Matikkapaja keskiviikkoisin klo Lineaarialgebra (muut ko) p. 1/210

Samankaltaiset tiedostot
Matikkapaja keskiviikkoisin klo Lineaarialgebra (muut ko) p. 1/81

Lineaarialgebra (muut ko)

Seuraava luento ti on salissa XXII. Lineaarialgebra (muut ko) p. 1/117

Muistutus: Matikkapaja ke Siellä voi kysyä apua demoihin, edellisen viikon demoratkaisuja, välikoetehtävien selitystä, monisteesta yms.

Ensi viikon luennot salissa X. Lineaarialgebra (muut ko) p. 1/159

Tällä viikolla viimeiset luennot ja demot. Lineaarialgebra (muut ko) p. 1/162

3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä

3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä

Insinöörimatematiikka D

Johdatus lineaarialgebraan. Juha Honkala 2017

Insinöörimatematiikka D

Alkeismuunnokset matriisille, sivu 57

Insinöörimatematiikka D

Matematiikka B2 - TUDI

Insinöörimatematiikka D

Matematiikka B2 - Avoin yliopisto

Lineaarialgebra ja matriisilaskenta I

Ensi viikon luennot salissa X. Lineaarialgebra (muut ko) p. 1/66

Insinöörimatematiikka D

Demorastitiedot saat demonstraattori Markus Niskaselta Lineaarialgebra (muut ko) p. 1/104

Avaruuden R n aliavaruus

Vapaus. Määritelmä. jos c 1 v 1 + c 2 v c k v k = 0 joillakin c 1,..., c k R, niin c 1 = 0, c 2 = 0,..., c k = 0.

3x + y + 2z = 5 e) 2x + 3y 2z = 3 x 2y + 4z = 1. x + y 2z + u + 3v = 1 b) 2x y + 2z + 2u + 6v = 2 3x + 2y 4z 3u 9v = 3. { 2x y = k 4x + 2y = h

1.1. Määritelmiä ja nimityksiä

6 Vektoriavaruus R n. 6.1 Lineaarikombinaatio

Informaatiotieteiden yksikkö. Lineaarialgebra 1A. Pentti Haukkanen. Puhtaaksikirjoitus: Joona Hirvonen

Lineaarikombinaatio, lineaarinen riippuvuus/riippumattomuus

Lineaarialgebra ja matriisilaskenta I

3.1 Lineaarikuvaukset. MS-A0004/A0006 Matriisilaskenta. 3.1 Lineaarikuvaukset. 3.1 Lineaarikuvaukset

Lineaarialgebra ja matriisilaskenta I. LM1, Kesä /218

Talousmatematiikan perusteet: Luento 10. Matriisien peruskäsitteet Yksinkertaiset laskutoimitukset Matriisitulo Determinantti

3.2 Matriisien laskutoimitukset. 3.2 Matriisien laskutoimitukset. 3.2 Matriisien laskutoimitukset. 3.2 Matriisien laskutoimitukset

Matriisien tulo. Matriisit ja lineaarinen yhtälöryhmä

2.5. Matriisin avaruudet ja tunnusluvut

Lineaarialgebra ja matriisilaskenta I

Informaatiotieteiden yksikkö. Lineaarialgebra 1A. Pentti Haukkanen. Puhtaaksikirjoitus: Joona Hirvonen

Insinöörimatematiikka D

Informaatiotieteiden yksikkö. Lineaarialgebra 1A. Pentti Haukkanen. Puhtaaksikirjoitus: Joona Hirvonen

Lineaarialgebra ja differentiaaliyhtälöt Laskuharjoitus 1 / vko 44

Matriisilaskenta, LH4, 2004, ratkaisut 1. Hae seuraavien R 4 :n aliavaruuksien dimensiot, jotka sisältävät vain

Ville Turunen: Mat Matematiikan peruskurssi P1 1. välikokeen alueen teoriatiivistelmä 2007

Lineaarialgebra ja matriisilaskenta II. LM2, Kesä /141

Matriisilaskenta. Harjoitusten 3 ratkaisut (Kevät 2019) 1. Olkoot AB = ja 2. Osoitetaan, että matriisi B on matriisin A käänteismatriisi.

Kannan vektorit siis virittävät aliavaruuden, ja lisäksi kanta on vapaa. Lauseesta 7.6 saadaan seuraava hyvin käyttökelpoinen tulos:

Talousmatematiikan perusteet: Luento 9. Matriisien peruskäsitteet Yksinkertaiset laskutoimitukset Transponointi Matriisitulo

Ortogonaalinen ja ortonormaali kanta

Yhteenlaskun ja skalaarilla kertomisen ominaisuuksia

802320A LINEAARIALGEBRA OSA I

Informaatiotieteiden yksikkö. Lineaarialgebra 1A. Pentti Haukkanen. Puhtaaksikirjoitus: Joona Hirvonen

2.8. Kannanvaihto R n :ssä

9. Lineaaristen differentiaaliyhtälöiden ratkaisuavaruuksista

3.1 Lineaarikuvaukset. MS-A0007 Matriisilaskenta. 3.1 Lineaarikuvaukset. 3.1 Lineaarikuvaukset

9 Matriisit. 9.1 Matriisien laskutoimituksia

Käänteismatriisi 1 / 14

Lineaarialgebra ja matriisilaskenta II. LM2, Kesä /310

BM20A0700, Matematiikka KoTiB2

Talousmatematiikan perusteet: Luento 11. Lineaarikuvaus Matriisin aste Käänteismatriisi

Osoita, että täsmälleen yksi vektoriavaruuden ehto ei ole voimassa.

Käänteismatriisin ominaisuuksia

x 2 x 3 x 1 x 2 = 1 2x 1 4 x 2 = 3 x 1 x 5 LINEAARIALGEBRA I Oulun yliopisto Matemaattisten tieteiden laitos 2014 Esa Järvenpää, Hanna Kiili

1 Lineaariavaruus eli Vektoriavaruus

Johdatus lineaarialgebraan

Determinantti. Määritelmä

Lineaarialgebra ja matriisilaskenta I

Lineaarialgebra I. Oulun yliopisto Matemaattisten tieteiden laitos Esa Järvenpää Kirjoittanut Tuula Ripatti

MS-C1340 Lineaarialgebra ja

1 Matriisit ja lineaariset yhtälöryhmät

Determinantti 1 / 30

Kanta ja dimensio 1 / 23

802320A LINEAARIALGEBRA OSA III

3.2 Matriisien laskutoimitukset. 3.2 Matriisien laskutoimitukset. 3.2 Matriisien laskutoimitukset. 3.2 Matriisien laskutoimitukset. Olkoot A 2 := AA =

Johdatus tekoälyn taustalla olevaan matematiikkaan

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt

Insinöörimatematiikka D

1. LINEAARISET YHTÄLÖRYHMÄT JA MATRIISIT. 1.1 Lineaariset yhtälöryhmät

Insinöörimatematiikka D

3 Skalaari ja vektori

Insinöörimatematiikka D

Matriisialgebra harjoitukset, syksy x 1 + x 2 = a 0

Insinöörimatematiikka D

ominaisvektorit. Nyt 2 3 6

802118P Lineaarialgebra I (4 op)

Insinöörimatematiikka D

Vapaus. Määritelmä. jos c 1 v 1 + c 2 v c k v k = 0 joillakin c 1,..., c k R, niin c 1 = 0, c 2 = 0,..., c k = 0.

802120P Matriisilaskenta (5 op)

Määritelmä 1. Olkoot V ja W lineaariavaruuksia kunnan K yli. Kuvaus L : V. Termejä: Lineaarikuvaus, Lineaarinen kuvaus.

5 OMINAISARVOT JA OMINAISVEKTORIT

Talousmatematiikan perusteet: Luento 10. Lineaarikuvaus Matriisin aste Determinantti Käänteismatriisi

Matriisit ja vektorit Matriisin käsite Matriisialgebra. Olkoon A = , B = Laske A + B, , 1 3 3

Liittomatriisi. Liittomatriisi. Määritelmä 16 Olkoon A 2 M(n, n). Matriisin A liittomatriisi on cof A 2 M(n, n), missä. 1) i+j det A ij.

Lineaariavaruudet. Span. Sisätulo. Normi. Matriisinormit. Matriisinormit. aiheita. Aiheet. Reaalinen lineaariavaruus. Span. Sisätulo.

5 Ominaisarvot ja ominaisvektorit

Matemaattinen Analyysi / kertaus

Lineaarialgebra. Osa 1. Turun yliopisto. Markku Koppinen

Lineaarialgebra II, MATH.1240 Matti laaksonen, Lassi Lilleberg

Päättelyn voisi aloittaa myös edellisen loppupuolelta ja näyttää kuten alkupuolella, että välttämättä dim W < R 1 R 1

Lineaarikuvauksen R n R m matriisi

Suorat ja tasot, L6. Suuntajana. Suora xy-tasossa. Suora xyzkoordinaatistossa. Taso xyzkoordinaatistossa. Tason koordinaattimuotoinen yhtälö.

Vektoreiden virittämä aliavaruus

Havainnollistuksia: Merkitään w = ( 4, 3) ja v = ( 3, 2). Tällöin. w w = ( 4) 2 + ( 3) 2 = 25 = 5. v = ( 3) = 13. v = v.

Transkriptio:

Matikkapaja keskiviikkoisin klo 14-16 Lineaarialgebra (muut ko) p. 1/210

Lineaarialgebra (muut ko) p. 2/210 Operaatiot Vektoreille u = (u 1,u 2 ) ja v = (v 1,v 2 ) Yhteenlasku: u+v = (u 1 +v 1,u 2 +v 2 ) Skalaarilla kertominen (a R): au = (au 1,au 2 ) Kommutatiivisuus Assosiatiivisuus u+v = v+u (u+v)+w = u+(v+w)

Lineaarialgebra (muut ko) p. 3/210 Pituus ja sisätulo Vektorin u = (u 1,u 2 ) R 2 pituus u = u 2 1 +u2 2 Vektorien u = (u 1,u 2 ) ja v = (v 1,v 2 ) sisätulo Pituudelle ax = a x (u,v) = u v = u 1 v 1 +u 2 v 2. Muistetaan, että u 2 = (u,u).

Lineaarialgebra (muut ko) p. 4/210 Sisätulo Sisätulon ominaisuuksia (s.3) (u,u) 0 (u,u) = 0 u = 0 (u,v) = (v,u) (u+v,w) = (u,w)+(v,w). (au,v) = a(u,v), a R.

Lineaarialgebra (muut ko) p. 5/210 Sisätulo Sisätulon ominaisuuksia (s.3) (u,u) 0 (u,u) = 0 u = 0 (u,v) = (v,u) (u+v,w) = (u,w)+(v,w). (au,v) = a(u,v), a R. Myös (u,v+w) = (u,v)+(u,w) ja(u v,w) = (u,w) (v,w).

Lineaarialgebra (muut ko) p. 6/210 Avaruusvektorit, s. 4 Avaruusvektorien joukko R 3 = {(x,y,z) x,y,z R}. Vektoreille u = (u 1,u 2,u 3 ) ja v = (v 1,v 2,v 3 ) operaatiot Yhteenlasku: u+v = (u 1 +v 1,u 2 +v 2,u 3 +v 3 ) Skalaarilla kertominen (a R): au = (au 1,au 2,au 3 )

Lineaarialgebra (muut ko) p. 7/210 Avaruusvektorit Avaruusvektoreille u = (u 1,u 2,u 3 ) ja v = (v 1,v 2,v 3 ) aiemmat tulokset (1.3) (1.7) toimivat myös R 3 :ssa, kun määritellään u = u 2 1 +u2 2 +u2 3 ja (u,v) = u 1 v 1 +u 2 v 2 +u 3 v 3.

Lineaarialgebra (muut ko) p. 8/210 Suorat Suoran L standardiesitys L : x x 0 a = y y 0 b = z z 0 c missä P = (x 0,y 0,z 0 ) on jokin L:n piste ja s = (a,b,c) (0,0,0) on suoran suuntavektori P

Lineaarialgebra (muut ko) p. 9/210 Suorat Suoran L standardiesitys L : x x 0 a = y y 0 b = z z 0 c missä P = (x 0,y 0,z 0 ) on jokin L:n piste ja s = (a,b,c) (0,0,0) on suoran suuntavektori P s

Lineaarialgebra (muut ko) p. 10/210 Parametriesitys Suoran L koordinaattimuotoinen parametriesitys x = x 0 +ta y = y 0 +tb z = z 0 +tc (t R)

Lineaarialgebra (muut ko) p. 11/210 Parametriesitys Suoran L koordinaattimuotoinen parametriesitys x = x 0 +ta y = y 0 +tb z = z 0 +tc t = 1 (t R) P ts vektoreina r = r 0 +ts, t R.

Lineaarialgebra (muut ko) p. 12/210 Parametriesitys Suoran L koordinaattimuotoinen parametriesitys x = x 0 +ta y = y 0 +tb z = z 0 +tc (t R) P t = 2 ts vektoreina r = r 0 +ts, t R.

Lineaarialgebra (muut ko) p. 13/210 Erikoistapaukset (standardiesitys) Tapaus c = 0: L : Tapaus b = c = 0: x x 0 a = y y 0 b, z = z 0 L : y = y 0, z = z 0

Lineaarialgebra (muut ko) p. 14/210 Tasot Tason piste P = (x 0,y 0,z 0 ) ja normaalivektori n = (a,b,c) (0,0,0). Tason T koordinaattimuotoinen esitys T : ax+by +cz = d missä d = ax 0 +by 0 +cz 0.

Lineaarialgebra (muut ko) p. 15/210 Mitä yhtälöryhmälle saa tehdä? 1) Yhtälön voi kertoa vakiolla 0 2) Yhtälön voi lisätä toiseen vakiolla kerrottuna 3) Yhtälöiden järjestystä voi vaihtaa

Lineaarialgebra (muut ko) p. 16/210 n-ulotteinen avaruus, s.9 Vektorien joukko R n = {(x 1,x 2,...,x n ) x 1,x 2,...,x n R}. Vektoreille u = (u 1,u 2,...,u n ) ja v = (v 1,v 2,...,v n ) operaatiot Yhteenlasku: u+v = (u 1 +v 1,u 2 +v 2,...,u n +v n ) Skalaarilla kertominen (a R): au = (au 1,au 2,...,au n )

Lineaarialgebra (muut ko) p. 17/210 n-ulotteinen avaruus, s.9 Vektoreille u = (u 1,u 2,...,u n ) ja v = (v 1,v 2,...,v n ) aiemmat tulokset (1.3) (1.7) toimivat myös R n :ssa, kun määritellään u = u 2 1 +u2 2 + +u2 n ja (u,v) = u 1 v 1 +u 2 v 2 + +u n v n.

Lineaarialgebra (muut ko) p. 18/210 MATRIISIT: Johdanto 2 1 4 2 2 4 1 2 (k = 20) { 2x+3y = 0 4x+ky = 0 Ratkaisuja 1, kun 2 k 3 4 0, Ratkaisuja, kun 2 k 3 4 = 0 (eli k = 6).

Lineaarialgebra (muut ko) p. 18/210 MATRIISIT: Johdanto 2 1 4 2 2 4 1 2 (k = 7) { 2x+3y = 0 4x+ky = 0 Ratkaisuja 1, kun 2 k 3 4 0, Ratkaisuja, kun 2 k 3 4 = 0 (eli k = 6).

Lineaarialgebra (muut ko) p. 18/210 MATRIISIT: Johdanto 6 4 2 4 2 2 4 2 { 2x+3y = 1 4x+ky = 5 Ratkaisuja 1, kun 2 k 3 4 0,

Lineaarialgebra (muut ko) p. 18/210 MATRIISIT: Johdanto 3 2 1 4 2 2 4 1 2 3 { 2x+3y = 1 4x+ky = 5 Ei ratkaisuja, kun 2 k 3 4 = 0, eli k = 6.

Lineaarialgebra (muut ko) p. 19/210 MATRIISIT: Johdanto Kertoimista "matriisi" ( 2 3 4 k ) ja "determinantti" 2 3 4 k = 2 k 3 4

Lineaarialgebra (muut ko) p. 20/210 MATRIISIT: Johdanto Kertoimista "matriisi" ( 2 3 4 k ) ja "determinantti" 2 3 4 k = 2k 3 4 "vakiot"pystyvektorina ( 1 5 )

Lineaarialgebra (muut ko) p. 21/210 MATRIISIT: Johdanto Yleistyykö edellinen tarkastelu? Entä kun tuntemattomia ja yhtälöitä eri määrä? Onko yhtälöryhmää, jossa tarkalleen 17 ratkaisua?

Lineaarialgebra (muut ko) p. 22/210 Matriiseista Samaa tyyppiä olevat m n-matriisit voidaan laskea yhteen A+B Nollamatriisi O = (0) m n Transponointi A T ( 1 2 3 4 5 6 ) T = 1 4 2 5 3 6

Lineaarialgebra (muut ko) p. 23/210 Matriisien tulo, s. 13 Matriisien A = (a ij ) m s ja B = (b ij ) s n tulo on AB = (u ij ) m n missä kaikilla i, j. u ij = a i1 b 1j +a i2 b 2j + +a is b sj

Lineaarialgebra (muut ko) p. 24/210 Matriisien tulo Matriisitulo ( 1 2 3 4 ) 2 2 ( 5 6 7 8 9 10 ) 2 3 =

Lineaarialgebra (muut ko) p. 25/210 Matriisien tulo Matriisitulo ( 1 2 3 4 ) 2 2 ( 5 6 7 8 9 10 ) 2 3 = ( 21 24 27 47 54 61 )

Lineaarialgebra (muut ko) p. 26/210 Matriisien tulo Matriisitulo ( 1 2 3 4 ) 2 2 ( 5 6 7 8 9 10 ) 2 3 = ( 21 24 27 47 54 61 )

Lineaarialgebra (muut ko) p. 27/210 Matriisien tulo Yleensä ei KOMMUTOI AB BA

Lineaarialgebra (muut ko) p. 28/210 Matriisien tulo Kaikkien m n-matriisien joukko M m n

Lineaarialgebra (muut ko) p. 29/210 Laskusääntöjä, s. 18 skalaari r R (AB)C = A(BC) A(B +C) = AB +AC (A+B)C = AC +BC r(ab) = A(rB)

Lineaarialgebra (muut ko) p. 30/210 Johdanto yhtälöryhmiin Tutkitaan ratkaisuja 5x + y + t = 1 3x y + 2z t = 2 x + y z = 0

Lineaarialgebra (muut ko) p. 31/210 Johdanto yhtälöryhmiin Tutkitaan ratkaisuja 5x 1 + x 2 + x 4 = 1 3x 1 x 2 + 2x 3 x 4 = 2 x 1 + x 2 x 3 = 0

Lineaarialgebra (muut ko) p. 32/210 Johdanto yhtälöryhmiin Tutkitaan ratkaisuja 5x 1 + x 2 + x 4 = 1 3x 1 x 2 + 2x 3 x 4 = 2 x 1 + x 2 x 3 = 0 Tästä matriisit 5 1 0 1 3 1 2 1 1 1 1 0, x 1 x 2 x 3 x 4, 1 2 0

Lineaarialgebra (muut ko) p. 33/210 Johdanto yhtälöryhmiin, s.16 Tutkitaan ratkaisuja 5x 1 + x 2 + x 4 = 1 3x 1 x 2 + 2x 3 x 4 = 2 x 1 + x 2 x 3 = 0 Tästä matriisit 5 1 0 1 3 1 2 1, 1 } 1 1 {{ 0 } kerroinmatriisi x 1 x 2 x 3 x 4, }{{} tuntemattomat 1 2 0 }{{} vakiot

Lineaarialgebra (muut ko) p. 34/210 Esimerkiksi { 2x + 3y = 1 4x + 5y = 3

Lineaarialgebra (muut ko) p. 35/210 Esimerkiksi { 2x 1 + 3x 2 = 1 4x 1 + 5x 2 = 3

Lineaarialgebra (muut ko) p. 36/210 Esimerkiksi { 2x 1 + 3x 2 = 1 4x 1 + 5x 2 = 3 A = ( 2 3 4 5 ) x = ( x 1 x 2 ) c = ( 1 3 ) Matriisikielellä Ax = c

Lineaarialgebra (muut ko) p. 37/210 2.5 Lineaariset yhtälöryhmät Monisteessa (2.3) a 11 x 1 + a 12 x 2 +... + a 1n x n = c 1 a 21 x 1 + a 22 x 2 +... + a 2n x n = c 2... a m1 x 1 + a m2 x 2 +... + a mn x n = c m

Lineaarialgebra (muut ko) p. 38/210 Matriisien avulla Ax = c, missä A = a 11 a 12... a 1n a 12 a 22... a 2n............, a m1 a m2... a mn ja x = x 1 x 2. c = c 1 c 2. x n c m

Lineaarialgebra (muut ko) p. 39/210 Homogeenisuus Yhtälöryhmä on homogeeninen, jos Monisteessa (2.5) a 11 x 1 + a 12 x 2 +... + a 1n x n = 0 a 21 x 1 + a 22 x 2 +... + a 2n x n = 0... a m1 x 1 + a m2 x 2 +... + a mn x n = 0 eli matriisimuodossa Ax = 0. Muutoin epähomogeeninen

Lineaarialgebra (muut ko) p. 40/210 Esimerkiksi Epähomogeeninen { 2x 1 + 3x 2 = 1 4x 1 + 5x 2 = 3 Homogeeninen { 2x 1 + 3x 2 = 0 4x 1 + 5x 2 = 0

Lineaarialgebra (muut ko) p. 41/210 Yhtälöryhmistä Olkoon x 0 yksittäisratkaisu epähomogeeniselle yhtälöryhmälle Ax = c. Silloin sen kaikki ratkaisut ovat muotoa x = x 0 +y missä y on homogeenisen yhtälöryhmän Ax = 0 kaikki ratkaisut.

Lineaarialgebra (muut ko) p. 42/210 Tulon transponointi (AB) T = B T A T Matriisi on symmetrinen, jos järjestys! A T = A Identiteettimatriisi I = I n = 1 0 0 0 1 0...... 0 0 1 Neliömatriisille A: AI = IA = A

Lineaarialgebra (muut ko) p. 43/210 Matriisin potenssi Kun kokonaisluku k 1 A k = A A A }{{} k Lisäksi A 0 = I

Lineaarialgebra (muut ko) p. 44/210 Matriisiyhtälöistä (s. 20) Matriisiyhtälöitä voidaan käsitellä kuten reaalilukuyhtälöitä, kunhan ei käytetä jakolaskua eikä kommutatiivisuutta Ei siis voi yleensä supistaa AB = AC B = C

Lineaarialgebra (muut ko) p. 45/210 Käänteismatriisi Määritelmä neliömatriisin A käänteismatriisille eli EI MERKITÄ 1 A vaana 1 Ei aina olemassa, esim A = AB = BA = I AA 1 = A 1 A = I ( 1 2 0 0 ).

Lineaarialgebra (muut ko) p. 46/210 Säännöllisyys A on säännöllinen, jos A 1 on olemassa.

Lineaarialgebra (muut ko) p. 47/210 Säännöllisyys A on säännöllinen, jos A 1 on olemassa. Jos matriisin A = ( a b c d ) kertoimille ad bc 0, niin A 1 = 1 ad bc ( d b c a )

Lineaarialgebra (muut ko) p. 48/210 Laskusääntöjä Olkoot A ja B säännöllisiä matriiseja: (AB) 1 = B 1 A 1 (A T ) 1 = (A 1 ) T

Lineaarialgebra (muut ko) p. 49/210 Laskusääntöjä Olkoot A ja B matriiseja, missä pystyrivien avulla B = (b 1 b k ). Silloin kertolasku AB = (Ab 1 Ab k )

Lineaarialgebra (muut ko) p. 50/210 2.3 Matriisien kertominen lohkomuodossa Lohkominen ( A B C D )( 1 0 a b 0 1 c d 0 0 1 0 0 0 0 1 A B C D ) = ( ( I A O I ) AA +BC AB +BD CA +DC CB +DD ) Esimerkiksi ( I A O I )( A O I B ) = ( O AB I B )

Lineaarialgebra (muut ko) p. 51/210 Determinantti Neliömatriisille A: det(a) = a 11 a 12... a 1n a 21 a 22... a 2n............ a n1 a n2... a nn = kaikki permutaatiot(j 1,j 2,...,j n ) sign(j 1,j 2,...,j n )a 1j1 a 2j2...a njn

Lineaarialgebra (muut ko) p. 52/210 2-rivinen determinantti a b c d = ad cb

Lineaarialgebra (muut ko) p. 53/210 Perusominaisuuksia, s. 26 1) 2) a 11... ca 1k... a 1n a 21... ca 2k... a 2n............... a n1... ca nk... a nn det(a T ) = det(a) = c a 11... a 1k... a 1n a 21... a 2k... a 2n............... a n1... a nk... a nn vastaavasti vaakariville

Lineaarialgebra (muut ko) p. 54/210 Perusominaisuuksia, s. 27 3) a 11... a 1k +b 1k... a 1n a 21... a 2k +b 2k... a 2n............... a n1... a nk +b nk... a nn = a 11... a 1k... a 1n a 21... a 2k... a 2n............... a n1... a nk... a nn + a 11... b 1k... a 1n a 21... b 2k... a 2n............... a n1... b nk... a nn vastaavasti vaakariville

Lineaarialgebra (muut ko) p. 55/210 Perusominaisuuksia, s. 27 4) Jos pysty- tai vaakarivi on nollarivi, niin det(a) = 0. 5) Jos kaksi samaa pystyriviä (tai kaksi samaa vaakariviä), niin det(a) = 0. 6) Jos kaksi vaakariviä (tai kaksi pystyriviä) vaihdetaan keskenään, niin determinantti muuttuu vastaluvukseen. a 11 a 12... a 1n a 21 a 22... a 2n............ a n1 a n2... a nn = a 21 a 22... a 2n a 11 a 12... a 1n............ a n1 a n2... a nn

Lineaarialgebra (muut ko) p. 56/210 Perusominaisuuksia, s. 27 7) c + a 11... a 1h... a 1k... a 1n a 21... a 2h... a 2k... a 2n..................... a n1... a nh... a nk... a nn = a 11... a 1h... a 1k +ca 1h... a 1n a 21... a 2h... a 2k +ca 2h... a 2n..................... a n1... a nh... a nk +ca nh... a nn vastaavasti vaakariville

Lineaarialgebra (muut ko) p. 57/210 Tulon determinantti det(ab) = det(a) det(b) Jos A on säännöllinen, niin det(a 1 ) = 1 det(a)

Lineaarialgebra (muut ko) p. 58/210 Alkion komplementti Matriisin alkion a ij komplementti C ij = ( 1) i+j det(a ij ) missä A ij saatu poistamalla matriisista A vaakarivi i ja pystyrivi j. Deteminantin rivikehitelmät (vaakariville) det(a) = a i1 C i1 + +a in C in

Lineaarialgebra (muut ko) p. 59/210 Alkion komplementti Matriisin alkion a ij komplementti C ij = ( 1) i+j det(a ij ) missä A ij saatu poistamalla matriisista A vaakarivi i ja pystyrivi j. Deteminantin rivikehitelmät (vaakariville) 2 3 4 5 6 7 8 9 1 ( = 5 3 4 9 1 ) ( +6 + 2 4 8 1 ) ( +7 2 3 8 9 )

Lineaarialgebra (muut ko) p. 60/210 Alkion komplementti Matriisin alkion a ij komplementti C ij = ( 1) i+j det(a ij ) missä A ij saatu poistamalla matriisista A vaakarivi i ja pystyrivi j. Deteminantin rivikehitelmät (vaakariville) det(a) = a i1 C i1 + +a in C in = n a ik C ik k=1 ja pystyriville det(a) = n a kj C kj k=1

Lineaarialgebra (muut ko) p. 61/210 Käänteismatriisin kaava Matriisin A liittomatriisi adj(a) = (C ij ) T Jos A on säännöllinen, niin A 1 = 1 det(a) (C ij) T A on säännöllinen det(a) 0

Lineaarialgebra (muut ko) p. 62/210 Cramerin sääntö Jos yhtälöryhmän Ax = c kerroinmatriisi A on säännöllinen, niin sillä on yksikäsitteinen ratkaisu x j = det(a j) det(a) missä x = x 1 x 2. x n ja A j saadaan korvaamalla j:s pystyrivi c:llä

Lineaarialgebra (muut ko) p. 63/210 Ristitulo, s. 34 Tarkastelussa vain R 3 Olkoon u = (u 1,u 2,u 3 ) R 3 v = (v 1,v 2,v 3 ) R 3 u v = (C 11,C 12,C 13 ).

Lineaarialgebra (muut ko) p. 64/210 Ristitulo, s. 34 Tarkastelussa vain R 3 Olkoon u = (u 1,u 2,u 3 ) R 3 u v = v = (v 1,v 2,v 3 ) R 3 u 2 u 3 u 1 u 3 u 1 u 2,, v 2 v 3 v 1 v 3 v 1 v 2. }{{}}{{}}{{} C 11 C 12 C 13

Lineaarialgebra (muut ko) p. 65/210 Ristitulo Eli (u,u v) = u 1 C 11 +u 2 C 12 +u 3 C 13 ( ) u 2 u 3 = u 1 v 2 v 3 +u u 1 u 3 2 v 1 v 3 +u 3 u 1 u 2 v 1 v 2 ja samoin (v,u v) = v 1 C 11 +v 2 C 12 +v 3 C 13 ( ) u 2 u 3 = v 1 v 2 v 3 +v u 1 u 3 u 1 u 2 2 +v 3 v 1 v 3 v 1 v 2 Johtavat determinantteihin (kehittämällä 1. vaakarivi) u 1 u 2 u 3 v 1 v 2 v 3 u 1 u 2 u 3 u 1 u 2 u 3 v 1 v 2 v 3 v 1 v 2 v 3

Lineaarialgebra (muut ko) p. 66/210 Ristitulo Eli (u,u v) = u 1 C 11 +u 2 C 12 +u 3 C 13 ( ) u 2 u 3 = u 1 v 2 v 3 +u u 1 u 3 2 v 1 v 3 +u 3 u 1 u 2 v 1 v 2 ja samoin (v,u v) = v 1 C 11 +v 2 C 12 +v 3 C 13 ( ) u 2 u 3 = v 1 v 2 v 3 +v u 1 u 3 u 1 u 2 2 +v 3 v 1 v 3 v 1 v 2 Johtavat determinantteihin (kehittämällä 1. vaakarivi) u 1 u 2 u 3 v 1 v 2 v 3 u 1 u 2 u 3 = 0 = u 1 u 2 u 3 v 1 v 2 v 3 v 1 v 2 v 3

Lineaarialgebra (muut ko) p. 67/210 Ristitulo Siis u (C 11,C 12,C 13 ) = 0 v (C 11,C 12,C 13 ) = 0

Lineaarialgebra (muut ko) p. 68/210 Muistisääntö Ristitulo (vain R 3 :ssa) Vektoreille u = (u 1,u 2,u 3 ) ja v = (v 1,v 2,v 3 ) u v = i j k u 1 u 2 u 3 v 1 v 2 v 3 Jos u ja v eivät nollavektoreita ja α on niiden välinen kulma, niin u v = u v sinα. Vertaa (1.4): (u,v) = u v cosα. u u v ja v u v

Lineaarialgebra (muut ko) p. 69/210 Muistisääntö Ristitulo (vain R 3 :ssa) Vektoreille u = (u 1,u 2,u 3 ) ja v = (v 1,v 2,v 3 ) u v = Ei kommutatiivinen i j k u 1 u 2 u 3 v 1 v 2 v 3 u v = v u Ei myöskään assosiatiivinen eli yleensä u (v w) (u v) w.

Lineaarialgebra (muut ko) p. 70/210 Skalaarikolmitulo Skalaarikolmitulo vektoreille u = (u 1,u 2,u 3 ), v = (v 1,v 2,v 3 ) ja w = (w 1,w 2,w 3 ): u (v w) = u 1 u 2 u 3 v 1 v 2 v 3 w 1 w 2 w 3 Vektorien määräämän suuntaissärmiön (kts. kuva alla) tilavuus saadaan itseisarvosta u (v w) u w v

Lineaarialgebra (muut ko) p. 71/210 Aliavaruus Aliavaruudelle U R n kolme ehtoa: 1) U 2) u,v U u+v U 3) a R, u U au U.

Lineaarialgebra (muut ko) p. 72/210 Aliavaruus Aliavaruudelle U R n kolme ehtoa: 1) U 2) u,v U u+v U 3) a R, u U au U.

Lineaarialgebra (muut ko) p. 73/210 Aliavaruus Aliavaruudelle U R n kolme ehtoa: 1) U 2) u,v U u+v U 3) a R, u U au U. 0 kuuluu aina aliavaruuteen! U = {x R n Ax = 0} on R n :n aliavaruus Triviaalit aliavaruudet: {0} ja R n.

Lineaarialgebra (muut ko) p. 74/210 Ratkaisuavaruus (Lause 4.1.8) Lineaarisen homogeenisen yhtälöryhmän a 11 x 1 + a 12 x 2 +... + a 1n x n = 0 a 21 x 1 + a 22 x 2 +... + a 2n x n = 0... a n1 x 1 + a n2 x 2 +... + a nn x n = 0 ratkaisut x = x 1. x n muodostavat aliavaruuden (ns. ratkaisuavaruuden)

Lineaarialgebra (muut ko) p. 75/210 Ratkaisuavaruus (Lause 4.1.8) Lineaarisen homogeenisen yhtälöryhmän Ax = 0 ratkaisut x = x 1. x n muodostavat aliavaruuden (ns. ratkaisuavaruuden)

Lineaarialgebra (muut ko) p. 76/210 AliavaruudetR 3 :ssa {0} origon kautta kulkevat suorat origon kautta kulkevat tasot R 3

Lineaarialgebra (muut ko) p. 77/210 Viritetty aliavaruus vektorien x 1,x 2,...,x k R n lineaarikombinaatio vektorien virittämä aliavaruus c 1 x 1 +c 2 x 2 +...+c k x k L(x 1,x 2,...,x k ) = {c 1 x 1 +c 2 x 2 +...+c k x k c 1,c 2,...,c k R}

Lineaarialgebra (muut ko) p. 78/210 Viritetty aliavaruus vektorien x 1,x 2,...,x k R n lineaarikombinaatio vektorien virittämä aliavaruus c 1 x 1 +c 2 x 2 +...+c k x k L(x 1,x 2,...,x k ) = {c 1 x 1 +c 2 x 2 +...+c k x k c 1,c 2,...,c k R} Esimerkiksi a(1,1)+b(1,0) ja L((1,1),(1,0)) sisältää mm. vektorit (0,0),(1,1),(1,0),(2,1),(0,1),( 2,0),...

Lineaarialgebra (muut ko) p. 79/210 Matriisien avulla Pystyrivien lineaarikombinaatio A = (a 1 a 2... a n ) Ac = c 1 a 1 + +c n a n

Lineaarialgebra (muut ko) p. 80/210 Matriisien avulla matriisin pystyriveille A = (a 1 a 2... a n ) m n Lause 4.2.8: neliömatriisille L(a 1,a 2,...,a n ) = {Ac c R n } L(a 1,a 2,...,a n ) = R n A on säännöllinen

Lineaarialgebra (muut ko) p. 81/210 Matriisien avulla matriisin pystyriveille A = (a 1 a 2... a n ) m n Lause 4.2.8: neliömatriisille L(a 1,a 2,...,a n ) = {Ac c R n } L(a 1,a 2,...,a n ) = R n A on säännöllinen Esimerkiksi L((1,1),(1,0)) = R 2, sillä 1 1 1 0 0

Lineaarialgebra (muut ko) p. 82/210 Johdanto: Lineaarinen riippumattomuus Olkoot x = (1,1,0) ja y = ( 2, 2,0). Näille lineaarikombinaatioina 0 x+0 y = (0,0,0) 2 x+1 y = (0,0,0) 20 x+10 y = (0,0,0).

Lineaarialgebra (muut ko) p. 83/210 Lineaarinen riippumattomuus Lineaarinen riippuvuus c 1 x 1 +...+c m x m = 0 missä jokin c j 0 Lineaarinen riippumattomuus c 1 x 1 +...+c m x m = 0 = c 1 = c 2 =... = c m = 0

Lineaarialgebra (muut ko) p. 84/210 Matriisien avulla Lause 4.3.10: Neliömatriisin A = (a 1 a 2... a n ) pystyriveille: Pystyrivit ovat lin. riippumattomia A on säännöllinen

Lineaarialgebra (muut ko) p. 85/210 Lineaarinen riippumattomuus Lause 4.3.5 sanoo: Vektorit ovat lineaarisesti riippuvia jokin niistä saadaan muiden lineaarikombinaationa x j = c 1 x 1 + +c j 1 x j 1 +c j+1 x j+1 + +c m x m

Lineaarialgebra (muut ko) p. 86/210 Lineaarinen riippumattomuus Kaksi vektoria ovat lineaarisesti riippuvia toinen on toisen skalaarimonikerta Varoitus: ei toimi useammalla vektorilla: (1,1,0),(1,0,0),(0,1,0) vaikka t (1,0,0) (0,1,0) s (1,0,0) (1,1,0) r (0,1,0) (1,1,0) kaikilla t,r,s R, niin silti lin. riippuvuus (1,1,0) = (1,0,0)+(0,1,0)

Lineaarialgebra (muut ko) p. 87/210 Johdanto: kanta Jokainen vektori lin.kombinaationa? (x,y) = c 1 (2,2)

Lineaarialgebra (muut ko) p. 88/210 Johdanto: kanta Jokainen vektori lin.kombinaationa? (x,y) = c 1 (2,2)

Lineaarialgebra (muut ko) p. 89/210 Johdanto: kanta Jokainen vektori lin.kombinaationa: (x,y) = c 1 (2,2)+c 2 ( 4,2) 2 4 2 2 = 12 0

Lineaarialgebra (muut ko) p. 90/210 Johdanto: kanta Jokainen vektori lin.kombinaationa: (x,y) = c 1 (2,2)+c 2 ( 4, 4)

Lineaarialgebra (muut ko) p. 91/210 Johdanto: kanta Jokainen vektori lin.kombinaationa (yksikäsitteisesti): (1, 2) = 1 2 (2,2) 1 2 ( 4,2)+0 (1, 2) (1, 2) = 0 (2,2)+0 ( 4,2)+1 (1, 2)

Lineaarialgebra (muut ko) p. 92/210 Kanta Vektorit u 1,...,u k muodostavat aliavaruuden U kannan, jos (i) ovat lineaarisesti riippumattomia, (ii) virittävät koko U:n.

Lineaarialgebra (muut ko) p. 93/210 Kanta Vektorit u 1,...,u k muodostavat aliavaruuden U kannan, jos (i) ovat lineaarisesti riippumattomia eli c 1 u 1 + +c m u k = 0 c 1 = = c k = 0, (ii) virittävät koko U:n eli L(u 1,...,u k ) = {c 1 u 1 + +c k u k c 1,...,c k R} = U.

Lineaarialgebra (muut ko) p. 94/210 Kannan merkitys Yksikäsitteinen kantaesitys vektorille u U R 4 :n luonnollinen kanta u = c 1 u 1 + +c k u k. {e 1,e 2,e 3,e 4 } = Jos U = R n, niin determinantit käteviä, mutta U R n eivät yleensä sovellu.

Lineaarialgebra (muut ko) p. 95/210 Kannan merkitys Yksikäsitteinen kantaesitys vektorille u U R 4 :n luonnollinen kanta u = c 1 u 1 + +c k u k. {e 1,e 2,e 3,e 4 } = {(1,0,0,0),(0,1,0,0),(0,0,1,0),(0,0,0,1)}. Jos U = R n, niin determinantit käteviä, mutta U R n eivät yleensä sovellu.

Lineaarialgebra (muut ko) p. 96/210 Perusominaisuuksia s. 45 1) Jokaisella aliavaruudella U on kanta. 2) Jokaisessa U:n kannassa on sama määrä vektoreita. 3) Lineaarisesti riippumaton U:n joukko {u 1,...,u k } voidaan täydentää U:n kannaksi {u 1,...,u k,u k+1,...u m }. 4) Jos L(u 1,...,u t ) = U, niin tästä saadaan kanta U:lle jättämällä ylimääräiset pois (kunnes lin. riippumaton).

Lineaarialgebra (muut ko) p. 97/210 Dimension ominaisuuksia s. 46 Olkoot U,V R n aliavaruuksia: 1) dimu n 2) Jos U V, niin dimu dimv. 3) Jos U V, niin dimu < dimv. 4) Jos u 1,...,u k U ja k < dimu, niin eivät viritä U:ta. 5) Jos u 1,...,u k U ja k > dimu, niin ovat lineaarisesti riippuvia.

Lineaarialgebra (muut ko) p. 98/210 Dimension ominaisuuksia s. 46 6) Vektorit u 1,...,u k U muodostavat kannan, jos kaksi seuraavista voimassa: (i) u 1,...,u k ovat lineaarisesti riippumattomia, (ii) U = L(u 1,...,u k ), (ii) k = dimu.

Lineaarialgebra (muut ko) p. 99/210 Dimension ominaisuuksia s. 46 7) Olkoon u 1,...,u k kanta U:lle ja vektoreiden v 1,...,v k U kantaesitykset v j = k a ij u i (j = 1,...,k). i=1 Vektorit v 1,...v k muodostavat kannan, jos on säännöllinen. A = (a ij ) k k

Lineaarialgebra (muut ko) p. 100/210 Tunnettuja dimensioita Aliavaruuden U R n dimensio dim U = kantavektoreiden lukumäärä Koko avaruudelle dimr n = n. Tasolle (origon kautta) T R 3 dimt = 2. Suoralle (origon kautta) L R 3 diml = 1.