Vektorien virittämä aliavaruus Esimerkki 13 Mikä ehto vektorin w = (w 1, w 2, w 3 ) komponenttien on toteutettava, jotta w kuuluu vektoreiden v 1 = (3, 2, 1), v 2 = (2, 2, 6) ja v 3 = (3, 4, 5) virittämään aliavaruuteen span( v 1, v 2, v 3 )? Toisin sanottuna: Mikä ehto vektorin w = (w 1, w 2, w 3 ) komponenttien on toteutettava, jotta w on vektoreiden v 1, v 2 ja v 3 lineaarikombinaatio? LM1, Kesä 2015 77/202
Tarkastellaan yhtälöä x 1 v 1 + x 2 v 2 + x 3 v 3 = w eli yhtälöä x 1 (3, 2, 1) + x 2 (2, 2, 6) + x 3 (3, 4, 5) = (w 1, w 2, w 3 ). Muokataan vastaavan yhtälöryhmän täydennetty matriisi porrasmatriisiksi: 3 2 3 w 1 ( 1) r 3 2 2 4 w 2 1 6 5 w 3 r 1 1 6 5 w 3 2 2 4 w 2 r 2 2r 1 3 2 3 w 1 1 6 5 w 3 1 6 5 w 3 0 10 6 w 2 + 2w 3 0 10 6 w 2 + 2w 3 3 2 3 w 1 r 3 3r 1 0 20 12 w 1 + 3w 3 r 3 2r 2 LM1, Kesä 2015 78/202
1 6 5 w 3 0 10 6 w 2 + 2w 3 r 2 /10 0 0 0 w 1 + 3w 3 2(w 2 + 2w 3 ) 1 6 5 w 3 0 1 3/5 (w 2 + 2w 3 )/10 0 0 0 w 1 2w 2 w 3 Havaitaan, että yhtälöryhmällä on ratkaisuja, jos ja vain jos w 1 2w 2 w 3 = 0. Siten span( v 1, v 2, v 3 ) = { w R 3 w 1 2w 2 w 3 = 0 }. LM1, Kesä 2015 79/202
Tutkitaan tarkemmin, millainen joukko span( v 1, v 2, v 3 ) on. span( v 1, v 2, v 3 ) = { w R 3 w 1 2w 2 w 3 = 0 } = { (w 1, w 2, w 3 ) R 3 w 3 = w 1 2w 2 } = { (w 1, w 2, w 1 2w 2 ) w 1, w 2 R } = { w 1 (1, 0, 1) + w 2 (0, 1, 2) w 1, w 2 R } = span ( (1, 0, 1), (0, 1, 2) ) Vektoreiden v 1, v 2 ja v 3 virittämä aliavaruus on siis origon kautta kulkeva vektoreiden (1, 0, 1) ja (0, 1, 2) suuntainen taso. LM1, Kesä 2015 80/202
Vektoreiden virittämä aliavaruus Esimerkki 14 Onko totta, että span( v 1, v 2, v 3, v 4 ) = R 3, jos (a) v 1 = (1, 1, 0), v 2 = (1, 0, 1), v 3 = (0, 1, 1) ja v 4 = ( 2, 1, 1)? (b) v 1 = (1, 1, 0), v 2 = ( 1, 0, 1), v 3 = (0, 1, 1) ja v 4 = (2, 1, 1)? Kielteisessä tapauksessa määritä span( v 1, v 2, v 3, v 4 ). Myönteisessä tapauksessa tutki, kuinka monella tavalla vektori w = (w 1, w 2, w 3 ) voidaan esittää vektoreiden v 1, v 2, v 3 ja v 4 lineaarikombinaationa. LM1, Kesä 2015 81/202
(a) Tarkastellaan yhtälöä x 1 v 1 + x 2 v 2 + x 3 v 3 + x 4 v 4 = w. Muokataan vastaavan yhtälöryhmän täydennetty matriisi joksikin porrasmatriisiksi: 1 1 0 2 w 1 1 0 1 1 w 2... 0 1 1 1 w 3 1 1 0 2 w 1 0 1 1 3 w 1 w 2. 0 0 1 2 (w 3 + w 2 w 1 )/2 Havaitaan, että yhtälöryhmällä on aina ratkaisu; itseasiassa niitä on äärettömän monta, koska x 4 on vapaa muuttuja. Siis span( v 1, v 2, v 3, v 4 ) = R 3 ja jokainen avaruuden R 3 vektori voidaan esittää äärettömän monella tavalla vektoreiden v 1, v 2, v 3 ja v 4 lineaarikombinaationa. LM1, Kesä 2015 82/202
(b) Tarkastellaan yhtälöä x 1 v 1 + x 2 v 2 + x 3 v 3 + x 4 v 4 = w. Muokataan vastaavan yhtälöryhmän täydennetty matriisi joksikin porrasmatriisiksi: 1 1 0 2 w 1 1 0 1 1 w 2... 0 1 1 1 w 3 1 1 0 2 w 1 0 1 1 1 w 1 w 2 0 0 0 0 w 1 + w 2 + w 3. Havaitaan, että yhtälöryhmällä on ratkaisu, jos ja vain jos w 1 + w 2 + w 3 = 0. Siten span( v 1, v 2, v 3, v 4 ) = { w R 3 w 1 + w 2 + w 3 = 0 }. LM1, Kesä 2015 83/202
Jos w 1 + w 2 + w 3 = 0, niin vektori w voidaan esittää vektoreiden v 1, v 2, v 3 ja v 4 lineaarikombinaationa äärettömän monella tavalla, sillä x 3 ja x 4 ovat vapaita muuttujia. Erityisesti voidaan valita x 3 = 0 ja x 4 = 0 ja saadaan esitys w = w 2 v 1 + ( w 1 w 2 ) v 2. Näin ollen span( v 1, v 2, v 3, v 4 ) = span( v 1, v 2 ). LM1, Kesä 2015 84/202
Havaintoja Edellisen esimerkin perusteella: Joskus osajono virittää saman aliavaruuden kuin alkuperäinen virittäjäjono ( v 1,..., v k ). Joskus aliavaruuden span( v 1,..., v k ) vektorit voidaan esittää usealla eri tavalla virittäjävektorien lineaarikombinaatioina. Miten löytää virittäjäjono, jossa ei ole turhia vektoreita? Miten löytää sellainen virittäjäjono, että kaikki aliavaruuden vektorit voidaan esittää tasan yhdellä tavalla virittäjävektorien lineaarikombinaatioina? LM1, Kesä 2015 85/202
Vapaus Määritelmä Oletetaan, että v 1, v 2,..., v k R n, missä n {1, 2,... }. Vektorijono ( v 1, v 2,..., v k ) on vapaa eli lineaarisesti riippumaton, jos seuraava ehto pätee: jos c 1 v 1 + c 2 v 2 + + c k v k = 0 joillakin c 1,..., c k R, niin c 1 = 0, c 2 = 0,..., c k = 0. Jos jono ( v 1, v 2,..., v k ) on vapaa, sanotaa, että vektorit v 1, v 2,..., v k ovat lineaarisesti riippumattomia. Jos jono ei ole vapaa, sanotaan, että se on sidottu. LM1, Kesä 2015 86/202
Esimerkki 15 Merkitään v 1 = (1, 2) ja v 2 = ( 3, 1). Onko jono ( v 1, v 2 ) vapaa vai sidottu? v 1 v 2 LM1, Kesä 2015 87/202
Oletetaan, että c 1 v 1 + c 2 v 2 = 0 joillakin reaaliluvuilla c 1 ja c 2. Tällöin c 1 (1, 2) + c 2 ( 3, 1) = (0, 0) eli komponenteittain: { c1 3c 2 = 0 2c 1 c 2 = 0. Ratkaistaan tästä c 1 ja c 2 : [ ] [ ] 1 3 0 1 3 0 2 1 0 r 2 2r 1 0 5 0 r 2 /5 [ ] [ ] 1 3 0 r1 + 3r 2 1 0 0. 0 1 0 0 1 0 Ainoa ratkaisu on c 1 = 0 ja c 2 = 0. Jono ( v 1, v 2 ) on vapaa. LM1, Kesä 2015 88/202
Esimerkki 16 Merkitään v 1 = (1, 2), v 2 = ( 3, 1) ja v 3 = ( 1, 1). Onko jono ( v 1, v 2, v 3 ) vapaa vai sidottu? v 3 v 1 v 2 LM1, Kesä 2015 89/202
Oletetaan, että c 1 v 1 + c 2 v 2 + c 3 v 3 = 0 joillakin c 1, c 2, c 3 R. Tällöin c 1 (1, 2) + c 2 ( 3, 1) + c 3 ( 1, 1) = (0, 0) eli komponenteittain: { c1 3c 2 c 3 = 0 2c 1 c 2 + c 3 = 0. Ratkaistaan tästä c 1 ja c 2 : [ ] [ ] 1 3 1 0 1 3 1 0 2 1 1 0 r 2 2r 1 0 5 3 0 r 2 /5 [ ] [ ] 1 3 1 0 r1 + 3r 2 1 0 4/5 0. 0 1 3/5 0 0 1 3/5 0 Voidaan valita esimerkiksi c 3 = 5, jolloin c 2 = 3 ja c 1 = 4. Näin 4 v 1 3 v 2 + 5 v 3 = 0. Jono ( v 1, v 2, v 3 ) on sidottu. LM1, Kesä 2015 90/202
5 v 3 4 v 1 3 v 2 4 v 1 3 v 2 + 5 v 3 = 0 LM1, Kesä 2015 91/202
Jos virittäjäjono on vapaa, niin kaikki aliavaruuden vektorit voidaan esittää tasan yhdellä tavalla virittäjävektorien lineaarikombinaatioina: Lause 11 Oletetaan, että v 1, v 2,..., v k R n, missä n {1, 2,...}. Jono ( v 1, v 2,..., v k ) on vapaa, jos ja vain jos jokainen aliavaruuden span( v 1, v 2,..., v k ) alkio voidaan kirjoittaa täsmälleen yhdellä tavalla vektorien v 1, v 2,..., v k lineaarikombinaationa. LM1, Kesä 2015 97/202
Kanta Oletetaan, että v 1,..., v j R n, missä n {1, 2,...}. Merkitään W = span( v 1,..., v j ); ts. W on vektoreiden v 1,..., v j virittämä aliavaruus. Määritelmä Oletetaan, että w 1, w 2,..., w k W. Vektorijono ( w 1, w 2,..., w k ) on aliavaruuden W kanta, jos (a) W = span( w 1, w 2,..., w k ) (b) ( w 1, w 2,..., w k ) on vapaa. LM1, Kesä 2015 100/202
Kanta Esimerkki 19 Merkitään ē 1 = (1, 0) ja ē 2 = (0, 1). Osoitetaan, että jono (ē 1, ē 2 ) on avaruuden R 2 kanta. ē 2 ē 1 LM1, Kesä 2015 101/202
Esimerkin 19 ratkaisu Käytetään kannan määritelmää: (a) Oletetaan, että w R 2. Tällöin w = (w 1, w 2 ) joillakin reaaliluvuilla w 1 ja w 2. Havaitaan, että w = w 1 (1, 0) + w 2 (0, 1) = w 1 ē 1 + w 2 ē 2. Näin mikä tahansa avaruuden R 2 vektori voidaan esittää vektoreiden ē 1 ja ē 2 lineaarikombinaationa. Siten span(ē 1, ē 2 ) = R 2. (b) Oletetaan, että c 1 ē 1 + c 2 ē 2 = 0 joillakin c 1, c 2 R. Tällöin c 1 (1, 0) + c 2 (0, 1) = (0, 0) eli (c 1, c 2 ) = (0, 0), mistä seuraa, että c 1 = 0 ja c 2 = 0. Siis jono (ē 1, ē 2 ) on vapaa. LM1, Kesä 2015 102/202