Korkealämpötilaprosessit Pyrometallurgiset pelkistysprosessit 27.9.2017 klo 12-14 SÄ114 Tavoite Tutustua keskeisimpiin pyrometallurgisiin pelkistysprosesseihin - Erityisesti raudan ja ferrokromin valmistus - Pelkistysprosessien rooli ja tehtävät metallien valmistusketjuissa Tutustua tarkemmin masuuni- ja uppokaariuuniprosessiin - Tehtävät - Raaka-aineet ja tuotteet - Keskeisimmät ilmiöt - Kuonat - Päästöt ja ympäristövaikutukset Masuuni, Tobo, Uppland, 1913. Kuva: C. Reimers (JK-arkisto). 1
Sisältö Kertausta: Pelkistyminen (ja hapettuminen) - Erityisesti korkeissa lämpötiloissa Raudan valmistus yleisesti - Historiaa - Kehitystrendejä Masuuni raudan valmistuksessa - Masuuni oheislaitteineen - Masuunin ilmiöt - Masuunikuona - Masuunin toimintaan vaikuttavia tekijöitä Uppokaariuuni ferrokromin valmistuksessa Muita pelkistysprosesseja Masuuni SSAB:n tehtailla Oxelösundissa, Södermanlandissa, 2002. Kuva: Stig-Göran Nilsson (Jernkontoretin arkisto). Tuotantoketju Esikäsittelyt Pelkistys Sulatus Raffinointi Jalostus Valu Lämpökäsittelyt Malmipohjainen rauta/teräs Jatkuvavalu Aihionkuumennus Romupohjainen rauta/teräs Jatkuvavalu Aihionkuumennus Ruostumaton teräs Sintraus Pelletointi Koksaus Kuivaus Lajittelu Pelletointi Sintraus Masuuni Masuuni LD-KG Senkkakäsittelyt Uppokaariuuni CRK AOD Kupari Kuivaus Liekkisulatus Liekkisulatus PSkonvertteri Valokaariuuni Senkkakäsittelyt Uppo- ja valokaariuunit Senkkakäsittelyt Anodiuuni Elektrolyysi Nikkeli Kuivaus Liekkisulatus Liekkisulatus Hydrometallurgiaa Hydrometallurgiaa Sinkki Pasutus Hydrometallurgiaa Hydrometallurgiaa Hydrometallurgiaa Jatkuvavalu Aihionkuumennus Anodivalu Tuotteiden valmistus Katodien sulatus/valu 2
Kertausta Pelkistyminen ja pelkistys Mitä pelkistyminen tarkoittaa? - Pelkistyminen tapahtuu aina samanaikaisesti hapettumisen kanssa: jonkin aineen pelkistyessä toinen hapettuu - Hapettuminen on elektronien luovuttamista pelkistyminen niiden vastaanottamista - Yleisimmät hapetus- ja pelkistysreaktiot liittyvät happeen ja oksideihin, mutta hapettumista ja pelkistymistä voi esiintyä myös ilman happea Peruskäsitteitä - Hapetusaste kuvaa hapettumisen (luovutettujen elektronien) lukumäärää - Hapetusluku on hapetusastetta vastaava lukuarvo - Merkitään aina roomalaisin numeroin (Fe II+, Fe III+ ) - Hapetusaste/-luku (Fe III+ ) Varaus (Fe 2+, Fe 3+ ) - Eri hapetusasteilla esiintyvät metallit muodostavat erilaisia yhdisteitä (FeO, Fe 2 O 3 ) Kertausta Pelkistyminen ja pelkistys Miten pelkistettävyyttä kuvataan? - Yhdisteiden termodynaaminen stabiilisuus - Muodostumisreaktioon liittyvät Gibbsin vapaaenergiat - Sähkökemiallinen jännitesarja - Standardielektrodi- ja tasapainopotentiaalit - Tasapainon kuvaus usein lämpötilan ja (kaasu)koostumuksen funktiona - Termodynamiikka kuvaa vain tasapainotilan ei ota kantaa nopeuksiin. Pelkistymisnopeuteen voi vaikuttaa: - itse reaktion nopeus - lähtöaineiden ja tuotteiden aineensiirto (esim. kiinteät tuotekerrokset voivat hidastaa reaktiota merkittävästi) - lämmönsiirto - Korkeissa lämpötiloissa rajoittava tekijä on usein siirtoilmiö 3
Kertausta Pelkistys korkeissa lämpötiloissa Pelkistys tarvitaan, koska monet metallit esiintyvät luonnossa yhdisteinä (oksidit, sulfidit, jne.) MeO + R = Me + RO - R on pelkistin (alkuaine tai yhdiste, jonka muodostama oksidi on pelkistyslämpötilassa stabiilimpi kuin MeO) Korkeat lämpötilat helpottavat oksideiden pelkistämistä - Korostuu hiilellä pelkistettäessä - vrt. Ellinghamin diagrammi Hiili- eli karboterminen pelkistys MeO + C = Me + CO - Käytännössä kaasufaasin välityksellä: - MeO + CO = Me + CO 2 - C + CO 2 = 2 CO (Boudouardin reaktio) Raudan valmistus Historiaa Lähde: Olli Mattila, SSAB. 4
Raudan valmistus Historiaa Suomenkielessä sana rauta on peräisin noin 2500 vuoden takaa - Suomalaisten näkemys raudan synnystä on kuvattu Kalevalan yhdeksännessä runossa Aluksi järvi- ja suomalmien hyödyntäminen Ensimmäiset kaivokset 1500-luvulla Ensimmäiset ruukit/rautahytit 1600-luvulla - Rautahyteillä tuotetun raudan määrä suurimmillaan 1800- luvun lopulla - n. 25 000 t/a (vrt. Raahen tehdas n. 45 000 t/vko) 1920-luvulla neljä raudanvalmistuslaitosta 1937 Oy Vuoksenniska Ab:n rauta- ja terästehdas Imatralle Lähde: Olli Mattila, SSAB. - Huomattavasti suurempi kapasiteetti kuin aiemmissa tehtaissa - Aloitti uuden raudanvalmistuksen ajanjakson Suomessa Raudan valmistus Kehitystrendejä (esimerkkinä japanilaiset masuunit) Lähde: Naito, Takeda & Matsui: ISIJ Int. 55(2015)1, 7-35. 5
Raudan valmistus Kehitystrendejä (esimerkkinä japanilaiset masuunit) Raahen masuunit (2017) Lähde: Naito, Takeda & Matsui: ISIJ Int. 55(2015)1, 7-35. Raahea koskevat tiedot: Mattila: 2nd ISIJ-VDEh-JK joint symposium, Stockholm, 2017. Raudan valmistus Kehitystrendejä (esimerkkinä japanilaiset masuunit) Raudantuojat eurooppalaisissa, japanilaisissa ja yhdysvaltalaisissa masuuneissa (1996). Sintraamon alasajo (2011) Raahen masuunit Lähde: Naito, Takeda & Matsui: ISIJ Int. 55(2015)1, 7-35. 6
Raudan valmistus Ohjelmat CO 2 - päästöjen vähentämiseksi Lähde: Naito, Takeda & Matsui: ISIJ Int. 55(2015)1, 7-35. Masuuni Vastavirtaperiaatteella toimiva kuilu-uuni raudan valmistamiseksi - Ylhäältä panostetaan - pelletit tai sintterit - briketit - koksi - mahdolliset muut kiinteät lisäaineet - Alhaalta - puhalletaan esilämmitettyä, happirikastettua ilmaa - injektoidaan öljyä, hiiltä tai muuta koksia korvaavaa ainetta Kuuma ilma polttaa koksia ja muita polttoaineita - Syntyy pelkistäviä kaasuja häkä ja vety - Kaasun noustessa ne pelkistävät raudan oksideja ja hapettuvat hiilidioksidi ja vesihöyry - Koksikerroksessa muodostuu häkäkaasua - Syntyvä metallinen rauta liuottaa hiiltä ja sulaa Kuva: Olli Mattila, SSAB. Tuotteet - Raakarauta (C 4,5 %, Si 0,45 %), kuona, masuunikaasu 7
Masuunin tukiprosessit Raaka-aineiden agglomerointi - Pelletointi, sintraus, briketointi, koksaus Raaka-aineiden kuljetus ja logistiikka - Siilot, kuljettimet, seulat, nostimset, lastaimet, purkaimet, pölynpoisto, varastointi Energian tuotanto - Sähkö, höyry, lämpö, puhallusilma, paine-ilma, kaasut Sivutuotelogistiikka - Kuonan granulointi - Kaasunpuhdistus Kuonan käsittely SSAB:n tehtailla Oxelösundissa, Södermanlandissa, 2002. Kuva: Stig-Göran Nilsson (Jernkontoretin arkisto). Xxxxxx Xxxxxx - Xxxxx - xxxxx Kuva: Olli Mattila, SSAB. Xxxxxx - Xxxxx - xxxxx Xxxxxx - Xxxxx - xxxxx Xxxxxx - Xxxxx - xxxxx 8
Masuuni Kuva: Olli Mattila, SSAB. Masuuni Kuva: Olli Mattila, SSAB. 9
Masuuni Masuunin hormitaso SSAB:n tehtailla Luleåssa, Norrbottenissa, 2002. Kuva: Stig-Göran Nilsson (Jernkontoretin arkisto). Masuunin yläosa SSAB:n tehtailla Oxelösundissa, Södermanlandissa, 2002. Kuva: Stig-Göran Nilsson (Jernkontoretin arkisto). Masuunin ilmiöt Kanbara, Hagiwara, Shigemi, Kondo, Kanayama, Wakabayashi & Hiramoto: Transactions ISIJ. 17(1977)7,371-380. Eri mittakaavassa esiintyviä ilmiöitä - Eivät ole toisistaan riippumattomia - Ei suoraa mittaustietoa masuuninsisäisistä ilmiöistä - Higashidan (1968), Hirohatan (1970) ja Kukiokan (1971) masuunien pysäytykset tietoa masuunin sisällöstä - Ilmiöiden tarkastelu perustuu lab.mittakaavaisiin kokeisiin 1) Koko prosessin mittakaavassa - Kiertoprosessit (alkalit, rikki) 2) Makroskaalassa - Partikkelipatjan pelkistyminen, pehmeneminen ja sulaminen - Muodostuvan sulan virtaukset 3) Mikroskaalassa - Yksittäisen partikkelin pelkistyminen (hapettuminen) - Uusien faasien muodostuminen/ydintyminen Higashidan käytöstä poistettu masuuni, Kitakyushu, Kyushu, 2015. Kuva: Kaisa Heikkinen (Heikkisten lomakuva-arkisto). 4) Kvanttitason ilmiöt - Kemiallisten sidosten syntyminen ja hajoaminen 10
Pelkistyminen Hormeilta puhallettava kuuma ilma polttaa koksia, öljyä, hiiltä ym. pelkistinaineita - Syntyy pelkistävää kaasua (CO, H 2 ) Pelkistävä kaasu nousee ylöspäin ja kohtaa laskeutuvan panosmateriaalin - Pelkistää raudan oksideja hapettuen samalla (CO 2, H 2 O) Hapettunut kaasu kulkeutuu koksikerrosten läpi Boudouardin reaktio - C + CO 2 = 2 CO Pelletti-/briketti-/sintterikerrokseen tullessaan kaasu taas pelkistää oksideja Kuva: Olli Mattila, SSAB. Lämpötilaprofiili Lämpötilaprofiili - Hormeilla kuuminta - Lämpötila laskee ylöspäin mentäessä - Vaihtelut vaakatasossa - Terminen reservivyöhyke, jossa T lähes vakio - Panosmateriaalin sulaminen koheesiovyöhykkeellä Lämpötilaprofiiliin vaikuttavat tekijät - Kaasun tunkeutumissyvyys hormeilla - Panostus (malmi/koksi-jakauma) - Kaasut kulkevat aina pienimmän vastuksen reittiä - Reaktiot - Pelkistymisreaktiot - Koksin kaasuuntuminen Lämpötilaprofiili vaikuttaa - Skollien muodostuminen ja kiertoprosessit - S, Zn, Na, K - Hirtot 11
Kuona Mistä masuunikuona muodostuu? - Masuunin raaka-aineet (sintteri, pelletit, briketit, koksi) sisältävät epäpuhtauksia - Malmikiven harmemineraalit - Agglomeroinnin side- ym. seosaineet - Malmimineraalin liuenneet aineet (poisto ei onnistu rikastuksella) - Tuhka - Kuonanmuodostajat, jolla koostumus ohjataan halutulle alueelle - Kalkki voidaan korvata konvertterikuonalla - Mahdollisesti injektoitavan öljyn mukana tuleva rikki - Määrä n. 150 350 kg/trr Ilmoitettu kilogrammoina tuotettua raakarautatonnia kohden Kuona Kuonanmuodostus - Alkaa jo kiinteässä tilassa masuunin yläosissa - Raudan oksidien pelkistyminen alkaa - Joidenkin aineiden diffuusiot faasien rajapinnoille - Toisten aineiden konsentroituminen residuaaliin - FeO-rikas eutektinen sula = Primäärikuona - Primäärikuonan koostumus riippuu siitä, mitä komponentteja on läsnä - Panosmateriaalit + Kaasut - Masuunin yläosissa syntyy useita primäärikuonia, jotka alasvirratessaan sekoittuvat ja muodostavat masuunikuonan - Masuunikuonan keskeisimmät komponentit ovat CaO, MgO, SiO 2 ja Al 2 O 3 Toiminnan kannalta koostumus saatava alueelle, jossa kuona on täysin sulaa alauunin toimintalämpötiloissa (n. 1350 1450 C) - CaO n. 40 %, SiO 2 n. 35 %, MgO n. 12 %, Al 2 O 3 n. 8 % Kuva: Olli Mattila, SSAB. 12
Kuona Masuunikuonan sula-alue Kuvat: Paananen, Ollila, Syrjänen & Mäkikyrö: Esitys, POHTO, 2011. Kuona Sintterin primäärikuona - Koostumus määräytyy sintterin mineralogian pohjalta - CaO-FeO-SiO 2 -systeemissä Happaman pelletin primäärikuona - Muodostuu FeO-SiO 2 systeemiin, jossa materiaali sulaa jo 1200 C:ssa - Ongelmana panoksen sulaminen liian aikaisin/ylhäällä - Tavoitteena on kapea ja mahdollisimman alas (korkea T) sijoittuva koheesiovyöhyke Oliviinipelletin primäärikuona - Lisättäessä pellettiin kvartsin sijasta oliviinia (Mg 2 SiO 4 ) pelletin sisään jäävän primäärisulan solidus- ja likviduslämpötilat nousevat 13
Kuona Sivuhuomautus Oliviini = Fe 2 SiO 4 -Mg 2 SiO 4 kiinteä liuos (fayaliitti forsteriitti) Oliviinipelletin primäärikuona (jatkoa) - Koheesiovyöhykkeellä FeO on hallitseva kuonakomponentti - Pelkistymisen edetessä FeO-pitoisuus laskee Jos pelletti ei sisällä MgO:a, siirrytään kohti fayaliitin koostumusta Suuremmilla MgOpitoisuuksilla koostumus siirtyy kohti forsteriittia T Sol ja T Likv kasvavat Myös MgO ja FeO muodostavat kiinteän liuoksen (magnesiowüstiitti). Kuvat muokattu lähteestä: Paananen, Ollila, Syrjänen & Mäkikyrö: Esitys, POHTO, 2011. Kuona Koksin tuhkan primäärikuona - Hapan primäärikuona, joka syntyy tuhkan mineraaliaineksista ja kaasusta tulevista komponenteista - B = CaO/SiO 2 = 0,05 - Ei muodosta itsenäistä sulaa - Ei FeO:a laskemassa solidus- ja likviduslämpötiloja - Muut primäärikuonasulat liuottavat koksin tuhkan itseensä - Koksauksessa maksimilämpötila n. 1050 C - Tuhkan mineraalit ovat käyneet ko. lämpötilassa - Tämän vuoksi tuhka-aines ei muutu juurikaan ennen koheesiovyöhykettä - Kompleksisia mineraaliyhdisteitä - Kiertävät komponentit (rikki, alkalit) vaikuttavat jo masuunin yläosissa - Koheesiovyöhykkeellä ja sen alapuolella mineraalit hajoavat yksinkertaisemmiksi - Hiilen pinnoilla olevat tuhkakomponentit vapautuvat koheesiovyöhykkeellä (jossa hiilestä palaa n. 30 %) ja yhtyvät pellettien primäärikuoniin - Koheesiovyöhykkeen jälkeen tuhka-aineita vapautuu paloonkaloissa, joissa hiilestä kaasuuntuu n. 60 % - Loput 10 % koksin hiilestä kuluu raakarauden hiilettymiseen - Tällöin vapautuvat loput koksin tuhkasta 14
Rikkijakauma (%S)/%S 16.9.2017 Kuona Koksin tuhkan primäärikuona (jatkoa) Kuvat: Gornostayev, Heikkinen, Heino, Huttunen & Fabritius: Steel research int. 87(2016)9, 1144-1153. 80 70 60 50 40 30 20 10 B2 vs S-jakauma Power (B2 vs S-jakauma) Kuona 0.90 0.95 1.00 1.05 1.10 1.15 1.20 CaO/SiO 2 Masuunikuonalle asetettavat tavoitteet - Oltava täysin sulaa, jotta saadaan laskettua masuunista - Koostumuksen ohjaus oikealle alueelle (ks. edellä) - Koottava yhteen faasiin aineet, joita ei haluta raakarautaan - Monet oksidit + rikki - Lopullisen koostumuksen optimointi usein kompromissi eri tavoitteiden välillä - esim. rikin kuonautumista voitaisiin tehostaa emäksisyyttä kasvattamalla, mutta tämä veisi koostumuksen alueelle, jossa kuona ei ole täysin sulaa - Alkalien poistoa masuunista puolestaan edistää hapan kuona - Jos halutaan pienentää masuunissa kiertävien alkalien määrää, ohjataan kuonaa happamampaan suuntaan, vaikka tämä samalla kasvattaa raakaraudan rikkipitoisuutta Kuvat: Paananen, Ollila, Syrjänen & Mäkikyrö: Esitys, POHTO, 2011. 15
Virtaukset Hiili-injektio masuunin hormeilta. Kuva: Dan Sandström, POHTO, 2015. Kaasu nousee hormeilta huipulle - Panosmateriaalin koksi-ikkunat keskeisessä asemassa - Rautapanos ja koksi panostetaan kerroksittain, mutta ne sekoittuvat panosmateriaalin valuessa alaspäin Koksi virtaa pääosin hormeille, jossa se palaa Sula metalli ja kuona - Koksipatjan läpi pisaroina ja jatkuvana virtauksena - Muodostavat metalli- ja kuonakerrokset pohjalle - Lasketaan pois väliajoin Masuunin alauunin keskellä on kiinteän koksin alue Kuollut mies Raakaraudan lasku masuunista SSAB:n tehtailla Luleåssa, Norrbottenissa, 2002. Kuva: Stig-Göran Nilsson (Jernkontoretin arkisto). - Masuunin virtauksiin ja toimintaan vaikuttaa merkittävästi kelluuko kuollut mies vai istuuko se pohjalla Masuunin toimintaan vaikuttavia tekijöitä Lähde: Naito, Takeda & Matsui: ISIJ Int. 55(2015)1, 7-35. 16
Muut raudan pelkistysprosessit Perusteluja vaihtoehtoiselle raudanvalmistusmenetelmälle - Mahdollisuus päästä eroon koksista - Hienojakoisen rautarikasteen käyttö raaka-aineena ilman agglomerointia - Hiilidioksidipäästöjen vähentäminen Vaihtoehtoisia menetelmiä - Kuilu-uunit - Leijupetisovellukset - Suorapelkistys kiinteässä tilassa - Erilaiset sulapelkistysprosessit Vaihtoehtoisia raudanvalmistusprosesseja käsitellään tarkemmin omalla luennollaan. Lähde: Naito, Takeda & Matsui: ISIJ Int. 55(2015)1, 7-35. Suorapelkistetyn raudan (DRI) valmistukseen käytettäviä menetelmiä. Muut raudan pelkistysprosessit Pyörivän arinauunin käyttö pelkistyksessä. DIOS-prosessi. Lähde: Naito, Takeda & Matsui: ISIJ Int. 55(2015)1, 7-35. 17
Uppokaariuuni Kuva: Mika Päätalo, Esitys, POHTO, 2015. Kromia ja rautaa sisältävän kromiittirikasteen pelkistys- ja sulatusprosessi - Elektrodit kuten valokaariuunissa - Koksin käyttö pelkistimenä - Tuotteena sula ferrokromi - Cr 53 %, Fe 35 %, C 7 %, Si 4,5 % SISÄÄN: Kromiittipelletti Palamalmi Kuonanmuodostajat (SiO 2, CaO, CaCO 3 ) Koksi Happi ULOS: Korkeahiilinen ferrokromisula (Cr 53 %, Fe 35 %, C 7 %, Si 4,5 %) Kuona (Al 2 O 3 -SiO 2 -MgO-Cr 2 O 3 ) CO 2, CO Lämpö Uppokaariuuni Ferrokromin tuotanto Outokummun Tornion tehtalla - Tuotantokapasiteetti 530000 tfecr/a - 2 sintraamoa 150 t/h pellettejä - 5 etukuumennusuunia T = 500 C - 3 uppokaariuunia - Uunien teho yhteensä 200 MW - Syötemateriaalit - Pelletit ja palarikaste - Koksi - Kvartsiitti - Energiankulutus n. 3200 kwh/tfecr - Koksin kulutus n. 500 kg/tfecr - Tuotteet - Korkeahiilinen ferrokromi - Häkäkaasu (85 % CO) loput vetyä, typpeä ja hiilidioksidia - 675 850 Nm 3 /tfecr - Kuona tuotteistetaan Lähde: Mika Päätalo, Esitys, POHTO, 2015. 18
Uppokaariuuni osana ferrokromin valmistusprosessia Reaktiot uppokaariuunissa Lähde: Jenni Räisänen, Diplomityö,, 2012. Masuunien tapaan myöskään uppokaariuunissa tapahtuvista reaktioista ei saada suoraa mittaustietoa - Sammutetun ja jäähdytetyn uunin tarkastelu (1999) Reaktiovyöhykkeet - 1: Panosmateriaalien muodostama kiintoainepatja - Ulottuu uunin yläosasta elektrodien kärkiin asti - Panoksen lämpeneminen - Mineraalien hajoamisreaktioita - Hiilen kaasuuntuminen - Kromiitin pelkistyminen CO-kaasulla - Metallifaasin muodostuminen (Cr, Fe) alkaa - Noin 20 % panoksesta pelkistyy tällä alueella - Ei sulan kuonan muodostumista - 2-6: Uunin alaosa - Kuonan muodostuminen harmemineraaleista ja kvartsista - Kromiitin liukeneminen kuonaan - Metallin pelkistyminen kuonafaasista ja metallifaasin muodostuminen - Kuonan ja metallin erottuminen toisistaan - Vyöhykkeet eroavat toisistaan faasikoostumukseltaan ja lämpötilaltaan 19
Pelkistysprosessit muiden metallien valmistuksessa Myös värimetalleja voidaan raudan tapaan pelkistää masuunityyppisissä kuiluuuneissa Värimetallien valmistuksen raaka-aineet usein sulfidisia - Ongelmana sulfidisen materiaalin pelkistys hiilellä - Pelkistysreaktioissa tasapaino lähtöaineiden puolella - Tuotteena ongelmallisia yhdisteitä kuten CS, CS 2, H 2 S, COS - Käytännössä sulfidiset materiaalit pasutetaan oksidiseen muotoon ennen pyrometallurgista pelkistystä - Metallien valmistus sulfidisista materiaaleista hydrometallurgisesti tai liekkisulatusmenetelmällä Esimerkkinä sinkin valmistus ISFmenetelmällä ISF = Imperial Smelting Furnace - Esikäsittelynä sulfidien pasutus oksidiseen muotoon - Pelkistys masuunityyppisessä kuilu-uunissa - Sinkki pelkistyy ja höyrystyy - Sinkin puhdistus tislaamalla - Alkuainesinkin talteenotto tiivistämällä kaasufaasista Lähde: Andersson, Sjökvist & Jönsson: Processmetallurgins grunder. KTH, 2006. 20
Yhteenveto Hiilellä pelkistämisen edellytykset paranevat lämpötilaa nostettaessa Masuuni, Ljusne, Hälsingland, 1901. Kuva: Harry von Eckermannin maalaus (JK-arkisto). Pyrometallurgista pelkistystä käytetään erityisesti raudan ja ferroseosten valmistuksessa - Masuuni - Uppokaariuuni Sulfidimalmit yleensä pasutetaan oksidiseen muotoon ennen pyrometallurgista pelkistystä - Tai käsitellään hydrometallurgisesti Masuuni, Ljusne, Hälsingland, 2014. Kuva: Kaisa Heikkinen (Heikkisten lomakuva-arkisto). 21