Honkanen N = Noise ( Kohina ) LÄMÖKOHINA Johtimessa tai vastuksessa olevien vapaiden elektronien määrä ei ole vakio, vaan se vaihtelee satunnaisesti. Nämä vaihtelut aikaansaavat jännitteen johtimeen

Lisätiedot

FYS206/5 Vaihtovirtakomponentit

FYS206/5 Vaihtovirtakomponentit FYS206/5 Vaihtovirtakomponentit Tässä työssä pyritään syventämään vaihtovirtakomponentteihin liittyviä käsitteitä. Tunnetusti esimerkiksi käsitteet impedanssi, reaktanssi ja vaihesiirto ovat aina hyvin

Lisätiedot

M2A.1000. Suomenkielinen käyttöohje. www.macrom.it

M2A.1000. Suomenkielinen käyttöohje. www.macrom.it M2A.000 Suomenkielinen käyttöohje www.macrom.it Vahvistimen säätimet ja liitännät 2 3 4 5 6 7 8 9 0 2 3 4 5 6 7 8 2 Ω 2 3 4 5 6 7 8 9 0 2 3 4 5 7 6 8 RCA-tuloliitäntä matalatasoiselle signaalille Kaiutintasoinen

Lisätiedot

Pynnönen 1.5.2000. Opiskelija: Tarkastaja: Arvio:

Pynnönen 1.5.2000. Opiskelija: Tarkastaja: Arvio: EAOL 1/5 Opintokokonaisuus : Jakso: Harjoitustyö: Passiiviset komponentit Pvm : vaihtosähköpiirissä Opiskelija: Tarkastaja: Arvio: Tavoite: Välineet: Opiskelija oppii ymmärtämään vastuksen, kondensaattorin

Lisätiedot

S-108.180 Elektroniset mittaukset ja elektroniikan häiriökysymykset. Vanhoja tenttitehtäviä

S-108.180 Elektroniset mittaukset ja elektroniikan häiriökysymykset. Vanhoja tenttitehtäviä S-18.18 Elektroniset mittaukset ja elektroniikan häiriökysymykset 1. Vastaa lyhyesti: a) Mitä on kohina (yleisesti)? b) Miten määritellään kohinaluku? c) Miten / missä syntyy raekohinaa? Vanhoja tenttitehtäviä

Lisätiedot

Tämän sybolin esiintyessä, käyttäjän tulee lukea käyttöohje, josta lisätietoa. Tämä symboli normaalikäytössä indikoi vaarallisesta mittausjännitteestä

Tämän sybolin esiintyessä, käyttäjän tulee lukea käyttöohje, josta lisätietoa. Tämä symboli normaalikäytössä indikoi vaarallisesta mittausjännitteestä Esittely VT30 mittaa AC-jännitteitä 690 V ja DC-jännitteitä 690 V asti, LCD-näyttö, portaittainen jännitenäyttö, positiivisen ja negatiivisen napaisuuden näyttö, sekä kiertosuunnan osoitus. Lisäksi jatkuvuuden

Lisätiedot

Flash AD-muunnin. suurin kaistanleveys muista muuntimista (gigahertsejä) pieni resoluutio (max 8) kalliita

Flash AD-muunnin. suurin kaistanleveys muista muuntimista (gigahertsejä) pieni resoluutio (max 8) kalliita Flash AD-muunnin Flash AD-muunnin koostuu monesta peräkkäisestä komparaattorista, joista jokainen vertaa muunnettavaa signaalia omaan referenssijännitteeseensä. Referenssijännite aikaansaadaan jännitteenjaolla:

Lisätiedot

ELEKTRONIIKAN PERUSTEET

ELEKTRONIIKAN PERUSTEET ELEKTRONIIKAN PERUSTEET Juha Aaltonen Seppo Kousa Jyrki Stor-Pellinen A.T.S.S.: J.B.-B. 4 DRW: Spi CHK: JPA Elektroniikan Perusteet SHEET 193 OF 390 DRAWING NO:5.19 Sisällys 1 Johdanto.............................................

Lisätiedot

IMPEDANSSIMITTAUKSIA. 1 Työn tavoitteet

IMPEDANSSIMITTAUKSIA. 1 Työn tavoitteet 1 IMPEDANSSIMITTAUKSIA 1 Työn tavoitteet Tässä työssä tutustut vaihtojännitteiden ja virtojen sekä vaihtovirtapiirissä olevien komponenttien impedanssien suuruuksien eli vaihtovirtavastusten mittaamiseen.

Lisätiedot

Tämä symboli ilmaisee, että laite on suojattu kokonaan kaksoiseristyksellä tai vahvistetulla eristyksellä.

Tämä symboli ilmaisee, että laite on suojattu kokonaan kaksoiseristyksellä tai vahvistetulla eristyksellä. 123 Johdanto Extech 430 -yleismittari (osanumero EX430) on varustettu automaattisella aluevalinnalla. Mittarin tarjoamat mittaukset/testaukset ovat vaihto- ja tasajännite, vaihto- ja tasavirta, resistanssi,

Lisätiedot

Taitaja2010, Iisalmi Suunnittelutehtävä, teoria osa

Taitaja2010, Iisalmi Suunnittelutehtävä, teoria osa Taitaja2010, Iisalmi Suunnittelutehtävä, teoria osa Nimi: Pisteet: Koulu: Lue liitteenä jaettu artikkeli Solar Lamp (Elector Electronics 9/2005) ja selvitä itsellesi laitteen toiminta. Tätä artikkelia

Lisätiedot

Paineensäätöventtiilit E/P-paineensäätöventtiilit Sarja ED02. Luetteloesite

Paineensäätöventtiilit E/P-paineensäätöventtiilit Sarja ED02. Luetteloesite Paineensäätöventtiilit E/P-paineensäätöventtiilit Sarja ED0 Luetteloesite Paineensäätöventtiilit E/P-paineensäätöventtiilit Sarja ED0 E/P-paineensäätöventtiili, Sarja ED0 Qn= 10 l/min Paineilmaliitäntä

Lisätiedot

KÄYTTÖOHJE ELTRIP-R6. puh. 08-6121 651 fax 08-6130 874 www.trippi.fi seppo.rasanen@trippi.fi. PL 163 87101 Kajaani

KÄYTTÖOHJE ELTRIP-R6. puh. 08-6121 651 fax 08-6130 874 www.trippi.fi seppo.rasanen@trippi.fi. PL 163 87101 Kajaani KÄYTTÖOHJE ELTRIP-R6 PL 163 87101 Kajaani puh. 08-6121 651 fax 08-6130 874 www.trippi.fi seppo.rasanen@trippi.fi SISÄLLYSLUETTELO 1. TEKNISIÄ TIETOJA 2. ELTRIP-R6:n ASENNUS 2.1. Mittarin asennus 2.2. Anturi-

Lisätiedot

Sähköpajan elektroniikkaa

Sähköpajan elektroniikkaa Sähköpajan elektroniikkaa Kimmo Silvonen (X) "Virtalähde", teholähde, verkkolaite (wall-wart) Elektroniikkapiirit vaativat toimiakseen käyttöjännitteen. Paristot noin 1,5 V tai 3 V / kenno Ladattavat NiMH-akut

Lisätiedot

P I C A X E O H J E L M O I N T I

P I C A X E O H J E L M O I N T I PICAXE OHJELMOINTI Tämä materiaalipaketti on tehty PICAXE piireihin perustuvaa elektroniikan opetusta varten. Tarkoituksena on opettaa ohjelmoitavan mikropiirin käyttöä erilaisissa sovellutuksissa. Lisää

Lisätiedot